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Abstract

This paper is concerned in the topics of the foundations of mathematics. An
important problem of an axiomatic theory is to establish the minimum number
of axioms which are needed for that one obtains some standard properties.

In this paper we introduce and study two classes: the class of the D-spaces
and the class of the DL-spaces. The class of the D-spaces contains the class
of the linear vector spaces, the class of the afine spaces and the class of the
projective spaces alike. The class of the D L-spaces, which is contained in that
of the D-spaces, contains the linear vector spaces and the projective spaces. The
main purpose of the paper is to prove that starting with three axioms, in the
case of the DL-spaces, or four axioms, in the case of the DL-spaces we can
obtain the basic properties of the linear vector spaces.
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1 Dependence operators

Let M be a non empty set and P (M) the set of all parts of M.
1.1. Definition. A function L : P(M) — P(M) is a covering operator on M if:

(D) For any A € P(M), AC L(A);

(D) For any A € P(M) and any B € P(M) with A C L(B), L(A) C L(B).
Examples. 1. Let V' be a real linear vector space. Then L(A) = conv(A4) (that is the
convex covering of A) is a covering operator on V.

2. If M is an arbitrary set and L(A) = M or L(A) = A,VA € P(M), then in both
cases L is a covering operator on M.

1.2. Proposition. A covering operator L on M has the following properties: a) A C B

implies L(A) C L(B), for A,B e P(M);
b) L(L(A)) = L(A), for AeP(M);
o) L(U 4) = L(U L(A))

i€l
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d) L((1 4i) € ) L(4);

iel iel
e) Ifae L(AU{b1,...,b,}) and b; € L(C), where i = 1,n then a € L(AUC)).

1.3. Definition. An application L : P(M) — P(M) is a dependence operator on M
if it is a covering operator on M and it fulfills the extra axiom:

(D3) If a ¢ L(A) and a € L(AU {b}) then b € L(AU {a}),
denoted as the exchange aziom.

In this case we will say that M is a dependence space or a D-space.
Examples 3. Let V be a linear vector space over the field K. Then L : P(V) — P(V)
defined as L(A) = (A) = span(A) (the linear space generated by A) is a dependence
operator. One can observe that in the case K = R, the convex covering operator is
not a dependence operator since it doesn’t fulfill the exchange axiom.

4. The covering operators on an arbitrary set M defined in the previous example,
point b) are dependence operators too.

5. Let (X,7) be a separated topological space. Then the Kuratowski’s closure
operator A — A is a dependence operator.
1.4. Definition. For all A €P(M) we will denote by F(A) the family of all finite
parts of A. A dependence operator L on M is finitely generated if

L) = |J L.

FEF(A)

Remark. On a linear vector space the linear covering operator is a finitely generated
dependence operator, but the Kuratowski’s operator on a topological space is not
finitely generated since for any finite set F' = F.

1.5. Theorem. Let L : F(M) — P(M) be an application fulfilling axioms (D1),
(D), (D3). Then there exists an unique dependence operator

L:P(M)— P(M),

which s finitely generated and extends L.
Proof. Unicity for L is obvious. To prove the existency, let us define

= |J L&), fordepr),
FEF(A)

and show that it is a dependence operator. From axiom (Dl)_ for L we obtain a €

L({a}),for a € A, and since L({a}) C L(A) we get A C L(A) and (D;) for L.

Let now G = {g1,...,9n} C A C L(B) and if Fl, .., Fn € F(B) such that g; €
n

n
L(F;), i = 1,n, then G C U L(F;). But F; C U F; implies L(F;) C L(U F})
i=1 i=1

and UL( F) C L(U F3), hence G CL(U F;) and L(G) CL(U F;) ¢ L(B). The

deﬁmtlon of L(A) leads to L(A) C L(B) and (Ds). Let a,b E M and A € P(M)
with a ¢ L(A),a € L(AU {b}), then there exists a finite sef F C A U {b} such that
a € L(F). If we denote G = ANF , since a ¢ L(A) then a ¢ L(G), but F = G U {b},
hence a € L(GU {b}). From axiom (D3) applied to L we get b € L(GU{a}) and since
G U {a} C AU {a} we obtain b € L(A U {a}) and axiom (Dj).
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1.6. Definition. A finite set F' is said to be dependent if there exists a € F such
that a € L(F\{a}). If not, F is independent. We consider that the empty set is
independence.

