On Closed Concircular Almost Contact Riemannian Manifolds

Fernando Etayo, Radu Rosca and Rafael Santamaría

Abstract

A class of almost contact Riemannian manifolds (ACRM) (which we call closed concircular ACRM) is defined and studied, showing that such a manifold is a local product and obtaining some important harmonic properties.

1991 Mathematics Subject Classification: 53C15, 53B20, 53C55.

Key words: almost contact manifold, concircular and ϕ -soldering- vector fields, isoparametric function.

Introduction

Almost contact structures are, in some sense, the odd-dimensional analogous to almost complex structures. In fact, if M is an almost contact manifold, it is easily seen that $M \times \mathbf{R}$ become an almost complex manifold and this property has been used by Oubiña [7] to obtain a classification of almost contact metric manifolds. Moreover, almost contact and almost complex structures are the simplest examples of a f-structure (see e.g. [14]).

Additional structures on an almost contact manifold have been introduced in the last decades in several papers (see e.g [6]). In our work we study the geometry of an almost contact Riemannian manifold when its Reeb vector field ξ satisfy two properties: it is concircular and U^{\flat} is closed, where $U = \nabla_{\xi} \xi$.

Now we intoduce some notation and explain the main results of the paper. Let (M, ϕ, η, ξ, g) be almost contact Riemannian manifold, where the structure tensors $(\phi, \Omega, \eta, \xi)$ mean the tensor field, the 2-form, the 1-form and its dual $\eta^{\sharp} = \xi$, respectively. One has

$$\phi^{2} = -Id + \eta \otimes \xi, \eta \wedge \Omega^{m} \neq 0;$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y);$$

for any vector fields X, Y on M, where $\Omega(X, Y) = g(\phi X, Y)$.

We assume in this paper that ξ is *U*-concircular, i.e.,

$$\nabla \xi = \eta \otimes U$$

Balkan Journal of Geometry and Its Applications, Vol.3, No.2, 1998, pp. 75-88 © Balkan Society of Geometers, Geometry Balkan Press

where $U \in Ker\eta$ will be called the generative of ξ and that U^{\flat} is a closed 1-form. In this case we find

$$d\Omega = 0, d\eta = U^{\flat} \wedge \eta \neq 0, \eta \wedge d\eta = 0,$$

which implies that M is not a cosymplectic nor a contact manifold.

In section 2 we prove important properties of η , Ω and U. In the last part of this section we assume that the manifold satisfies a technical condition and we prove, among other properties, the following structure equations

- (i) $\mathcal{L}_U \eta = ||U||^2 \eta$; $\mathcal{L}_U \Omega = 2\lambda \Omega$; $\lambda = const.$ i.e., U defines an infinitesimal conformal transformation of the almost contact Riemannian structure defined on M.
- (ii) Any such M, may be viewed as the locally product of the integral submanifolds of $D_U = Span\{U, \xi\}$ and D_U^{\perp} .
- (iii) The transversal curvature forms Θ_0^A ($A \in \{1, \dots, 2m\}$) are monomial and they define a closed vector valued 2-form

$$\Pi = \sum \Theta_0^A \otimes e_A = \lambda \eta \wedge I + (U^{\flat} \wedge \eta) \otimes U.$$

In section 3 one afirms that U^{\flat} and η are eigenfunctions of Δ and if

$$\eta_q = \eta \wedge \Omega^q$$
,

then the Lie derivatives with respect to ξ are expressed by

$$\mathcal{L}_{\xi}\eta_{q} = -U^{\flat} \wedge \Omega^{q}$$
.

In the last section a vector field X such that

$$\nabla X = f\phi dp - g(X, U)\eta \otimes \xi$$

is defined as a ϕ -soldering vector field (abr. ϕ s). If M carries such a vector field, then Ω is invariant by X, and it moves to a potential form and M is foliated by 3-dimensional submanifolds M_X tangent to $Span\{\phi X, \xi, U\}$.

It is also proved that ϕX defines an infinitesimal homothety of Ω and both X and ϕX define infinitesimal conformal transformations of ξ .

1 Preliminaries and Notations

First, we shall explain the notation used in the paper.

Let (M,g) be a *n*-dimensional connected Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor g (we assume that M is oriented and ∇ is the Levi-Civita connection).

We denote by $\mathcal{F}(M)$ the ring of real functions, $\mathcal{T}_q^p(M)$ the $\mathcal{F}(M)$ -module of (p,q) tensor fields, TM (resp T^*M) the tangent (resp. cotangent) bundle of M and $\bigwedge^r(M)$ the $\mathcal{F}(M)$ -module of r-forms, with $\bigwedge M = \bigoplus_{r=0}^n \bigwedge^r(M)$, $\mathcal{X}M$ the set of sections of the tangent bundle TM and

$$\flat: TM \to T^*M, \sharp: T^*M \to TM$$

the musical isomorphisms defined by g.

If $X_i \in \mathcal{X}M$ are vector fields, $Span\{X_1, \ldots, X_k\}$ is the distribution spanned by them.

