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Abstract

We find the symmetry group of the Monge-Ampere equation and we describe
the geometric dynamics induced by an affine vector field.
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A symmetry group of a second order PDE is a group which transforms solutions of
the equation to other solutions. We can determine explicitly special types of solutions
which are themselves invariant under some subgroup of the full symmetry group.
These ”group-invariant” solutions are found by solving a reduced system of partial
differential equations. The theory of symmetry group for differential equations, partial
differential equations and systems has manny applications to geometry, physics and
mechanics.

In this paper we shall study the Monge-Ampeére equation applying the general
theory in the P.J.Olver book[6]. Also we present the geometric dynamics induced by
an affine vector field on R™*!. Qurs results are original modulo the quoted papers.

The Monge-Ampere equation of two variables is closely related to the Minkovski
problem and the Weyl embedding problem. For higher dimension, the Monge-Ampere
equation is studied in connection to affine geometry because it is invariant under the
special linear group. In this paper, the special linear group is a subgroup of the
symmetry group of Monge-Ampeére equation.

1 Symmetry Lie group of a PDE of order two

Let 7 :R"™ —»R", n(z,u) =z, z = (¢}, ...,2™), be the projection map.

Let U CR""! be an open set and Uy = (V).
Definition 1. A smooth map s : Uy — U, s(z) = (z,u(x)) is called local section of 7
(over Up).

For the function u, we note

oPu . .
ug,..i, (T) = m(l‘), zely, 1<i; <. <, <n,p>1
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Let us consider

Jk(U) = {(xi)uauiu ,u“lk)|(a:’,u) € U}7

JH(U) CR" xRN x ...x RN*, where Ny = (1?!?75:11))!!’ k > 0, and the projection

T Jk(U) — Uy, ﬂk(x,u,uil, ey Wiy ) = T

Convention: for k =0, J°(U) = U and 7° = .
Definition 2. Let s : Uy — U be a local section of w (over Up). The section j*(s) of

7% over Uy, called the k-jet of s, is defined as follows:

Jk(s)(m) = (x)u7ui1)--->ui1mik)7 T e U0>

o"u

ir T oo (p), 0T <k

Uiy
The space J*(U) is called the kth-order jet space.
Let Qf (U) be the vector space of g-forms on J*(U) with exterior differential d.
In particular Qf(U) = Q¢(U) is the exterior algebra of g-forms on U and Q9 =
C>(J*¥(U)) is the algebra of real-valued functions

f = f(xiau;uiu"')uh...ik)

on J¥(U). A basis for QL (U) (as a module over C*°(J*(U))) consists of the one forms
det, du, dui,,...,du;, ;. For f € C*°(J*(U)) we have

_Of g 9 g 4 OF 4 _9f
B 8widm * aud“ * Oug, i+t Z

df

1<ii <. <ip<n CWine i
Definition 3. A form w € Q] (U) is called basic if it is of the type
w = Ajl___jqdmjl A ... Adale,

where A, ;. are smooth functions on J*(U).
Denote the space of basic g-forms by B} (U).
Definition 4. The operator D : B{(U) — B{|(U),

_(of  of, ,of of
bj= 8mj+8uu3+8ui1um+m+ Z

S Wi | 427,
1<ir <..<ip<n 1otk

for f € C*°(J*(U)), and
Dw = DAj, j, Adz?* A ... Adals,

for
w=Aj . dr’* A...Adxle,

is called the total exterior derivative on B (U).
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' Convention: Df = D;f dx', where D; f is the total derivative of f with respect to
o Let Q3T(U) be the space of (n + 1)-forms, and § € Q4 (U),
0 = F(x', u,up,upp)du A det A ... A dz™.
Definition 5. A solution of the equation
=0

on Uy CR™, is a section s : Uy — U such that 8 - j%(s) = 0.
In other words, 8 determines the PDE

(1) F(z,u,u,u) =0,
a solution of which is a function u = u(z) such that

ou 0%u
F <1’,U(1’), @(1’), W(l’)) = O,Vl' S U[).

We note u(? = (w, ug, ugg)-
Definition 6. The PDE (1) is called of mazimal rank if the Jacobian matrix

JF(m:U(Q)) = (inEFuEFunFuij)

has rank 1 whenever F(z,u(?) = 0.
Then the subset

S ={(=,u®) € JOU)|F(w,u®™) = 0}

is a hypersurface.
Definition 7. A symmetry group of PDE is a local group of transformations G acting
on an open set U of the associated space of independent and dependent variables,
with the property that whenever u = f(x) is a solution of the equation and whenever
g - f is defined for g € G, then v = g - f(x) is also a solution of the equation.

