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Abstract

A class of almost contact Riemannian manifolds (ACRM) (which we call
closed concircular ACRM) is defined and studied, showing that such a manifold
is a local product and obtaining some important harmonic properties.
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Introduction

Almost contact structures are, in some sense, the odd-dimensional analogous to almost
complex structures. In fact, if M is an almost contact manifold, it is easily seen that
M xR become an almost complex manifold and this property has been used by Oubina
[7] to obtain a classification of almost contact metric manifolds. Moreover, almost
contact and almost complex structures are the simplest examples of a f-structure
(see e.g. [14]).

Additional structures on an almost contact manifold have been introduced in the
last decades in several papers (see e.g [6]). In our work we study the geometry of
an almost contact Riemannian manifold when its Reeb vector field £ satisfy two
properties: it is concircular and U” is closed, where U = V€.

Now we intoduce some notation and explain the main results of the paper. Let
(M, p,n,€,g) be almost contact Riemannian manifold, where the structure tensors
(6,9Q,n, &) mean the tensor field, the 2-form, the 1-form and its dual n* = &, respec-
tively. One has

P =—Id+n®@&ENAQ™ £ 0;
9(9X,9Y) = g(X,Y) = n(X)n(Y);

for any vector fields X,Y on M, where Q(X,Y) = g(¢X,Y).
We assume in this paper that ¢ is U-concircular, i.e.,
VeE=neU
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where U € Kern will be called the generative of ¢ and that U” is a closed 1-form. In

this case we find
dQ=0,dp=U" An#0,nAdy=0,

which implies that M is not a cosymplectic nor a contact manifold.

In section 2 we prove important properties of n, Q2 and U. In the last part of this
section we assume that the manifold satisfies a technical condition and we prove,
among other properties, the following structure equations

(i) Lyn=||U|>n; Lu=2XQ; X = const.
i.e., U defines an infinitesimal conformal transformation of the almost contact Rie-
mannian structure defined on M.

(#4) Any such M , may be viewed as the locally product of the integral submanifolds
of Dy = Span{U, &} and D,

(i4i) The transversal curvature forms 04 ( A € {1,...,2m}) are monomial and
they define a closed vector valued 2-form

I=> 0f®@es=Al+ (U An)U.
In section 3 one afirms that U’ and 7 are eigenfunctions of A and if
N =n A QY
then the Lie derivatives with respect to ¢ are expressed by
Leng = —U" A QA
In the last section a vector field X such that
VX = fodp —g(X, U ¢

is defined as a ¢-soldering vector field (abr. ¢s). If M carries such a vector field,
then Q is invariant by X, and it moves to a potential form and M is foliated by
3-dimensional submanifolds Mx tangent to Span{¢X,&,U}.

It is also proved that ¢X defines an infinitesimal homothety of {2 and both X and
¢ X define infinitesimal conformal transformations of €.

1 Preliminaries and Notations

First, we shall explain the notation used in the paper.

Let (M, g) be a n-dimensional connected Riemannian manifold and let V be the
covariant differential operator defined by the metric tensor g (we assume that M is
oriented and V is the Levi-Civita connection).

We denote by F (M) the ring of real functions, 7,7(M) the F (M )-module of (p, q)
tensor fields, TM (resp T* M) the tangent (resp. cotangent) bundle of M and A" (M)
the F(M)-module of r-forms, with A M = @& o A" (M), XM the set of sections of
the tangent bundle T'M and
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b:TM - T*M,t:T"M - TM

the musical isomorphisms defined by g¢.

If X; € XM are vector fields, Span{Xj,..., X} is the distribution spanned by
them.

We denote by AY(M,TM) = THom(A\?TM,TM) the set of vector valued g-
forms, and following [8] we write for the covariant derivative with respect to V, dV :
AYM,TM) — A1 (M, TM). The vector valued 1-form dp € A'(M,TM) is the
identity vector valued 1-form and is called the soldering form of M [2]. As is well
known, A'(M,T M) is isomorphic to 7!, and the soldering form dp corresponds with
the identity (1, 1) tensor field, which will be denoted as I. If ¢ € T;* then ¢dp € T;! and
one has the left inner product < X, ¢pdp >= ¢X =< ¢X,dp >. As V is a symmetric
connection one obtains d" (dp) = 0.