We denote by $A^q(M,TM) = \Gamma Hom(\bigwedge^q TM,TM)$ the set of vector valued q-forms, and following [8] we write for the covariant derivative with respect to ∇ , d^{∇} : $A^q(M,TM) \to A^{q+1}(M,TM)$. The vector valued 1-form $dp \in A^1(M,TM)$ is the identity vector valued 1-form and is called the soldering form of M [2]. As is well known, $A^1(M,TM)$ is isomorphic to \mathcal{T}_1^1 , and the soldering form dp corresponds with the identity (1,1) tensor field, which will be denoted as I. If $\phi \in \mathcal{T}_1^1$ then $\phi dp \in \mathcal{T}_1^1$ and one has the left inner product $\langle X, \phi dp \rangle = \phi X = \langle \phi X, dp \rangle$. As ∇ is a symmetric connection one obtains $d^{\nabla}(dp) = 0$.

We write for T (resp. R) the torsion (resp. curvature) tensor of ∇ . Then, for any vector field Z on M, the second covariant differential is defined as $\nabla^2 Z = d^{\nabla}(\nabla Z)$ and satisfies

(1.1)
$$\nabla^2 Z(V, W) = R(V, W)Z; \quad V, W \in \mathcal{X}M$$

The operator $d^{\omega}=d+e(\omega)$ acting on ΛM , where $e(\omega)$ means the exterior product by the closed 1-form ω is called the *cohomology operator* [3]. One has $d^{\omega}\circ d^{\omega}=0$ and if $d^{\omega}\pi=0$, π is said to be d^{ω} -closed. If ω is exact, then π is said to be d^{ω} -exact.

Let $\omega \in \bigwedge^1(M)$. If $\omega \neq 0$, $\omega = \wedge d\omega = 0$, then ω is called a *class* 1 1-form. If M is endowed with a 2-form Ω , then one can define the morphism

$$\Omega^{\flat}: T_xM \to T_x^*M$$

as $\Omega^{\flat}(Z) = {}^{\flat}Z = -i_{Z}\Omega; Z \in T_{x} = M$, for all $x \in M$, where

$$i_Z\Omega(X) = \Omega(Z, X); \forall X \in T_xM.$$

We shall denote by grad (resp. div) the gradient (resp. divergence) operator.

Let $G \in \bigwedge^{2m+1} M$ be the Riemannian volume element of M. We denote by * the *Hodge star operator* of (M,g) with respect to G. We recall that the codifferential operator δ (see e.g. [8] p.153) is expressed by

$$\delta\pi = (-1)^{n(r+1)+1} * d * \pi, \quad \pi \in \bigwedge {^rM}.$$

Definition 1.1 [12] A function $f: \mathbb{R}^n \to \mathbb{R}$ is isoparametric if $\|gradf\|^2$ and div(gradf) can be expressed as functions of f.

Now, we shall remember some basic results about almost contact manifolds (see e. g. [14], [6]).

Definition 1.2 A differentiable manifold M is said to have an almost contact structure if admits a vector field ξ (called the *Reeb vector field*), a 1-form η and a (1,1) tensor field ϕ satisfying

(1.2)
$$\eta(\xi) = 1; \\ \phi^2 = -I + \eta \otimes \xi$$

The above conditions imply that M is odd dimensional, say 2m+1, and $\phi(\xi)=0$; $rank\phi=2m$; $\eta\circ\phi=0$. The distribution $ker\eta$ is called horizontal and $Span\{\xi\}$ is called vertical.

Definition 1.3 A manifold endowed with an almost contact structure (ϕ, ξ, η) and with a Riemannian metric g satisfying

$$(1.3) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for any vector fields $X, Y \in \mathcal{X}M$ is called almost conctact Riemannian manifold.

If M is an almost contact Riemannian manifold, then the 2-form Ω defined by

(1.4)
$$\Omega(X,Y) = g(\phi X,Y); \quad X,Y \in \mathcal{X}M;$$

satisfies $\eta \wedge \Omega^m \neq 0$, which implies that M is orientable. Moreover, $rank \Omega = 2m$ and $i_{\varepsilon}\Omega = 0$.

Note that, on an almost contact Riemannian manifold, one has $\eta(X) = g(X, \xi)$; $\forall X \in \mathcal{X}M$; i.e; $\xi = \eta^{\sharp}$. In the above conditions, it is easily seen that

$$(1.5) g(Z, \phi Z') + g(\phi Z, Z') = 0; \quad \forall Z, Z' = \in \mathcal{X}M.$$

Remark 1.4 Let (M, ϕ, η, ξ, g) be an almost contact Riemannian manifold and $x \in M$. Then one can choose a local field of orthonormal frames over a neighborhood of x

$$\mathcal{O} = \{e_{\mu}, \mu = 0, 1, \dots, 2m\} = \{\xi, e_1, \dots, e_m, \phi e_1, \dots, \phi e_m\}$$

and its associated coframe $\mathcal{O}^* = \{\omega^0, \omega^1, \dots, \omega^m, \omega^{m+1}, \dots, \omega^{2m}\}$, where $\omega^0 = \eta$. Then, with respect to this frame

$$\phi = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -I_m \\ 0 & I_m & 0 \end{array} \right)$$

i.e., $\phi = -\omega^{a^*} \otimes e_a + \omega^a \otimes e_{a^*}$ where $a \in \{1, \dots, m\}$ and $a^* = a + m$.

We shall use the capital (resp. greek) letters when the subindex runs in $\{1, \dots 2m\}$ (resp $\{0, 1, \dots 2m\}$).