The computational procedure for finding the symmetry group uses the following
infinitesimal criterion of invariance.
Theorem 1. Let F(z,u®) = 0 be a PDE of mazimal rank defined on an open set
Up- If G is a local group of transformations acting on U and

(2) prPX[F(z,u®)] =0 whenever F(z,u?) =0,

for every infinitesimal generator X of G, then G is a symmetry group of the equation.
Consider the vector field

: 0 0
xX= — —
) g + 0l 0) o
on U. The first prolongation of X is the vector field

0

prVX = X + &, —,
6ui
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where
®; = Di(¢ — CPur) + Cuin = ¢y + widy —up (¢ +uily) -
The second prolongation of X is the vector field

(3) pr?X =prVX + & aa :

Uij

where
®ij = Dij(¢ — CFur) + Cugji =
= ¢ximf + ui¢mfu + uj‘bﬂu + Uiuj¢uu + Uij¢u_
—up (Ceps + il + Gy, + i Gy + uiiCl) —
—ugi (¢85 4+ uich) —ury (¢F +wilt).

Proposition 1. Let be a PDE of the maximal rank defined on Uy. The set of all
infinitesimal symmetries of the equation forms a Lie algebra on U. Moreover, if this
Lie algebra is finite-dimensional, the symmetry group of the equation is a local Lie
group of transformations acting on U.

Algorithm for finding the symmetry group of PDE (1)

-one consider a vector field X on U and one writes the infinitesimal invariance
condition (2);

-one eliminates any dependence between partial derivatives of the function wu,
determined by the PDE (1);

-one writes the condition (2) like a polynomial in the partial derivatives of u;

-one equates with zero the coefficients of partial derivatives of u in (2), written
as a polynomial in the derivatives of the function wu; it follows a PDE system with
respect to the unknown functions ¢!, ¢, and this system defines the Lie symmetry
group G of the given PDE.

Every s-parametric subgroup H of the group G determines a family of group-
invariant solutions. The problem of classification of group-invariant solutions reverts
to the problem of classification of Lie subalgebras of Lie algebra g of the group G
([6],pp.186). For 1-dimensional algebras one considers a general element X, and we
simplify this as much as possible using the adjoint transformations.

Remark. We will compute the adjoint representation Ad G of the underlying Lie
group G, by using the Lie series

o0

(4)  Ad(exp(eX)Y) =)

n=0

2

= @dX )M (V) = Y — X, V] + SN Y] -

2 Symmetry Lie group of the Monge-Ampere equa-
tion
The general form of the Monge-Ampere equation is [16]
det(ui; +vij) = H(z,u,u;),

where v;; are functions of z,w,u;. This is a particular nonlinear second order PDE.
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First, let us consider the special case

(5) det(ulj) = f(CU,’U,),

where Uy is an open set of R?, u € C%(Up) and f is a nonconstant function.
In the case of the equation (5) we have

F(z,u®) = det(u;) — f(z,u)
and the Jacobian matrix is
JF(xa ’U,(2)) = (_fzi; _fu; 07 duij)’ d= det(uij)‘

Let AY be the cofactors of the elements of the determinant d. Because (u;;) is a
symmetric matrix, it follows

od [ 249 for i#j
dui; | A" for i=j.

Then for F(z,u?) =0, rankJp = 1.

Let X be the vector field

. 0 0
X = Cl(mau)% + ¢(wvu)%

on U. In this case the condition (2) turns in
_chle — & fu ‘f‘Z‘I’iiAii—i—Q Z @iinj =0.
=1 i=1 1<i<j<n

Substituing the functions ®; and ®;; defined by the relation (3) and after elimi-
nating any dependencies among the derivatives of the u’s caused by the equation (5)

itself, we find
- chfxl - ¢fu + +nf <¢u - E ZCQZN> +
i=1 i=1

n n
ZAii¢mixi +2 Z Aij¢ximf+
i=1

= §.=1,i<j

~(n+2)f S wiCh + 3 A (20,0, — Ciyi) —

=1 i=1
n n
ii k ij ) J
— E A UgCpigi + 2 E A J'Ulj (‘bzm - mimj) +
ik=1,k#1 1,j=1,i<j
n n
+2 A]U'i (d)zfu_gzizj) -2 AJukCzizj+
1,j=1,i<j 1,4, k=1,i<j,k#i,j