It can be observed that if F and G are finite sets F' C G, then F dependent
implies G dependent. With this remark we can extend the concept of dependent set
to an arbitrary set. Then, for A C M an infinite set, A is dependent if it contains a
dependent finite subset. If not, A will be called independent.

1.7. Definition. Let a € L(A). A set S C A such that a depends essentially on S,
that is a € L(S),a ¢ L(S\{z}) for every x € S, is said support of the element a.

1.8. Proposition. If L is finitely generated, then every a € L(A) admits at least one
finite support.

Proof. From the hypothesis, there exists F' C A, finite and a € L(F).Let S C F
be a minimal set with respect to the inclusion having the property that a € L(S)
(eventually S = @!). Then S is a finite support for a € L(A).

Remark. If L is the closure operator of Kuratowski, on the topological space R and
A={L /ne N*} then the element 0 € L(A) doesn’t have a support in A.

1.9. Proposition. Suppose that the operator L is finitely generated. Then A is
dependent if and only if there exists a € L(A) such that a € L(A\{a}).

1.10. Proposition. Let L be a dependence operator on M. The following statements
are true:

1) If A C B, then A dependent implies B dependent and B independent implies
A independent;

2) {a} is dependent if and only if a € L(D) (then if L(D) =0 , {a} is independent
for every a € M );

3) If AN L(Q) # 0, then A is dependent;
4) If {a} is independent and a € L({b}) then b € L({a});

5) A finite set A is dependent if and only if there exists a € A such that
L(A\{a}) = L(A). If L is finitely generated, then the set A can be an arbitrary set;

6) For a finite set A if there exists a € L(A) and A is not the support of a, then
A is independent. If L is finitely generated, then the set A can be an arbitrary set.

7) A is independent if and only if each finite sets Fy, F» C A fulfilling L(Fy) =
L(F,) are equal;

8) If A is independent and F C A is finite and L(F) = L(()), then F = {;

Proof. 7) Suppose that A is independent and let Fy, F» C A be two finite, different
sets with L(Fy) = L(F). If a € Fi\F», then by hypothesis a € L(F3) and so G =
{a} U F5 C A is dependent, which is a contradiction. Reciprocally,let’s suppose that
A is dependent. Then there exists a dependent finite set F' C A. Hence there exists
a € F such that L(F\{a}) = L(F), which is also a contradiction.

1.11. Proposition. Let A be independent and A U {a} dependent, where a € M.
Then a € L(A).

1.12. Lemma. Let F be a finite, non void set. Then, for every a € L(F)\L(0) there
exists b € F that fulfills b € L(F\{a}). If L is finitely generated, then the set F' can
be arbitrary.
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1.13. Proposition. Let F' be a finite set in the D-space M, such that
FnL@©) =0.

The following statements are equivalent:

1) F is dependent;

2) There exists F' C F,F' # F, such that L(F') = L(F);

3) There exist Fl,FQ C F, F1 N F2 = (b, F = F1 @] F2 and L(Fl) N L(FQ) 75 L(@)
Proof. ”1) = 2)” By the hypothesis there exists a € F, fulfilling a € L(F\{a}). Let
now F' = F\{a} and we obtain L(F') = L(F).

79) = 3)” Let F" = F\F", then L(F') N L(F") = L(F) N L(F") = L(F") #
L(0).Otherwise, it would result F"' C L((), which is in contradiction with the main
hypothesis F N L(() = 0.