Then one has

$$\Omega = \sum_{a=1}^{m} \omega^{a} \wedge \omega^{a^{*}}; \quad I = \eta \otimes \xi + \omega^{A} \otimes e_{A}.$$

Observe that: $X = \sum_{\mu=0}^{2m} X^{\mu} e_{\mu} \Rightarrow X^{\flat} = \sum_{\mu=0}^{2m} X^{\mu} \omega^{\mu}$.

With respect to \mathcal{O} and \mathcal{O}^* E. Cartan's structure equations can be written as

$$(1.6) \nabla e_{\lambda} = \theta_{\lambda}^{\mu} \otimes e_{\mu}$$

$$(1.7) d\omega^{\lambda} = -\theta^{\lambda}_{\mu} \wedge \omega^{\mu}$$

$$d\theta_{\mu}^{\lambda} = -\theta_{\mu}^{\gamma} \wedge \theta_{\gamma}^{\lambda} + \Theta_{\mu}^{\lambda}$$

In the above equations θ (resp. Θ) are the local connection forms in the bundle O(M) (resp. the curvature 2-forms on M).

From the orthonormality of the frame \mathcal{O} and $\nabla g=0$ one can deduce that the matrix

$$\theta = \begin{pmatrix} \theta_0^0 & \dots & \theta_{2m+1}^0 \\ \vdots & \vdots & \vdots \\ \theta_0^{2m+1} & \dots & \theta_{2m+1}^{2m+1} \end{pmatrix}$$

is hemisymmetric, i.e., $\theta^{\lambda}_{\mu} = -\theta^{\mu}_{\lambda}$. In particular $\theta^{\mu}_{\mu} = 0$.

2 Closed concircular almost contact Riemannian manifolds

We introduce the following notion:

Definition 2.1 Let (M, ϕ, η, ξ, g) be an almost contact Riemannian manifold. A vector field U is called the *generative* of ξ if U verifies the following two conditions

i)
$$\xi$$
 is *U*-concircular, i.e;

$$(2.9) \nabla \xi = \eta \otimes U,$$

ii)
$$U^{\flat}$$
 is closed, i.e;

$$(2.10) dU^{\flat} = 0,$$

Then the manifold $(M, \phi, \eta, \xi, g, U)$ is called a closed concircular almost contact Riemannian manifold (abr. CCACR manifold).

Now we shall prove some equations and identities, which will be used in this work.

Lemma 2.2 Let $(M, \phi, \eta, \xi, g, U)$ be a CCACR manifold. Then:

- (1) $U = \nabla_{\xi} \xi \in ker \eta \text{ and } \nabla_{U} \xi = 0.$
- (2) $\theta_0^A = U^A \eta; \theta_0^0 = 0.$
- (3) the next Kähler relations are satisfied:

$$\theta_b^a = \theta_{b^*}^{a^*}; \ \theta_b^{a^*} = \theta_a^{b^*}; \ a \in \{1, \dots m\}; \ a^* = a + m.$$

(4) The covariant differential of any vector field Z on M is expressed by

$$\nabla Z = (dZ^A + Z^B \theta_B^A) \otimes e_A + (dZ^0 - g(Z, U) = \eta) \otimes \xi + Z^0 \eta \otimes U.$$

(5) For any vector field Z on M, we have

$$(\nabla \phi)Z = -\eta(Z)\eta \otimes \phi U + g(\phi U, Z)\eta \otimes \xi;$$

where
$$((\nabla \phi)Z)(X) = \phi \nabla_X Z - \nabla_X \phi Z; \forall X = \in \mathcal{X}M.$$

Proof. (1) By (2.9) and (1.2)

$$(\nabla \xi)(\xi) = (\eta \otimes U)(\xi) \Rightarrow \nabla_{\xi} \xi = \eta(\xi)U = U.$$

Let X be a vector field on M. We have $0 = (\nabla_X g)(\xi, \xi) \Rightarrow g(\nabla_X, \xi) = 0$. Then $\nabla_X \xi \in Span\{\xi\}^{\perp} = ker\eta$; $\forall X \in \mathcal{X}M$. In particular $U = \nabla_{\xi} \xi \in ker\eta$. Then by (2.9) one obtains $\nabla_U \xi = \eta(U)U = 0$.

(2) Set $U = U^A e_A$. Let X be a vector field on M. By 1) $\nabla_X \xi \in ker \eta$. One has $\nabla_X \xi = \theta_0^0(X)\xi + \theta_0^A(X)e_A$. Then $\theta_0^0(X) = 0$; $\forall X \in \mathcal{X}M$.

If $X \in ker\eta$, by (2.9) $\nabla_X \xi = 0$. Then $\theta_0^A(X) = 0$; $\forall X \in ker\eta$.

If
$$X = \xi$$
, $U = \theta_0^A(\xi)e_A = U^A e_A$.

From the above equations one can states $\theta_0^A = U^A \eta$.

- (3) See e. g. [5], [13].
- (4) Let $Z, X \in \mathcal{X}M$ and set $Z = Z^0\xi + Z^Ae_A$. Then, one has $\nabla_X Z = \nabla_X Z^0\xi + \nabla_X Z^Ae_A$.