We write for T' (resp. R) the torsion (resp. curvature) tensor of V. Then, for any
vector field Z on M , the second covariant differential is defined as V2Z = dV(VZ)
and satisfies

(1.1) V2Z(V,W)=R(V,W)Z; V,WeXM

The operator d¥ = d+e(w) acting on AM, where e(w) means the exterior product
by the closed 1-form w is called the cohomology operator [3]. One has d* od” = 0 and
if dm =0, 7 is said to be d“-closed. If w is exact, then 7 is said to be d“-ezxact.

Let w e A'(M). If w # 0,w = Adw = 0, then w is called a class 1 1-form.

If M is endowed with a 2-form (2, then one can define the morphism

Q:T,M — T:M
as W (Z) = "Z = —iz, Z € T, = M, for all z € M, where
izQUX)=QZ X);VX € T, M.

We shall denote by grad (resp. div) the gradient (resp. divergence) operator.

Let G € A" M be the Riemannian volume element of M. We denote by *
the Hodge star operator of (M, g) with respect to G. We recall that the codifferential
operator 0 (see e.g. [8] p.153) is expressed by

or = (=)t wdwn, we /\ "M.

Definition 1.1 [12] A function f : R® — R is isoparametric if ||gradf||*> and
div (gradf) can be expressed as functions of f.

Now, we shall remember some basic results about almost contact manifolds (see
e. g. [14], [6])-

Definition 1.2 A differentiable manifold M is said to have an almost contact struc-
ture if admits a vector field £ (called the Reeb vector field), a 1-form 5 and a (1,1)
tensor field ¢ satisfiying

n(€) = 1;
(1-2) 0= —T+n®¢
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The above conditions imply that M is odd dimensional, say 2m + 1, and ¢(§) =
0; rank¢ =2m; mno¢ =0. The distribution kern is called horizontal and Span{¢}
is called wertical.

Definition 1.3 A manifold endowed with an almost contact structure (¢,&,n) and
with a Riemannian metric g satisfying

(1.3) 9(¢X, 9Y) = g(X,Y) = n(X)n(Y),

for any vector fields X,Y € XM is called almost conctact Riemannian manifold.

If M is an almost contact Riemannian manifold, then the 2-form 2 defined by
(1.4) QX,Y) =g(¢X,Y); XY € XM;
satisfies n A Q™ # 0, which implies that M is orientable. Moreover, rank 0 = 2m and
i1 =0.

Note that, on an almost contact Riemannian manifold, one has n(X) = g(X, ¢);
VX € XM;i.e; ¢ =nt. In the above conditions, it is easily seen that

(1.5) 9(Z,0Z") + g(¢2,2') =0; VZ,Z' =€ XM.

Remark 1.4 Let (M,¢,n,&,g) be an almost contact Riemannian manifold and z €
M. Then one can choose a local field of orthonormal frames over a neighborhood of x

O={eu,r=0,1,....2m} ={{,e1,...,em,P€1,...,0em}

and its associated coframe O* = {w° w!, ... ,w™ W™ . w?™} where w? = 7.
Then, with respect to this frame
0 0 0
o=[0 0 —I,
0 I, 0
e, ¢ =—w" e, +w*® ey where a € {1,...,m} and a* = a + m.

We shall use the capital (resp. greek) letters when the subindex runsin {1,...2m}
(resp {0,1,...2m}).
Then one has

m
Q:Zw“/\w“*; I=n®f+wi®ey.
a=1

2m 2m
Observe that: X = 3 Xte, = X" = Y XtwH,
=0 pn=0
With respect to O and O* E. Cartan’s structure equations can be written as

(1.6) Ver =6\ ®e,

(1.7) dw* = —9;‘ Awh
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A A A
(1.8) o) = —07 A6 +O)

In the above equations 6 (resp. ©) are the local connection forms in the bundle
O(M) (resp. the curvature 2-forms on M).