73) = 1)” Let a € L(F1) N L(F2), a &€ L(P). Then a € L(F;)\L(D), and from the
previous lemma we get a; € F; with

ar € L(F \ {a} | J{a}) € LF \{ar}).

Hence F' is dependent.

2 Basis in a D-space

2.1. Definition. Let M be a D-space and L its dependence operator. A set B C M
is called basis if it is independent and it is a system of gemerators for M, that is
L(B) = M. If M admits a finite system of generators, then M is called a finitely
generated D-space.
2.2. Theorem (the basis theorem). Let M be a D-space and L its dependence
operator. Let S be a system of generators on M, S C M and let X C S be an
independent set. Then, there exists a basis B, such that X C BC S.
Proof. Let A be the family of all independent subsets of S, containing X. Since
X € A, Ais non void. Let us show that A is inductively ordered with respect to the
inclusion. Consider {B;}icr, a totally ordered subset of A and let E = |J B;. For
iel
E we have X C E C S and we have to prove that it is independent. Su}e)pose the
contrary, that there exists a finite dependent subset F' of E. Since {B;};cr is totally
ordered there exists ¢y € I such that F' C B;,, which leads to a contradiction: B;,
dependent. We obtain that E' € A and it is a majorant for {B; }cs, so A is inductively
ordered. From Zorn’s axiom we obtain that A contains at least a maximal element,
denoted by B. Let us prove that B is a basis. We only have to prove that L(B) = M.
Let a € S\ B. Since B is maximal it results that B|J{a} is dependent and from
1.11 we obtain a € L(B). Hence S C L(B) and therefore L(S) C L(B), and finally,
L(B) =M.
2.3. Corollary. Any independent set in a D-space can be completed to a basis.
2.4. Corollary. From every system of generators we can extract a basis.
Proof. Let S be a system of generators for M. Then () C S and () is independent,
then we can apply the basis theorem for X = ().
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2.5. Theorem (the exchange theorem. Let r,n € N* and A = {ay,...,a,} an
independent set fulfilling A C L(B), where B = {by,...,b,}. Then:

1)r<n;

2) L({a1,...,ap,bps1,...,bp}) = L(B), for a suitable ordering.
Proof. We will use the induction method. Suppose r = 1. Condition 1) is fulfilled
and let G C B be a maximal set with respect to the inclusion such that a; & L(QG)
(eventually G = 0, since A = {a;} is independent). Obviously G # B and let’s
suppose by ¢ G. Then a; € L(G U {b;}) (G is maximal) and from the exchange
axiom we get by € L(GU{a1}) C L({a1,bs,...,by}). We proved the inclusion L(B) C
L({a1,ba,...,by}) and since the inverse inclusion is obvious we obtain condition 2).

Suppose now the conclusion true for » — 1 (that is r — 1 < n and

L({ay,...,ar 1,by,...,ba}) = L(B)).

If r—1 = n then a, € L({a1,...,ar—1}) and it would result that A is not independent.
Hence r < n. Consider now a maximal set G C {ai,...,a,_1,b.,...,b,} fulfilling
{a1,...,a,-1} C G and a, ¢ L(G). Then G # {ai,...,ar_1,b.,...,b,} and we can
suppose that b, ¢ G. From G maximal we get a, € L(G U {b,}), hence b, € L(G U
{ay}) € L({a1,...,ap,bpy1,-..,by}). Hence L(B) = L({a1,...,ar—1,bp,...,bp}) C
L({a1,...,apr,bpq1,...,b,}) and finally we obtain 2).

2.6. Corollary. Let M be a finitely generated D-space. Then M admits at least one
finite basis. More, every basis is finite and any two bases have the same number of
elements.

2.7. Lemma. Let L be a dependence operator finitely generated on M and B C
M. If B is independent, then any a € L(B) admits an unique finite support in B
.Reciprocally, if BN L(0) = 0 and any a € L(B) admits an unique finite support in
B, then B is independent.