Using (2.9) one derives that $\nabla_X Z^0 \xi = (dZ^0 \otimes \xi)(X) + (Z^0 \eta \otimes U)(X)$.

From (1.6) and the identities $\theta_A^0 = -\theta_0^A$ and $\theta_0^A = U^A \eta$ one can states

$$\nabla_X Z^A e_A = ((dZ^A + Z^B \theta_B^A) \otimes e_A)(X) - (g(Z, U)\eta) \otimes \xi)(X).$$

Then, one can obtains

$$\nabla Z = (dZ^A + Z^B \theta_B^A) \otimes e_A + (dZ^0 - g(Z, U)) = (\eta) \otimes \xi + Z^0 \eta \otimes U.$$

(5) Using 3) and 4) and by a straightforward calculation, one can state

$$(\nabla \phi)Z = -\eta(Z)\eta \otimes \phi U + g(\phi U, Z)\eta \otimes \xi,$$

thus finishing the proof.

We shall give a sufficient condition which implies that U^{\flat} is an exact form.

Remark 2.3 Let Y be any $ker\eta$ vector field on M, and assume that Y defines a skew-symmetric Killing vector field (abr. SSK) on M having the structure vector field U as generative (see [6]). Then one may write

$$(2.11) \nabla Y = U^{\flat} \otimes Y - Y^{\flat} \otimes U.$$

Since U is also a $ker\eta$ vector field, it follows by Lemma 2.2 (4) that necessarily g(U,Y)=0, and with the help of the structure equations (1.6) and (1.7) one derives by a standard calculation

$$(2.12) dY^{\flat} = 2U^{\flat} \wedge Y^{\flat}.$$

This proves that Y^{\flat} is an exterior recurrent form which has $2U^{\flat}$ as recurrence form (see [1]). We notice that (2.12) is the standard equation of SSK vector fields (see [9]).

In addition setting $2l = ||Y||^2$ and taking account that g(U, Y) = 0 one gets from (2.11)

$$(2.13) dl = 2lU^{\flat}$$

which shows that the existence of Y implies that U^{\flat} be an exact form.

Finally, we shall prove that the existence of such a vector field Y is assured by an exterior differential system in involution. If we denote by Σ the exterior differential system which defines Y, it follows (see [2]) by E. Cartan's that the characteristic numbers are $r = 3, s_0 = 1, s_1 = 2$. Since $r = s_0 + s_1$ it follows that Σ is an involution and the existence of Y depends of 2 arbitrary functions of 1 argument.

Now we shall obtain the main properties of η , Ω and U in a CCACR manifold.

Proposition 2.4 (Properties of η .) Let $(M, \phi, \eta, \xi, g, U)$ be a CCACR manifold. Then

- (1) $d\eta = U^{\flat} \wedge \eta$, and then η is a exterior recurrent.
- (2) $\delta \eta = 0$.
- (3) $d^{-U^{\flat}}\eta = 0.$
- (4) $d\eta \neq 0$, $\eta \wedge d\eta = 0$, i.e; η is a class 1 1-form.

Proof. (1) Taking account $\theta_0^A = U^A \eta$ (see Lemma 2.2 (2)) and applying the equation (1.7) to $\omega^0 = \eta$ one finds

$$d\eta = -\theta^0_B \wedge \omega^B = \theta^B_0 \wedge \omega^B = U^B \eta \wedge \omega^B = -U^B \omega^B \wedge \eta = -U^\flat \wedge \eta;$$

(which says that η is exterior recurrent 1-form and has the closed 1-form U^{\flat} as recurrence form [1]).

- (2) By definition of δ one has $\delta \eta = -*d*\eta$ and on behalf of Lemma 2.2 (2) one derives $\delta \eta = 0$, which afirms that η is a coclosed form.
- (3) On the other hand by the cohomological operator d^{ω} one may also write the equation $d\eta = U^{\flat} \wedge \eta$ as $d^{-U^{\flat}} \eta = 0$, and say that η is $d^{-U^{\flat}}$ -closed.
- (4) In consequence of 1) and 2) η is a coclosed exterior recurrent form. In addition by Lemma 2.2 (2) one may write $d\eta \neq 0$; $\eta \wedge d\eta = 0$, these equations proves that η is of class 1 1-form.

Remark 2.5 We consider the flow \mathcal{F} defined by the unitary vector field ξ . By Prop. 2.4, (1) we have that the distribution $ker\eta = Span\{\xi\}^{\perp}$ is involutive. Remember that $d\eta \neq 0$, then by virtue of [10] Theorem 10.6 we concludes that $U_x = (\nabla_{\xi}\xi)_x \neq 0$; $\forall x \in M$, and that the vector field ξ is not geodesible, i.e; the orbits of ξ are not geodesics on M.

Corollary 2.6 Let $(M, \phi, \eta, \xi, g, U)$ be a CCACR manifold, then M is foliated by 1-codimensional almost Hermitian submanifolds.

Proof. Let $x \in M$, we consider N the maximal integral submanifold verifying that $x \in N$; $T_yN = ker\eta_y \quad \forall y, \in N$.

We defined $J \in \mathcal{T}_1^1(M)$ by $J = \phi|_N$. Then, by (1.2) $J^2(X) = -X$; $\forall X \in \mathcal{X}N$, and then $(N, J, g|_N)$ is an almost Hermitian manifold.