From the orthonormality of the frame O and Vg = 0 one can deduce that the
matrix

0 0
0o cee 03
I Do
2m—+1 2m—+1
05 cee O30T
is hemisymmetric, i.e., 92‘ = —6X. In particular 4, = 0.

2 Closed concircular almost contact Riemannian
manifolds

We introduce the following notion:

Definition 2.1 Let (M, ¢,7n,£,g) be an almost contact Riemannian manifold. A vec-
tor field U is called the generative of & if U verifies the following two conditions
i) ¢ is U-concircular, i.e;

(2.9) VE=noU,
ii) U is closed, i.e;
(2.10) dU’ =0,

Then the manifold (M, ¢,n,&,g,U) is called a closed concircular almost contact
Riemannian manifold (abr. CCACR manifold).

Now we shall prove some equations and identities, which will be used in this work.
Lemma 2.2 Let (M, ¢,n,£,9,U) be a CCACR manifold. Then:

(1) U =V¢& € kern and Vg€ = 0.

(2) 65t = UAn; 63 = 0.

(3) the next Kdhler relations are satisfied:

0F =05 ; 67 =60 ae{l,...m}; a* =a+m.
(4) The covariant differential of any vector field Z on M is expressed by
VZ = (dZ* + ZP0g) @ eq + (dZ2° — g(Z,U) =n) @ £+ 20 o U.
(5) For any vector field Z on M, we have
(V@) Z = —n(Z)n 2 ¢U + g(oU, Z)n & &;

where (V) Z)(X) = ¢VxZ —Vx¢pZ;VX =€ X M.
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Proof. (1) By (2.9) and (1.2)

(VO = U)(E) = Ve& =n(QU =U.

Let X be a vector field on M. We have 0 = (Vxg)(&,¢&) = ¢g(Vx,&) = 0. Then
Vxé € Span{¢}t = kern; VX € XM. In particular U = V¢£ € kern. Then by
(2.9) one obtains V& = n(U)U = 0.

(2) Set U = U%e4. Let X be a vector field on M. By 1) Vx& € kern. One has
Vxé=03(X)¢+ 65 (X)es. Then 63(X) =0;VX € X M.

If X € kern, by (2.9) Vx& = 0. Then 651(X) = 0;VX € kern.

IfX =¢ U =0§ea =Ueq.

From the above equations one can states 65 = U4n.

(3) See e. g. [5], [13].

(4) Let Z,X € XM and set Z = Z°¢ + Z4e4. Then, one has VxZ = Vx Z%¢ +
VZ4%,.

Using (2.9) one derives that Vx Z°¢ = (dZ° ® &)(X) + (Z°0 @ U)(X).

From (1.6) and the identities 8% = —63' and 63! = U“n one can states

VxZ%4ea = ((dZ2* + ZP05) @ e)(X) — (9(2,U)n) © €)(X).
Then, one can obtains
VZ =(dZ"+ Z80%) @ es + (dZ2° — g(Z,U) = () @ €+ 2 @ U.
(5) Using 3) and 4) and by a straightforward calculation, one can state

(Vo) Z = —n(Z)n @ ¢U + g(oU, Z)n ® &,

thus finishing the proof. |
We shall give a sufficient condition which implies that U” is an exact form.

Remark 2.3 Let Y be any kern vector field on M, and assume that Y defines a
skew-symmetric Killing vector field (abr. SSK) on M having the structure vector field
U as generative (see [6]). Then one may write

(2.11) VY =0U"2Y -Y’ o U.

Since U is also a kern vector field, it follows by Lemma 2.2 (4) that necesarily
g(U,Y) = 0, and with the help of the structure equations (1.6) and (1.7) one de-
rives by a standard calculation

(2.12) Ay’ =2U0° AY".