Proof. Suppose B is independent and let a € L(B) such that there exist Fy, F» C B
two different, finite sets, a depending essentially on F; and F» (Proposition 1.8 assures
the existence of a finite support). Choosing b € F}\ F5, since a depends essentially on
Fi, we obtain a ¢ L(F1\{b}) and a € L(Fy). From the substitution axiom it results
b e L(Fi\{b} U{a}). But a € L(F5), therefore b € L((F; U F5)\{b}). Hence Fy U F3
is dependent, which implies B dependent. Contradiction!

Reciprocally, suppose B is dependent, but B N L(f) = @ and any a € L(B)
admits an unique finite support in B. Consequently, there exists F C B finite and
dependent and we can choose a € F with a € L(F\{a}). Let G C F\{a} such that a
depends essentially on G. But a depends essentially on {a} too, otherwise we would
get a € L(0), which contradicts the hypothesis B N L(#) = . Hence a admits no
unique finite support. Contradiction!

2.8. Theorem. Let M be a D-space and L its dependence operator. Suppose L is
finitely generated. Then any two bases on M have the same cardinal.

Proof. Let B and B’ be two bases in M. If one of them is finite, we apply Corollary
2.6. Let’s suppose that B and B’ are infinite. For any e € B we denote s(e) C B’
the support of e in B'. We'll show that B’ = |J s(e). Suppose that there exists

eEB
fo € B’ such that fo ¢ |J s(e) and let t(fo) C B be the support of fy in B. If
eEB

t(fo) = {e1,...,ep}, then fo € L({e1,...,ep}). Since e; € L(s(e;)), Vi = 1, p, it results
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P —
fo € L(U s(e;)). But fo & s(e;), Vi = 1,p, therefore the set {fo} U (U s(e;)) C B is
i=1 i=1
dependent, which is a contradiction.
From B' = |J s(e) it results
eEB

=

card B' < Ry = Z card s(e) < Rgcard B = card B,
eEB

because card s(e) < Ng. In the same way we can prove that card B < card B'.

2.9. Definition. Let M be a D-space and L its dependence operator. A set S C M
is called a subspace if L(S) = S.

2.10. Remark. If S is a subspace, then is obvious that for any A € P(S) it results
L(A) € P(S). Hence the restriction of L to P(S) will define a dependence operator on
S and we obtain that any subspace of a D-space is also a D-space. Obviously, L(A)
is a subspace, for any A C M.

2.11. Definition. Let {S;}ics be a family of subspaces in the D-space M. Then the
subspace L(|J S;) will be called the sum of the family {S;}icr and it will be denoted
il
as > 5;. If S; and Sy are two subspaces, the sum of the family {S;,S>} will be
i€l
denoted as S; + Ss.
2.12.Theorem. Let M be a D-space. The the family of all subspaces of M (denoted

by L) is a complete lattice with respect to the inclusion.
Proof. Consider {S;}ics a family of subspaces and it is obvious that

ﬂ Sl - inf{Si}iE].

i€l

Since L(ﬂ Sz) C ﬂ L(SZ) = m S; and ﬂ S; C L(ﬂ Sz), it results that ﬂ S; is
i€l i€l i€l i€l i€l i€l
a subspace. Finally let’s prove that > S; = sup{S;}ier. From the definition of the
i€l
subspace Y S; we get S; C > .S;, for any i € I. Let now S be a subspace such that
i€l i€l
S; C S, for any i € I. It results |J S; C S, hence L(|J S;) C L(S) = S.
i€l il

2.13. Proposition. Let M be a finitely generated D-space. Then any subspace of M

is also a finitely generated D-space.