Proposition 2.7 Let $(M, \phi, \eta, \xi, g, U)$ be a CCACR manifold and let Ω the 2-form defined by (1.4), then $d\Omega = 0$.

Proof. Due to M has an almost contact Riemannian structure the horizontal connection forms θ_B^A satisfy the Kähler relations of Lemma 2.2 (3). By Remark 1.4 one has $\Omega = \sum w^a \wedge w^{a^*}$, then by a standard calculation one finds using $\theta_0^A = U^A \eta$ and Prop. 2.4 (4), $d\Omega = 0$.

Remark 2.8 Since $U^{\flat} = \sum_{A=1}^{2m} U^A \omega^A$ is a closed form, taking into account (1.7) one derives

$$\sum_{A,B=1}^{2m} (dU^A + U^B \theta_B^A) \wedge \omega^A = 0.$$

If there exists $\lambda \in \mathcal{F}(M)$ such that

$$dU^A + U^B \theta_B^A = \lambda \omega^A; \forall A \in \{1, \dots 2m\};$$

the above equation is satisfied.

This remark allows us to introduce the following

Definition 2.9 Let $(M, \phi, \eta, \xi, g, U)$ be a CCACR manifold. We say that M is a λ -CCACR manifold if there exists $\lambda \in \mathcal{F}(M)$ such that

(2.14)
$$dU^A + U^B \theta_B^A = \lambda \omega^A; \quad \forall A \in \{1, \dots 2m\}.$$

In the rest of the paper, we shall work with λ -CCACR manifolds, although some results will be also true for general CCACR manifolds.

Proposition 2.10 (Properties of U.) Let $(M, \phi, \eta, \xi, g, U)$ be a λ -CCACR manifold. Then

- (1) $\mathcal{L}_U \eta = ||U||^2 \eta$ and $\mathcal{L}_U \Omega = 2\lambda \Omega$; $\lambda = const.$, and then U is an infinetesimal conformal transformation of the almost contact structure.
 - (2) $(\nabla \phi)U = 0$.
 - (3) $\nabla_U U = \lambda U$; i.e., U is an affine geodesic.
- (4) $[U, \xi] = ||U||^2 \xi$, which shows that ξ admits an infinitesimal transformation of generators U.
- (5) $g(\nabla_Z U, Z') = g(\nabla_{Z'} U, Z); \forall Z, Z' \in \mathcal{X}M. i.e., U is a ker\eta-gradient vector field.$

Proof. (1) Recall that ${}^{\flat}U = \sum (U^a{}^*\omega^a - U^a\omega^a{}^*)$. Next making use of (2.14) one gets

$$(2.15) d({}^{\flat}U) = -2\lambda\Omega$$

and consequently since Ω is closed one has $\lambda = const.$ and so one infers $\mathcal{L}_U\Omega = 2\lambda\Omega$. Moreover since $\eta(U) = 0$, one derives from Prop. 2.4, (1) $\mathcal{L}_U\eta = ||U||^2\eta$ and by the two last obtained equations we conclude that the generative U of ξ defines and infinitesimal conformal transformation of the almost contact structure of M.

(2) $(\nabla \phi)U = 0$ can be obtained quickly from Lemma 2.2 (5), taking Z = U.

(3) Using Lemma 2.2 (4) and taking Z = U vector field U is expressed by

$$\nabla U = (dU^A + U^B \theta_B^A) \otimes e_A + (-g(U, U)\eta) \otimes \xi.$$

Then by (2.14)

(2.16)
$$\nabla U = \lambda \omega^A \otimes e_A - ||U||^2 \eta \otimes \xi = \lambda dp - (\lambda + ||U||^2) \eta \otimes \xi.$$

Since $\eta(U) = 0$, the above equation implies $\nabla_U U = \lambda U$. Moreover $\nabla_{\xi} U = -\|U\|^2 \xi$.

- (4) Because ∇ is symmetric $T(\xi, U) = 0$. Then $[\xi, U] = -\|U\|^2 \xi$.
- (5) It also should be noticed that by (2.16) one has: $g(\nabla_Z U, Z') = g(\nabla_{Z'} U, Z)$; for any vector fields Z, Z' on M, which afirms that U is a gradient vector field (in the sense of Okumura; also [4] and by $d^{-U^{\flat}}\eta = 0$ one may say that η is a $d^{-U^{\flat}}$ -exact 1-form).

Proposition 2.11 Let $(M, \phi, \eta, \xi, g, U)$ be a λ -CCACR manifold.

- (1) If $D_U = Span\{U,\xi\}$ then M may be viewed as the locally product of integral submanifolds of D_U and D_U^{\perp} .
- (2) Let Y be any kern SSK vector field on M. If $D_Y = Span\{U, Y, \xi\}$ then D_Y defines a foliation on M. Moreover, U defines an infinitesimal conformal transformation of Y and $[\xi, Y] = 0$.

Proof. (1) By Prop. 2.10 (4), D_U is an involutive distribution. Let U', U'' be vector fields of D_U . By Lemma 2.2 and Prop. 2.10 one has:

$$\nabla_{\xi}\xi = U; \ \nabla_{\xi}U = -\|U\|^2\xi; \ \nabla_{U}\xi = 0; \ \nabla_{U}U = \lambda U;$$

and then it is easily seen that $\nabla_{U'}U'' \subset D_U$, and consequently the leaves of D_U are totally geodesic.