This proves that Y is an exterior recurrent form which has 2U” as recurrence form

(see [1]). We notice that (2.12) is the standard equation of SSK vector fields (see [9]).
In addition setting 21 = ||Y']|? and taking account that g(U,Y) = 0 one gets from

(2.11)

(2.13) dl = 20U°
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which shows that the existence of Y implies that U” be an exact form.

Finally, we shall prove that the existence of such a vector field Y is assured by an
exterior differential system in involution. If we denote by X the exterior differential
system which defines Y, it follows (see [2]) by E. Cartan’s that the characteristic
numbers are 7 = 3,59 = 1,57 = 2. Since r = sg + s1 it follows that ¥ is an involution
and the existence of Y depends of 2 arbitrary functions of 1 argument.

Now we shall obtain the main properties of n,Q2 and U in a CCACR manifold.

Proposition 2.4 (Properties of n.) Let (M,$,n,£,9,U) be a CCACR manifold.
Then

(1) dn = U An, and then 1 is a exterior recurrent.
(2) dn =0.

(3) dU'n=0.

(4) dn#0, nAdnp=0, i.e;nis a class 1 1-form.

Proof. (1) Taking account ' = U“n (see Lemma 2.2 (2)) and applying the equation
(1.7) to w® = n one finds

dnp= 6% ANwP =08 ANWP =UBpAWP = —UBLE Ap=-U" A

(which says that n is exterior recurrent 1-form and has the closed 1-form U’ as recur-
rence form [1]).

(2) By definition of § one has 0n = — * d *  and on behalf of Lemma 2.2 (2) one
derives dn = 0, which afirms that 7 is a coclosed form.

(3) On the other hand by the cohomological operator d¥ one may also write the
equation dp = U? A as d-U"5 = 0, and say that 7 is d~U -closed.

(4) In consequence of 1) and 2) i is a coclosed exterior recurrent form. In addition
by Lemma 2.2 (2) one may write dn # 0;1 A dy = 0, these equations proves that 7 is
of class 1 1-form. i

Remark 2.5 We consider the flow F defined by the unitary vector field ¢£. By Prop.
2.4, (1) we have that the distribution kern = Span{¢}* is involutive. Remember
that dn # 0, then by virtue of [10] Theorem 10.6 we concludes that U, = (V¢&), #
0; Vz € M, and that the vector field £ is not geodesible, i.e; the orbits of £ are not
geodesics on M.

Corollary 2.6 Let (M,$,n,&,9,U) be a CCACR manifold, then M is foliated by
1-codimensional almost Hermitian submanifolds.

Proof. Let © € M, we consider N the maximal integral submanifold verifiying that
zreN; TyN =kern, Vy,eN.

We defined J € T{1(M) by J = ¢|n. Then, by (1.2) J?(X) = —-X; VX € XN,
and then (N, J, g|n) is an almost Hermitian manifold. O

Proposition 2.7 Let (M, $,n,£,9,U) be a CCACR manifold and let Q2 the 2-form
defined by (1.4), then dQ2 = 0.
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Proof. Due to M has an almost contact Riemannian structure the horizontal con-
nection forms 4 satisfy the Kihler relations of Lemma 2.2 (3). By Remark 1.4 one
has Q = Y- w® Aw® , then by a standard calculation one finds using 65 = U4y and
Prop. 2.4 (4), d2 = 0. |
2m
= 3 UAw” is a closed form, taking into account (1.7) one
A=1

Remark 2.8 Since U’

derives
2m

> (dUA +UPOE) Awt =0.
A,B=1

If there exists A € F(M) such that
dU* +UB = VA € {1,...2m};
the above equation is satisfied.

This remark allows us to introduce the following

Definition 2.9 Let (M, ¢,n,£,9,U) be a CCACR manifold. We say that M is a
A-CCACR manifold if there exists A € F(M) such that

(2.14) dUA + UBOA = xw?; VA€ {1,...2m}.