+ Z A“u? (¢uu - 2(;1'“) -2 Z Aiiuiujgiiu‘i‘
i=1

t,5=1,i#]
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n
4230 Ay (du = Gy = i)

i,j=1,i<j
n n
_ ija,200 i, 200
2 E A, — 2 E AV uiCli,
4,j=1,i<j 4,j=1,i<j
n n
2 E AV upuiCy, E A"z L,
i,4,k=1,i<j,k#i,j i=1
n n
i, 2 k iJ,,2,,  F
- E : A U’iukCuu_Q E : A U’i’u’]Cuu_
i k=1 ki i,j=1,i<j
n n
-2 E AZJUZ"U,? &u -2 E A”“z’“j“k({fu =0.
4,j=1,i<j i,,k=1,i<j,k#i,j

Now we can equate the coefficients of the remaining unconstrained partial deriva-
tives of u to zero. We obtain a large number of partial differential equations for the
coefficient functions (* and ¢ of the infinitesimal operator, namely

_Zcifxi — ¢fu+nf <¢u _%ZC;I> =0,
i=1 i=1

(f)xizi = O,i = 1,...,n
¢zizf :07 1SZ<]S1’L,

¢i=0,i=1,..,n,

Paiu — i.ixj:(): 1<i<j<n,
¢ziu—Ciin:0, 1§z<]§n,

iizj :07 i:jak: 17"'7”’ 7/<-]’ k;él"]’
Puu — QC;lu =0,i=1,...n,

¢J;,=0,1<i<j<n,

buw — Chiy — 5, =0, 1<i<j<m,
biu=0,1<i<j<n,
h =00 k=1,...,n, k#3j.

called the defining equations for the symmetry group of the given equation. This PDEs
system admits the solutions

n n
= E a;z’ + E biz? +c', i =1,..,n
Jj=1 Jj=1

n n
p=ud a +b|+> ¢al +c,
j=1 j=1



Symmetry Lie Group of the Monge-Ampére Equation 127

where aj, b%, b, ¢;, ¢*, ¢ €R, with

_Zszl_¢fu+nf< __ZC;I>—

=1

In the particular case
(6) det(uij) = 1,

the preceding expressions are reduced to
n
= Zb;-mj +c, i=1,..,n

n

2u ; - .
LD WS
=1 =1
and it follows

0 2u 0
j v j 2u 0
X = Zb (xc’):rJ 5 n8>+

3,j=1

+Zc,x —+§

Theorem 2. The Lie algebra of infinitesimal symmetries of the Monge-Ampere equa-
tion (6) is spanned by the vector fields

; 0 ;2u 0 .
Xz] Z’@‘F j;au)1<zajgna
(7) Vi=oi D 1<i<n
(2 6u7 — - Y
0 ,
Zl = %, 1 S 1 < n,
0
V=——.
ou
Let consider the case n = 2. The equation (6) turns in
(8) UpgUyy — uiy =1.

The Lie algebra of infinitesimal symmetries of the Monge-Ampere equation (8) is
spanned by nine vector fields
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0 0
Xo=y—, Xs =0—
(9) 4 yal” 5 xaya
0 0 0 0
XG—J,'—au,X'T y—au,Xg x—a +U—au,
0
Xy =y—
9 yay+ua )

where we note 171 =, .772 =Y, and Z1 = Xl, Z2 = XQ, V = X3, X21 = X4, X12 =
X5, Y1 =Xg, Yo = X7, X1y = Xg, Xop = X

Remark. It follows that each one-parameter subgroup G; generated by X; is a sym-
metry group and if u = f(z,y) is a solution of the Monge-Ampere equation (8), then
every function

u® = f(z —e,y), u® = f(z,y—e),

u® = fz,y) +e, u® = flz —ey,y),

u® = flz,y —ex), u® = f(z,y) + ez,

ul™ = f(z,y) +ey, u® = e flwe",y),
u® = e f(z,ye°),

is another solution for the equation, where ¢ is a real number.
We compute the adjoint representation Ad G of the underlying Lie group G, by
using the Lie series (4) and we construct the table