The vector fields ξ and U are not singular and then the distributions $Span\{\xi\} = ker\eta$ and $Span\{\xi\}^{\perp} = kerU^{\flat}$ are well defined. Both distributions are involutive because $d\eta = U^{\flat} \wedge \eta$ (see Prop. 2.4 (1)), and $dU^{\flat} = 0$ (see equation (1.6)), and then $D_{U}^{\perp} = ker\eta \cap kerU^{\flat}$ is also involutive.

- (2) We consider the 3-form $\varphi = U^{\flat} \wedge Y^{\flat} \wedge \eta$; it is easily seen by (2.12) and Prop. 2.4 (1) that $d\varphi = 0$, and consequently the 3-distribution $D_Y = Span\{U, Y, \xi\}$ defines a foliation. Since $i_Y \varphi = ||Y||^2 U = \wedge \varphi$ one also derives $\mathcal{L}_Y \varphi = 0$, that is φ is invariant by Y.
- By (2.11), (2.9) and (2.16) a short calculation gives $[U,Y]=(\|U\|^2-\lambda)Y$ and $[\xi,Y]=0$ which says that U defines an infinitesimal conformal transformation of Y, and ξ and Y commute.

Proposition 2.12 Let $(M, \phi, \eta, \xi, g, U)$ be a λ -CCACR manifold. The transversal curvature forms $\Theta_0^A(A \in \{1, \dots, 2m\})$ are monomial an expressed by

$$\Theta_0^A = (U^A U^{\flat} + \lambda \omega^A) \wedge \eta$$

and the vector valued 2-form $\Pi = \sum \Theta_0^A \otimes e_A = -\lambda \eta \wedge dp + (U^{\flat} \wedge \eta) \otimes U$ is d^{∇} -closed, and U defines an almost conformal transformation of Π , i.e.,

$$\mathcal{L}_U \Pi = ||U||^2 \Pi + 2\lambda (U^{\flat} \wedge \eta) \otimes U.$$

Proof. With the help of the structure equations (1.8) corresponding to the curvature forms Θ , one derives by (2.14) and (2.16)

(2.17)
$$\Theta_0^A = (U^A U^{\flat} + \lambda \omega^A) \wedge \eta$$

and this shows that Θ_a^A are monomial 2-forms.

Further by (2.17) we deduce the following vector valued 2-form $\Pi = \sum \Theta_0^A \otimes e_A = -\lambda \eta \wedge dp + (U^{\flat} \wedge \eta) \otimes U$ and we agree to denominate Π the structure curvature vector valued form. Now operating on Π by the exterior covariant derivate operator d^{∇} , and since $d(U^{\flat} \wedge \eta) = 0$ (see Prop. 2.4, (1)), a short calculation gives $d^{\nabla}\Pi = 0$. Hence Π enjoys the significative property to be a closed vector valued form. Taking now the Lie derivative of Π with respect to U, one finds by Lemma 2.2 (3) $\mathcal{L}_U \Pi = -\lambda \mathcal{L}_U \eta \wedge dp + \mathcal{L}_U (U^{\flat} \wedge \eta) \otimes U = ||U||^2 \Pi + 2\lambda (U^{\flat} \wedge \eta) \otimes U$.

3 Harmonic Properties

In this section we shall discuss some harmonic properties induced by the almost contact structure of the λ -CCACR manifold M under consideration.

Note that $*U^{\flat} = \sum_{a} (-1)^{A} \omega^{1} \wedge \ldots \wedge \widehat{\omega^{A}} \wedge \ldots \wedge \omega^{2m} \wedge \eta$ and then one finds that the codifferential δU^{\flat} of U^{\flat} is expressed by $\delta U^{\flat} = ||U||^{2} - 2m\lambda$.

Hence since $dU^{\flat} = 0$, the harmonic operator ΔU^{\flat} is expressed by

$$\Delta U^{\flat} = \lambda ||U||^2 U^{\flat}.$$

This is known afirms that U^{\flat} is an eigenfunction of Δ , having $\lambda ||U||^2$ as eigenvalue. By similar devices and since it has been shown in section 2 that η is coclosed one finds by Prop. 2.4, (1) that

$$\Delta \eta = 2m\lambda \eta$$
.

Hence η is also an *eigenfunction* of Δ . Next according to the concept of conformal adjoint transformation, one has regarding the paring (η, U) $\mathcal{L}_U^* \eta = \delta(U^{\flat} \wedge \eta) + U^{\flat} = \wedge \delta \eta$. Then since η is coclosed, one derives by Prop. 2.4, (1)

$$\mathcal{L}_{U}^{*}\eta = -2m\lambda\eta,$$

that is U defines a $infinite simal\ homothety$ of the conformal adjoint $\mathcal{L}^*\eta$.

Let now **L** be the Weil's (1,1) operator [11] defined by **L**: $\pi \to \pi \land \Omega$, $\pi \in \bigwedge^2 M$. (note that one has $d\mathbf{L}\pi = \mathbf{L}d\pi + \pi \land \mathbf{L} = \pi$), and set $\eta_q = \eta \land \Omega^q$.