Proof. Let S C M be a subspace and consider A C S a system of generators for S
(we can consider the case A = S). Applying Corollary 2.4 to the D-space S we get
that there exists F' C A, such that F' is a basis for S. Since F is independent, we can
use Corollary 2.3 for M to obtain that F' C B, where B is a finite basis in M. Hence
F is also finite.

2.14. Corollary. Let M be a D-space and L its dependence operator. Then, if M is
finitely generated, L is also finitely generated.
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3 DL-spaces

Let M be a non empty set and L : P(M) — P(M) an arbitrary map. Related with
L, besides the axioms (D;), (D2) and (D3) (Definitions 1.1 and 1.3) we will consider
some extra axioms:

(D3)" : (the exchange weak axiom)
Let ' C M, F being a set with at most one element.
If a ¢ L(F) and a € L(F U {b}), then b € L(F U{a}).

(Dy) :
Let F C M.If a € L(FU{b}) and a &€ L({b}), then L({a,b}) N L(F) # L(D).
For F C M and a € M we denote the set

aL(F)= |J L({a,2})

z€L(F)
and obtain aL(F) C L({a} U F).

(Ds) :

For any F C M and any a € M we get aL(F) = L({a} U F).

As a remark, axiom (Dj) is equivalent with aL(F) being a subspace, if L is a
dependence operator.

In the sequel we will prove some implications between these axioms, emphasizing
an important class of dependence operators.

3.1. Proposition. From azioms (D1),(D2),(D3)" and (D4) we get (D3) and (Ds).
Proof. To prove (Ds5) we consider ¥ C M and a € M. We have to show that
L{a} UF) C aL(F) If a € L(F) the inclusion is obvious. If we choose now a ¢
L(F). Let € L({a} JF). In the case z € L({a}) it results z € L({a,b}) for any
b € L(F) and this proves the inclusion. In the case x ¢ L({a}) from (D,) we get
L({z,a}) N L(F) # L(M) and we can consider b € L({z,a}) N L(F)\L(#). Choosing
now b € L({a}) since b € L(() we obtain from (Ds)’ that a € L({b}) C L(F), which is
absurd. If we choose b ¢ L({a}) and b € L({z,a}) we can apply again (D3)’, obtaining
z € L({a,b}) CaL(F). So (Ds) is true.

To prove (Dj3) let’s take a € L(A U {b}) and a ¢ L(A). From (D5) we get that
a € bL(A). Then there exists © € L(A) with a € L({b,z}) and since a ¢ L({z}) we
get from (Ds3)' that b € L({a,z}) C L(AU {a}).

3.2. Proposition. From azioms (D1),(D-2),(D3)" and (Ds) we get (D3) and (Dy).
Proof. Let a € L(F U {b}) with a ¢ L({b}). From (Ds) it results a € L({xz,b})
z € L(F)\L(0). From axiom (D3)" we get © € L({a,b}), then (D,) is fulfilled.

To prove (D3), let a € L(FU{b}) with a & L(F).If a € L({b}) we get b € L({a}),
since we can use (D3)" and a ¢ L(0). Hence in this case (Dj3) is fulfilled. On the other
hand, if a ¢ L({b}) we can apply (Ds) to get a € L({b,z}) with € L(F). From
axiom (Dj3)" it results b € L({z,a}) C L({a} U F).

3.3. Definition. Let M be a set. A dependence operator L : P(M) — P(M) ( it
fulfills axioms (D), (D2) and (Dj3)) is called linear dependence operator if it fulfills
axiom (D4) too. In this case M is called a DL-space. From Proposition 1 it results
that in a DL-space axiom (D3) is also true.

Examples. 1. Let V' be a linear space. Then V is a D L-space, since the operator
L(A) = spanA is a linear dependence operator.
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2. Let II be a projective plane. Then II is a DL-space since L(M) = [M] (the
linear manifold generated by M) is a linear dependence operator.