Ad X X5 X3 X4

X1 X1 X2 X3 X4

X5 X X5 X3 X4

X3 X1 X2 X3 X4

X4 X1 X2 +8X1 Xg X4

X5 | Xq4+eXs X X3 X4—6(X8 —EXQ) —62X5

Xﬁ X1 +8X3 Xz Xg X4 +8X7

X7 X1 X2 +EX3 X3 X4

Xg €8X1 X2 €8X3 €EX4

Xg X1 GEXQ 66X3 6_5X4
Ad X5 X6 X7
X1 X5 —8X2 X(; —EX3 X7
X2 X5 X6 X7 - €X3
X3 Xs X X7
X4 X5 —8(X9 —Xg) —82X4 X(; —EX7 X7
X5 X5 X6 X7 - €X6
X Xs X X7
X7 X5 + €X6 X6 X7
Xs e X5 X e Xy
Xg 65X5 €EX6 X7
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Ad Xs Xy
X1 Xg —8X1 Xg
X2 Xg Xg —6X2

X3 X8—8X3 X9—8X3
X4 Xg — €X4 Xg + €X4
X5 X8+6X5 X9—6X5

Xﬁ Xg Xg - 6X6
X7 Xg — 8X7 Xg
Xs Xs Xo
Xo Xs Xo

whith the (7, 7)-th entry indicating Ad(exp(¢X;))X;. For the equation (8) we find
several optimal system of one-dimensional subalgebras spanned by

Xo + Xy, Xg+ Xy, Xg— Xy, X3+ Xz —Xp.

In the case of 5 5
Xo+Xy=y—+ —
2 + 4 y ax + 6y7

we find the solution
1
u(z,y) = ﬂzg(y2 —2m+a)_% +b, a,beR, y> —2zx+a>0.

In the case of

0 0 0
X8+X9—m%+ya—y+2u%,

we get the solution

u(z,y) :ca:2+ba:y+gy2, a,b,cc R, a®>+c* >0, 2ac—b* = 1.

The function w is strictly convex.
Jorgens [4] showed that any convex solution u of the equation (8) defined on R?

is a convex quadratic polynomial.
In the case of

0 0
XS—Xg—ﬁfa—ya—y,

we find the following solution

u(z,y) = zyla — xy) —aarctg,/a_my +b, a,beR,a>0,0< 2y <a.
Ty

For the case of

0 0 0
X3+X8—X9—$%—y8—y+%,

we get the next solution v = u(z,y),

2zy +a

a .
u = Inx — —arcsin (
2 a’?+1

) —%ln (1—2amy+\/1—4amy—4m2y2)+
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—a+Vva®+1
2

1
+§\/1—4amy—4m2y2+b,m,y>0, zy < , a>0.beR.

The infinitesimal symmetries of the Monge-Ampere equation (6) can be classified
as follows:

1) affine vector fields: X;;,Y;.Z;, V;

2) Killing vector fields: Z;,V;

3) solenoidal vector fields: Z;, V, Y, X;;(i # j);

4) potential vector fields: Z;, V, Xy;;

5) torse forming vector fields: X;; (concurrent), Y;, X;;(i # j) (recurrent), Z;,V
(parallel).

Now we look for the converse of Theorem 2, for the case n = 2.
Theorem 3. If the vector fields (9) are infinitesimal symmetries of the PDE

Uge = H(mayauaumauyaumyauyy):

with mazimal rank, then this PDE is reduced to the Monge-Ampere equation (8).
Proof. We consider the chain of subalgebras

{Xl} C {leXZ} C {X17X27X3} C {leXS} C {X17X57X6}

C {X1, X5, X6, X5} C {X>2, X4, X5, X6},

and we impose that the given PDE to be invariant with respect to each subalgebra
([1],pp.303).

1) {X1}: Xy = %, for which pr®X, = % The condition (2) becomes
pr® X (F) = 0. It follows

F= Ugy — Hl (yauyumuyyuzy;uyy)-

2) {X1, X2} Xo = 82, for which pr® X, = 63. The condition pr(® X, (F) = 0
Y Y

implies
F= Ugpye — H2(U, Ug y Uy y gy, uyy)-

3) {X1, X2, X3} : X3 = 82’ for which pr?X, = (92 The condition (2) is
u u

equivalent to pr(® X3 (F) = 0. It follows

F= Ugpye — HB(uyu:t)uy)umy)uyy)'

0 0 0 0

0o .
4) {Xl,X5} : X5 = Jﬁa—y, Wlth p’l"(2)X5 = ma—y — ’U/ya—ux —’U/wyau—” — ’U/yyau—l‘y,

for which pr® X5(F) = 0 implies

u? 1
_ zy
F =upp — —% — — Hy(Uy, Uyy, Uylgy — Ugllyy).
Uyy  Uyy

5) {X1,X5,X6}: Xg= :1382 and pr(® Xg = xi +
u

5u 8290 for which pr® Xg(F)=0

implies
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2
U 1
x
F=uy, — 22— —— H5(uy, Uyy)-
Uyy  Uyy