In the rest of the paper, we shall work with A-CCACR manifolds, although some
results will be also true for general CCACR manifolds.

Proposition 2.10 ( Properties of U.) Let (M, $,n,£,9,U) be a \-CCACR mani-
fold. Then

(1) Lun = |U|*n and LyQ = 2)Q; X = const., and then U is an infinetesimal
conformal transformation of the almost contact structure.

(2) (Vo)U =0.
(3) VuU = AU, i.e., U is an affine geodesic.

(4) [U,€] = ||U||?€, which shows that & admits an infinitesimal transformation of
generators U .

(5) g(VzU, 2" = gVz U, Z);NZ,Z" € XM. ie., U is a kern-gradient vector
field.
Proof. (1) Recall that *U = S (U* w® — U%w?*"). Next making use of (2.14) one gets
(2.15) dCU) = —2)Q

and consequently since 2 is closed one has A = const. and so one infers L2 = 2AQ.
Moreover since 7(U) = 0, one derives from Prop. 2.4, (1) Lyn = ||U||?>n and by
the two last obtained equations we conclude that the generative U of £ defines and
infinitesimal conformal transformation of the almost contact structure of M.

(2) (V@)U = 0 can be obtained quickly from Lemma 2.2 (5), taking Z = U.
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(3) Using Lemma 2.2 (4) and taking Z = U vector field U is expressed by
VU = (dU* + UB#Y) @ ea + (—g(U,U)n) @ €.
Then by (2.14)
(2.16) VU =X @ea = |UIPn@E=Xp— A+ ||U|P)n &

Since n(U) = 0, the above equation implies ViU = AU. Moreover VU = —||U||%¢.

(4) Because V is symmetric T'(¢,U) = 0. Then [£,U] = —||U||?¢.

(5) It also should be noticed that by (2.16) one has : g(VzU,Z") = ¢(VNz U, Z);
for any vector fields Z, Z' on M, which afirms that U is a gradient vector field (in
the sense of Okumura; also [4] and by d*Ubn = 0 one may say that nis a d=V -ezact
1-form). m|

Proposition 2.11 Let (M, $,n,&,9,U) be a \-CCACR manifold.

(1) If Dy = Span{U,£} then M may be viewed as the locally product of integral
submanifolds of Dy and D,

(2) LetY be any kern SSK vector field on M. If Dy = Span{U,Y, &} then Dy de-
fines a foliation on M. Moreover, U defines an infinitesimal conformal transformation
of Y and [£,Y] = 0.

Proof. (1) By Prop. 2.10 (4), Dy is an involutive distribution. Let U’,U" be vector
fields of Dy . By Lemma 2.2 and Prop. 2.10 one has:

Vel =U; VU = —||U|P¢; V€ =0; VU = AU;

and then it is easily seen that Vy»U"” C Dy, and consequently the leaves of Dy are
totally geodesic.

The vector fields £ and U are not singular and then the distributions Span{¢} =
kern and Span{¢}* = kerU’ are well defined. Both distributions are involutive be-
cause dn = U’ An (see Prop. 2.4 (1)), and dU” = 0 (see equation (1.6)), and then
Dir = kern N kerU® is also involutive.

(2) We consider the 3-form ¢ = U? AY” A n; it is easily seen by (2.12) and Prop.
2.4 (1) that dy = 0, and consequently the 3-distribution Dy = Span{U,Y, £} defines
a foliation. Since iy = ||Y]|?U = A¢ one also derives Ly = 0, that is ¢ is invariant
by Y.

By (2.11), (2.9) and (2.16) a short calculation gives [U,Y] = (||U||*> = )Y and
[€,Y] = 0 which says that U defines an infinitesimal conformal transformation of Y,
and ¢ and Y commute. |

Proposition 2.12 Let (M, ¢,1,£,9,U) be a \-CCACR manifold. The transversal
curvature forms O (A € {1,...,2m}) are monomial an expressed by

0y = (UAU” + xw™) A

and the vector valued 2-form TI = . O8 @ e = —AnpAdp+ (U° An) QU is dY -closed,
and U defines an almost conformal transformation of 11, i.e.,

Lyl = [|U[]PT 4 2AM(U” An) @ U.
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Proof. With the help of the structure equations (1.8) corresponding to the curvature
forms ©, one derives by (2.14) and (2.16)

(2.17) 0 = (UAV” + xw?) A

and this shows that ©7 are monomial 2-forms.