Then by Prop. 2.4 (1) one gets $d\eta_q = U^{\flat} \wedge \eta_q$ and

$$\mathcal{L}_{\mathcal{E}}\eta_{a} = -U^{\flat} \wedge \Omega^{q} = -(U^{\flat})_{a}$$

i.e., the Lie derivatives of the (2q+1)-form η_q are equated (up to the sign) by (2q+1)-forms $(U^{\flat})_q$.

Finally in an other order of ideas, one finds by Prop. 2.7, (4)

$$||grad(||U||^2)||^2 = 4\lambda^2||U||^2.$$

Now by a short calculation one derives $div U = 2m\lambda - ||U||^2$ and

$$div \ grad \ (||U||^2) = 8m\lambda^2 - 4\lambda ||U||^2.$$

Since $\lambda = const.$, we may afirm that $||U||^2$ is an isoparametric function. Then we can state:

Theorem 3.1 Let $M(\phi, \eta, \xi, U, g)$ be a λ -CCACR manifold. Then the tuple of structure tensors (ξ, U, η) satisfies the following properties:

- (1) The 1-forms U^{\flat} and η are eigenfunctions of Δ and U defines an infinitesimal homothety of the conformal adjoint 2m-form $*\eta$.
- (2) The Lie derivatives with respect to ξ of the (2q+1)-forms $\eta_q = \eta \wedge \Omega^q$ are expressed by

$$\mathcal{L}_{\varepsilon}\eta_{a}=-U^{\flat}\wedge\Omega^{q}$$
.

(3) $||U||^2$ is an isoparametric function.

4 ϕ -soldering vector fields

Taking into account Lemma 2.2 (4) one has

$$\forall X \in ker\eta; \ \nabla X = (dX^A + X^B \theta_B^A) \otimes e_A - g(X, U)\eta \otimes \xi.$$

Then we introduce the following

Definition 4.1 Let $(M, \phi, \eta, \xi, g, U)$ be a λ -CCACR manifold. A ϕ -soldering vector field is a nonsingular vector field $X \in ker\eta$ satisfying

$$(4.18) \nabla X = f\phi dp - g(X, U)\eta \otimes \xi, \quad f \in \mathcal{F}(M)$$

We study the main properties of such a vector field:

Theorem 4.2 Let $(M, \phi, \eta, \xi, g, U)$ a (2m+1)-dimensional λ -CCACR manifold endowed with a ϕ -soldering vector field X. Then:

- (1) X defines an infinitesimal automorphism of Ω which moves to a potential form.
- (2) f is a constant function and ϕX defines an infinitesimal homotethy of Ω .
- (3) X is a Kern Killing vector field, i.e.,

$$g(\nabla_Z X, Z') + g(\nabla_{Z'} X, Z) = 0$$

for any $\eta(Z) = 0, \eta(Z') = 0.$

- (4) X and ϕX commute.
- (5) ϕX is a kern gradient vector field. i.e.,

$$g(\nabla_Z \phi X, Z') = g(\nabla_{Z'} \phi X, Z)$$

for any $Z, Z' \in \mathcal{X}M$.

- (6) X and ϕX define infinitesimal conformal transformations of ξ .
- (7) The sectional curvature of the plane spanned by X and ϕX vanishes.
- (8) M is locally the product of a 3-dimensional submanifold M_X tangent to $D_X = Span\{\phi X, \xi, U\}$ and of a (2m-2)-dimensional submanifold M_X^{\perp} tangent to D_X^{\perp} .

Proof. (1) By Lemma 2.2 (4) and (4.18) we find

(4.19)
$$\left\{ \begin{array}{l} dX^a + X^A \theta_A^a = -f\omega^a^* \\ dX^{a^*} + X^A \theta_A^{a^*} = f\omega^a, a \in \{1, \dots, m\}, a^* = a + m \end{array} \right\}$$

and setting $2\ell=\|X\|^2, \beta=(\phi X)^{\flat}$ one derives from (4.19) $d\ell=-f\beta$ and $d\beta=0$. Note that

$$\beta(Y) = g(\phi X, Y) = \Omega(X, Y); -{}^{\flat}X(Y) = (i_X \Omega)Y = \Omega(X, Y);$$

for any vector field Y on M. Then, one has $\beta = -{}^{\flat}X$.

Recall that $d\Omega = 0$ (see Prop. 2.7), then one may write

$$\mathcal{L}_X \Omega = (i_X \circ d + d \circ i_X) \Omega = d(-{}^{\flat}X) = d\beta = 0.$$

(2) One has $X^{\flat} = \sum_{A=1}^{2m} X^A \omega^A$. With the help of (4.19) one deduces that $dX^{\flat} = -f\Omega$ wich implies by Prop. 2.7 that f = constant.

As $X \in ker\eta$; one obtains $X^{\flat} = -^{\flat}(\phi X) = i_{\phi X}\Omega$, and then

$$\mathcal{L}_{\phi X}\Omega = (i_{\phi X} \circ d + d \circ i_{\phi X})\Omega = dX^{\flat} = -f\Omega.$$

- (3) By (4.18) one finds $g(\nabla_Z X, Z') + g(\nabla_{Z'} X, Z) = 2\lambda \eta(Z)\eta(Z')$ for any vector fields Z, Z' on M. Therefore if $Z, Z' \in Ker\eta$ one may write $g(\nabla_Z X, Z') + g(\nabla_{Z'} X, Z) = 0$. In this case we agree to say that X is a $ker\eta$ Killing vector field.
- (4) Recall that $(\nabla \phi)Z = -\eta(Z)\eta \otimes \phi(U) + g(\phi U, Z)$ for any Z vector field on M (see Lemma 2.2 (5)).