3. Let a be an affine plane. Then A is a D-space defined by the dependence
operator L(M) =< M > (the linear manifold generated by M), but « is not a DL-
space since the above operator does not fulfill axiom (Djs). Indeed, if we consider a

line d and a point A which does not belong d, then the set A < d >= |J AB does
Aed
not coincide with the set < {A} Jd >= a.

3.4. Proposition. Let M be a DL-space and L its linear dependence operator. Let
F and G be two sets from M such that at least one is finite. Then

LFUG) = |J L{a,b}).

a€L(F)

beL(G)
Proof. Let’s suppose that F' is finite and let n be the number of elements from F
To prove the inclusion ”C” we shall use the induction after n. Statement for n = 1
results from axiom (Dj). Next we suppose that the statement is true for any set F’
with n — 1 elements and we consider a set F' having n elements. Using the affirmation
true for n = 1 it results:

L(FUG) = L({a} U[F\{a} UG]) = aL(F\{a} UG)

Let z € L(F U G) We exclude the trivial cases z € L(F) or z € L(G) , consequently
z € L({a,b}) where b € L(F\{a} U G). From the induction hypothesis we get b €
L({a',c}) where a' € L(F\{a}) and ¢ € L(G). Then = € L({a,d’,c}) = cL({a,a'})
and we obtain

LFu@) c |J L{ab}).

a€L(F)
bEL(G)

3.5. Corollary. If the operator L is finitely generated then the result from the previous
theorem remains true for two arbitrary sets F' and G.

Proof. Let z € L(FUGQ). Since L is finitely generated there exists a finite set V' such
that € L(V). Taking F' = VNF and G' =GNV we get F' # 0 and z € L(F'UG")
(we exclude the trivial cases x € L(F) or x € L(G) ). Since 'F is finite we can
apply the previous theorem, obtaining « € L({a’,b'}) where o’ € L(F') C L(F) and
b € L(G") C L(G).

3.6. Lemma. Let M be a DL-space and L its linear dependence operator. Let F' and
G be two sets from M such that at least one of them is finite. If a € L(F UG) and
a & L(F), then L(F U {a}) N L(G) # L(}).

Proof. Let a € L(FUG) and a € L(F). From theorem 3.4 we get that a € L({z,y})
where ¢ € L(F) and y € L(G).From a ¢ L(F) it results a ¢ L({z}). Hence, applying
axiom (Dy4) we get L({a,z}) N L({y}) # L(0). In this way the conclusion in the
statement is proved.

3.7. Corollary. If the operator L is finitely generated, then the previous lemma re-
mains also true in the case of two arbitrary sets F and G.

3.8. Proposition. Let M be a DL-space and L its linear dependence operator.Let
Fy and Fy be two finite sets such that Fy N Fy = (. Then Fy U Fy is independent if
and only if
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Proof. To prove the necessity we suppose L(F})NL(F») # L(B).Then, by Proposition
1.13, Fy U F3 is dependent. For the sufficiency, we suppose that F}; U F» is dependent.
Then there exists a € Fy U Fy with a € L(F; U Fx\{a}). If we choose a € F, from F;
independent we get a ¢ L(F1\{a}). Now, applying Lemma 3.6 to a € L(F;\{a})U F>
it results L(F7) N L(Fy) # L(0), which is a contradiction.

3.9 Corollary. If the operator L is finitely generated, then the previous proposition
remains also true in the case of two arbitrary sets Fy; and F.

3.10. Definition. Let M be a D-space and S be a finitely generated subspace in
M. The number of elements in a basis in S is called the rank of S and is denoted by
r(S). By the Theorem 2.8, the number r(S) does not depend on the basis we consider.
Obviously, r(L(0)) = 0.