Further by (2.17) we deduce the following vector valued 2-form IT = 3" 04 @ ey =
— M Adp+ (U’ An) @ U and we agree to denominate II the structure curvature vector
valued form. Now operating on II by the exterior covariant derivate operator dV,
and since d(U” An) = 0 (see Prop. 2.4, (1)), a short calculation gives dVII = 0.
Hence II enjoys the significative property to be a closed vector valued form. Taking
now the Lie derivative of II with respect to U , one finds by Lemma 2.2 (3) LyII =
—ACynAdp+ Ly(UP An) @ U = ||U|PTT 4+ 2XMU° An) @ U.

3 Harmonic Properties

In this section we shall discuss some harmonic properties induced by the almost
contact structure of the A-CCACR manifold M under consideration.

Note that *U” = 3 (=1)4w' A...AwA A...Aw?™ An and then one finds that the
codifferential §U” of U” is expressed by 6U” = ||U|> — 2mA.

Hence since dU” = 0, the harmonic operator AU” is expressed by

AU = )\|U|PU°.

This is known afirms that U’ is an eigenfunction of A, having \||U||* as eigenvalue.
By similar devices and since it has been shown in section 2 that n is coclosed one
finds by Prop. 2.4, (1) that
An = 2mAny.

Hence n is also an eigenfunction of A. Next according to the concept of conformal
adjoint transformation, one has regarding the paring (n,U) Lin = 6(U° An) + U’ =
Ad7. Then since 7 is coclosed, one derives by Prop. 2.4, (1)

;}n = - 2m>\77;

that is U defines a infinitesimal homothety of the conformal adjoint £*7.

Let now L be the Weil’s (1,1) operator [11] defined by L : 7 — 7 A Q,7 € A\> M.
(note that one has dLm = Ldr + 7 AL = 7), and set n, = n A Q7.

Then by Prop. 2.4 (1) one gets dn, = U’ An, and

Leng = U AQI = —(1),

i.e., the Lie derivatives of the (2¢+1)-form 5, are equated (up to the sign) by (2¢+1)-
forms (U”),.
Finally in an other order of ideas, one finds by Prop. 2.7, (4)

llgrad (IU17)II* = 42*||U >

Now by a short calculation one derives div U = 2m\ — ||U||* and
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div grad (||U|*) = 8mA? — 4\||U||?.

Since A = const., we may afirm that ||U||? is an isoparametric function.
Then we can state:

Theorem 3.1 Let M(¢,n,&,U,g) be a \-CCACR manifold . Then the tuple of struc-
ture tensors (£,U,n) satisfies the following properties:

(1) The 1-forms U’ and n are eigenfunctions of A and U defines an infinitesimal
homothety of the conformal adjoint 2m-form *n.

(2) The Lie derivatives with respect to & of the (2q + 1)-forms n, = n A Q7 are
expressed by
Leng = —-U° AQA

(3) ||U|? is an isoparametric function.

4 ¢-soldering vector fields
Taking into account Lemma 2.2 (4) one has
VX € kern; VX = (dXA + XBog) @eq —g(X, U@ E.

Then we introduce the following

Definition 4.1 Let (M, ¢,n,£,9,U) be a A-CCACR manifold. A ¢-soldering vector
field is a nonsingular vector field X € kern satisfying

(4.18) VX = fodp—g(X,Um®g, [feF(M)
We study the main properties of such a vector field:

Theorem 4.2 Let (M, $,n,£,9,U) a (2m + 1)-dimensional \-CCACR manifold en-
dowed with a ¢-soldering vector field X . Then:

(1) X defines an infinitesimal automorphism of Q which moves to a potential form.