Making use of the equations (4.18) and (1.2) one has

$$\nabla_{Y}\phi X = \phi(\nabla_{Y}X) - (\nabla\phi)(X)(Y) = -fY + f\eta(Y)\xi - g(\phi U, X)\eta(Y)\xi,$$

for any vector field Y on M. Then one infers

$$(4.20) \nabla \phi X = -f dp + (f - q(\phi U, X)) \eta \otimes \xi.$$

Then by (4.18) and the above equation $T(X, \phi X) = 0 \Rightarrow [X, \phi X] = 0$, which shows that X and ϕX commute.

(5) From (4.20) one may write

$$g(\nabla_Z \phi X, Z') = g(\nabla_{Z'} \phi X, Z), \forall Z, Z' \in ker\eta$$

which says that ϕX is a $ker\eta$ gradient vector field.

- (6) Taking into account that ξ is U-concircular, X is a ϕ -soldering vector field and the equation (4.20) one finds $[X, \xi] = g(X, U)\xi$; $[\phi X, \xi] = g(\phi U, X)\xi$; and so following the above calculations prove that both X and ϕX define infinitesimal conformal transformations of ξ .
 - (7) Operating on (4.18) by the operator d^{∇} one gets by a standard calculation

$$d^{\nabla}(\nabla X) = \nabla^2 X = ((\lambda U^{\flat} - f(\phi U)^{\flat} \wedge \eta) \otimes \xi.$$

By (1.1) one has

$$K_{\phi X \wedge X} = \frac{g(R(\phi X, X)X, \phi X)}{\|X\|^2 \|\phi X\|^2 - g(X, \phi X)^2} = \frac{g(((\lambda U^{\flat} - f(\phi U)^{\flat} \wedge \eta) \otimes \xi(X, \phi X), \phi X))}{\|X\|^2 \|\phi X\|^2 - g(X, \phi X)^2}$$

where $K_{\phi X \wedge X}$ is the sectional curvature of the plane spanned by X and ϕX .

Then, a short calculation gives $K_{\phi X \wedge X} = 0$.

(8) By Lemma 2.2 (3), it is seen by similar consideration as in Prop. 2.11(1), then M is locally the product of a 3-dimensional submanifold M_X tangent to $D_X = Span\{\xi, U, \phi X\}$ and of a (2m-2)-dimensional submanifold M_X^{\perp} tangent to D_X^{\perp} .

Acknowledgements. The first author is partially supported by Spanish Grant DGICYT PB 95-0124.

References

- D. K. Datta, Exterior recurrent forms on a manifold, Tensor N. S., 36 (1982), 115-120.
- [2] J. Dieudonné, Treatise on Analysis, vol. 4. Ac. Press, N. York, London, 1974.
- [3] F. Guedira and A. Lichnerowicz, Géométrie des algèbres de Lie locales de Kirilov, J. Math. Pures Appl., 63 (1984), 407-484.
- [4] K. Matsumoto, I. Mihai and R. Rosca, On gradient almost torse forming vector fields, Mathem. Journal of Toyama University vol. 19 (1996), 143-159.
- [5] K. Matsumoto, I. Mihai and R. Rosca, A certain locally conformal almost cosymplectic manifold and its submanifolds, Tensor N. S. 51, (1992) 91-102 (196), 143-159.
- [6] I. Mihai, R. Rosca and L. Verstraelen, Some aspects of the Differential Geometry of vector fields, Pure and Applied Differential Geometry, Leuven-Brussel vol. 2 (1996).
- [7] J. A.Oubiña, New classes of almost contact metric manifolds, Publ. Math. Debrecen, 32 (1985), 187-193.
- [8] W.A. Poor. Differential Geometric Structures, Mc. Graw Hill; New York (1981).
- [9] R. Rosca, On exterior concurrent SSK vector fields, Rend. Sem. Mat. Messina, 2 (1993), 131-145.

- [10] P. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, N. York, 1988.
- [11] A. Weil, Sur la théorie des formes differentielles attachies a une varieté analitique complexe, Com. Math. Helv., 20 (1947), 110-116.
- [12] A. West, Isoparametric systems. Geometry and Topology of Submanifolds. 222-230, World Scientific Riena Edge, USA (1989).
- [13] K. Yano and M. Kon, Anti-invariant submanifolds of Sasakian space forms II, J. Korean Math. Soc., 13 (1976), 1-14.
- [14] K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore (1984).

Fernando Etayo, Rafael Santamaria
Departamento de Matemáticas, Estadística y Computación
Facultad de Ciencias
Universidad de Cantabria
Avda. de los Castros, s/n, 39071 Santander, SPAIN
e-mail: etayof@matesco.unican.es, santamar@matesco.unican.es

Radu Rosca 59 Av. Emile Zola, 75015 Paris, FRANCE