3.11. Theorem. Let M be a DL-space. Let S1 and Sy be two finitely generated
subspaces in M. Then

T(Sl + Sz) = T‘(Sl) + T‘(Sz) — T‘(Sl n Sz)

Proof. Let F be a basis for S; NSz (it may be F =} ). F can be completed to a
basis F; in S; and to a basis F3 in S3. Obviously F; U F; is a system of generators
for S; + S2. If we consider G = Fy\F, then FF U F, = F; UG. We have to prove
that L(Fy) N L(G) = L((). Taking a € L(F;) N L(G) we obtain a € S; NSy = L(F)
and L(F) N L(G) = L(0), applying Proposition 3.8, since F, = GU F, F and G
are independent and F; NG = (. Due to the same proposition F; U F, = F; UG is
independent, hence a basis for S; + S2. Now the conclusion is obvious.

3.12. Theorem. Let M be a D-space and L its dependence operator. If we suppose
that L is finitely generated and for any two finitely generated subspaces S1 and Sy in
M relation r(Sy + Sa) = 7(S1) + r(S2) — r(S1 N S2) holds, then M is a D L-space.
Proof. We have to prove axiom (D). For this purpose we choose a € L(F'U{b}) such
that a & L({b}) Obviously L({b}) # L(0), hence L({a,b}) is independent. Since L is
finitely generated, it results that there exists a finite set G, G C F U {b}, such that
a € L(G). Let now F' = FNG, hence a € L(F'U{b}) and L(F'U{a,b}) = L(F'U{b}).
Therefore

r(L(F' U{a,b})) = r(L(F")) +r(L({a,b})) — r(L(F") N L({a, b})).
It results
r(L(F') N L({a,b})) = 2 — (r(L(F" U {b})) — r(L(F"))) > 1,

since 7(L(F" U{b})) — r(L(F")) < 1. We obtain then L(F")N L({a,b}) # L(}), which
leads to L(F) N L({a,b}) # L().

3.13. Remark. The Theorems 3.11 and 3.12 show that for D-spaces with finitely
generated dependence operators, the Grassmann’s formula becomes an axioms for
D L-spaces.

3.14. Remark. Theorem 1.5 remains true for the case of a D L-space.

4 Subspaces in a finitely generated D L-space

Let M be a finitely generated D L-space and L its linear dependence operator. We
suppose that r(M) = n, where n > 2.
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4.1. Proposition. If S’ and S are two subspaces in M such that S' C S and r(S') =
r(S), then 8" = S.

4.2. Definition. A subspace H C M is called a hyperplane in M if r(H) =n — 1.
4.3. Proposition. A subspace H C M is a hyperplane if and only if for any subspace
S fulfilling H C S, H # S we get S = M. We can also obtain that in any subspace S
there exists a hyperplane H C S.

4.4. Proposition. Let H be a hyperplane and S a subspace having r(S) = p. Then
either SC H orr(HNS)=p—1.

Proof. If we suppose S ¢ H then S’ = S+ H is also a subspace which contains H but
which is different from H. Hence S’ = M andn =r(S+H) =r(S)+r(H)—r(SNH).
Consequently r(HNS) =p— 1.

4.5. Proposition. Let S and S be two subspaces such that ' C S, r(HNS)=p—1
and r(S) = p. Then there exists a hyperplane H which fulfills S' = SN H.

Proof. Let F be a basis in S’ which can be completed to a basis F'U {a} in S and
also to a basis FFU {a} UG in M. Let H = L(F UG) be the hyperplane which does
not contain S since it does not contain a. Due to the previous proposition we get
r(H N S) =p—1.0n the other side S' C H C S and since they have the same rank
we get S'=SNH.

4.6. Theorem. Let S be a subspace having r(S) = p,p = 1,n— 1. Then S is the
intersection of no less than n — p hyperplanes.