6) {X1, X5, X6, X} : X = a:2 +u2 and pr® Xg = xi +u2 + Uy 9

_+_

Ox ou Ox ou Ouy
uyaiuy - “”% + “yy%yy The condition pr(® Xg(F) = 0 implies
u? 1
F =y, — —¥ — — Hy("4L),
Uyy  Uyy Uy
0 0 0 0

N AIXy, X4 Xe. XY 0 Xy = y— and pr@X, = y— — u,— — - _
) { X2, Xy, X5, X6} 4 =y and proXy = yoo uzauy “”auw

—2uzyai. The condition (2) becomes pr?) X, (F) = 0. It follows
Uyy

2
Yo R s,
Uyy  Uyy

F=u,, —

Hence

2 __
UggUyy — Uy, = k.

The condition of maximal rank requires k # 0, and the changing u — ku shows that
we can take k = 1.

For n > 2, in [9] A.V.Pogorelov showed that a generalized convex solution of the
equation (6) is the function

(10) u(z) = (Z(ﬂ)?) (b)),

=2

where h > 0 is a solution of the ODE y" +y"~! = 0 (particular case of Emden-Fowler
equation [5]).The solution of Pogorelov is invariant under the subgrup G generated
by

X:ixii:zn:xi 0 -1 9
=2 =2

Oxt n ou

If g. € Gy, g-(z1,...,2"u) = (2", ..., 2", u), € €R, then 2"t = 2! +¢, 22 =
zes, .., 2" =a"ei, U = ue "= If (10) is a solution it follows that u’' = f(z',y’)
is another solution of the equation. This implies that the solution (10) can be found
by using the preceding algorithm for the vector field X.

3 Dynamics induced by an affine vector field

The generic element of the infinitesimal Lie algebra of symmetries of the Monge-
Ampere equation is an affine vector field on R**1.
Let A = [a';] be a quadratic matrix of order n + 1 and X (z) = Az + b be the

associated affine vector field on R"*1 If f(z) = || Az + b|* is the energy of X, then
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Dyf = (AY, Az +b), VY €X(R"™"!) and hence zeros of the X (if they exist) are
critical points of the energy f. Particularly, the relations

DxX = A(Az +b), Dxf = (A(Az), Az +b)

show that the set of the critical points of the energy f contains the field lines of
X which are straight lines. The existence of a field line a which is a straight line
of R™! imposes rankA < n. If z; ER™! is a critical points of the energy f and
rankA = n + 1, then zq is a zero of X.

If X = (X1!,..., X", then the gradient of the energy f has the components

6f n+16Xi . n+1 . .
5o = 2 g X = 2

The matrix of the Hessian d2f of the energy f has the components

2 n+1 i i n+1
oy _§Roxioxt KR
Oridzk £~ Oxi Oz*
=1 =1

That in way d?f > 0 and hence the energy f is a convex function on R™*'. This
result implies the fact critical points of f coincide with global minimum points of f
and hence with zeros of X. Also, the flow determined on R"*! by grad f increases
the volume excepting the case in which X is a parallel vector field.

The dynamics induced by a affine vector field is described by the second order
differential system in the next [14]
Theorem 4. Let X = Az + b be an affine vector field on R""! and f be its energy.
Any orbit of X is a trajectory of the (potential or nonpotential) dynamical system
with n + 1 degrees of freedom

Lot df . da .
v a—j%—Z(a’j—aj’)%, i=1,..n+1, where a;' :6’h6kjakh.
(2 ]:1

(11) dt?

Theorem 5. 1) The trajectories of the dynamical system (11) are the extremal of the
Lagrangian

1. dztda? . dad
L=-6;22 % 5. Xi(2)% .
2) The dynamical system (11) is conservative, admitting the Hamiltonian
oo . [§ [§!
H=—0b—+— — :
cOta @

Theorem 6 (Lorentz-Udriste world-force law). Every nonconstant trajectory of
the dynamical system (11), which correspond to a constant value H of the Hamilto-
nian, is a reparametrized horizontal geodesic of the Riemann-Jacobi-Lagrange mani-

fold
(R™N\E, Y= H+Ddy, N == -4,

where £ is the set of zeros of the vector field X.
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