(2) f is a constant function and ¢X defines an infinitesimal homotethy of Q.
(3) X is a Kern Killing vector field, i.e.,
g(VZX>ZI) +g(vZ’X7 Z) =0
for any n(Z) =0,n(Z") = 0.
(4) X and $X commute.
(5) ¢X is a kern gradient vector field. i.e.,

9(V29X,Z') = g(V 26X, Z)
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forany Z, 7' € X M.
(6) X and ¢X define infinitesimal conformal transformations of .
(7) The sectional curvature of the plane spanned by X and ¢X vanishes.

(8) M is locally the product of a 3-dimensional submanifold Mx tangent to Dx =
Span{¢X, &, U} and of a (2m — 2)-dimensional submanifold M5 tangent to D%.

Proof. (1) By Lemma 2.2 (4) and (4.18) we find

a A _ a*
(4.19) { dX® + XA9% = — fw

dxe +XA0%* = fw*a€{l,...,m}a* =a+m }

and setting 2¢ = || X||?, 8 = (¢X)° one derives from (4.19) df = —ff and dj3 = 0.
Note that

B(Y) = g(¢X,Y) = QX,Y); =" X (V) = (ixQ)Y = X, Y);

for any vector field Y on M. Then, one has f = —"X.
Recall that dQ = 0 (see Prop. 2.7), then one may write

LxQ=(ixod+doix)Q=d(-"X)=dB =0.

(2) One has X° = Z XAwA. With the help of (4.19) one deduces that dX’ =

—fQ wich implies by Prop 2.7 that f = constant.
As X € kern; one obtains X” = —*(¢X) = isx(, and then

LoxQ = (igx od+doigx)Q=dX" = —fQ.

(3) By (4.18) one finds g(VzX,Z") + ¢(Vz X,Z) = 2 \n(Z)n(Z') for any vec-
tor fields Z,Z' on M. Therefore if Z,Z' € Kern one may write g(VzX,Z') +
9(Vz X, Z) =0. In this case we agree to say that X is a kern Killing vector field.

(4) Recall that (V@)Z = —n(Z)n @ ¢(U) + g(¢U, Z) for any Z vector field on M
(see Lemma 2.2 (5)).

Making use of the equations (4.18) and (1.2) one has

Vy¢X = ¢(VyX) — (Vo)(X)(V) = —fY + fn(Y)€ — g(oU, X)n(Y ),
for any vector field Y on M. Then one infers
(4.20) VoX = —fdp+ (f —g(¢U, X))n® &

Then by (4.18) and the above equation T'(X,¢X) = 0 = [X,¢X] = 0, which shows
that X and ¢X commute.
(5) From (4.20) one may write

9V 26X, 2') = g(V 76X, Z),N2, 7' € kern

which says that ¢X is a kern gradient vector field.
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(6) Taking into account that £ is U-concircular, X is a ¢-soldering vector field and
the equation (4.20) one finds [X,&] = g(X,U)¢; [90X,E] = g(oU, X)E; and so follow-
ing the above calculations prove that both X and ¢X define infinitesimal conformal
transformations of £.

(7) Operating on (4.18) by the operator dV one gets by a standard calculation

dV(VX)=V2X = ((\U° = f(¢U)’ An) @ €.
By (1.1) one has

g(R(¢X, X)X, ¢X) g((\” — f(@U)’ Am) @ E(X, ¢X), X

IXI2IoX]2 — g(X, 9X)? X2l X > = g(X, 9X)?

Kyxax =

where Kyxax is the sectional curvature of the plane spanned by X and ¢X.

Then, a short calculation gives Kyxax = 0.

(8) By Lemma 2.2 (3), it is seen by similar consideration as in Prop. 2.11(1),
then M is locally the product of a 3-dimensional submanifold Mx tangent to Dx =
Span{¢,U,$X} and of a (2m — 2)-dimensional submanifold M3 tangent to D+.
O
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