Proof. We will show that S can not be the intersection of less than n — p hyper-
planes. For this we suppose that S = H; N...N Hy, where H; are hyperplanes. From
Proposition 4.4 it results:

T(HlﬂHg)zn—Z,T(HlﬂHgﬂHg)2n—3,...,r(le‘|...ﬂHk)zn—k:,

hence p > n —k, so k > n — p. Let now {ai,...,a,} be a basis in S which can be
completed to a basis F' = {a1,...,ap,apt1,-..,a,} in M. For any i = I,n —p we
consider the hyperplane H; = L(F\{ap+1}). Then

S:Hlﬁ...ﬂHn_pCHlﬁ...ﬁHn_p_lC...CHlﬁHQCHl.

All these inclusions , except the first one, are strict inclusions, since apyi+1 € Hi N
...NH;,but apyipr € HiN...N Hipq. Hence r(HyN...NHy,_p) =p=r(S) and
consequently S = HyN...NH,_,.

If in a DL-space M we renounce to axiom (D) the results given above can be
generalized, proofs being similar:
4.7. Theorem. Let M be a finitely generated D-space having r(M) =n > 2.

1) If Sy and Ss are two subspaces, then

T(Sl + Sz) < T‘(Sl) + T‘(Sz) — T‘(Sl n 52)

2) If S is a subspace having v(S) = p and if H is a hyperplane, then either S C H
orr(HNS)<p-—1.

3) If S is a subspace having r(S) = p < n, then S is the intersection of n — p
hyperplanes in M.

Let now M be a D L-space and let L be its linear dependence operator. We suppose
that r(M) = n > 1 and we consider M* the family of all the hyperplanes of M. Let
L* : F(M*) — P(M*) defined by
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L*0) =0, L*({H,, ..., H,}) = {H € M| ﬁH c H}.

i=1

4.8. Theorem. If the above hypotheses are fulfilled the extension of the operator L*
to P(M*) is a linear dependence operator, hence M* becomes a D L-space.

Proof. Due to Remark 3.14 it is sufficient to prove that operator L* verifies axioms
(D1),(D3),(D3) and (D4) only in the case of finite sets. Axiom (D;) is obvious, so
we shall prove (D-): let

(H},...,H)} C L"({H,..., H,}).

It results
p q
e ()i,
i=1 j=1

hence
L*({Hj,.. .,Hé}) C L*({Hy,...,Hp}).

To prove (D4) we consider

HeL*(XU{H"}), H¢L{H'})={H"Y},

p
where X = {Hy,...,H,}. We exclude the trivial case H € L*(X). If A = N H;
=1

i=
then A ¢ H ANH' C H and H # H'. Obviously ¢ = r(4) > 1. In the same time
(ANH'"YNH =ANH', hencer(ANH'NH) >q—1.Let now S = L((HNH')UA),
then 7(S) =n—-2+qg—r(ANH' NH) <n-—1. Consider a hyperplane H" such that
S C H". Consequently H" € L*({H,H'}) N L*(X).

To prove axiom (D3), as in Proposition 3.1, it is sufficient to prove that H €
L*({Hy,H,}) with H # H,, implies Hy, € L*({Hy,H}). Let us suppose that Hy N
Hy, C H and H # Hy, hence r(H N Hy) = n — 2, and let’s suppose that Hy ¢
L*({H\,H}). Hence HNH; ¢ Hy and r(HNH N Hy) =n—3.But HNH; N Hy =
Hy N Hy and it has rank equal to n — 2. This leads to a contradiction.

The D L-space M™* constructed above is called the dual of M.

4.9. Proposition. If all the above hypotheses are fulfilled we get r(M*) = r(M).
Proof. Let F' = {a4,...,a,} be a basis in M and let F* = {Hy,...,H,}, where for
any ¢ = 1,n we consider the hyperplane H; = L(F\{a;}). Then F* is a basis for M*
since from the fact that the inclusions

HnNn..nH,CHN..NH,_1 C...CH;

n
are strict inclusions it results (| H; = L(#) and consequently L*(F*) = M*. On

i=1
the other side it is obvious that H; ¢ L*(F*\{H;}) since a; ¢ H;, therefore F* is
independent.
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