Variations on the Theme of Twistor Spaces

Izu Vaisman

Abstract

The construction of the twistor space of an even-dimensional Riemannian
manifold was transferred to a similar construction of a reflector space of a neu-
tral manifold i.e., a manifold with a pseudo-Riemannian metric of signature
zero [6], and to the study of symplectic twistor spaces [19] and of Lagrangian-
Grassmannian bundles [21]. In the present paper, we discuss the common basis
of all these constructions, the isosplitting bundles. These bundles are equipped
with a pair of complex distributions which are involutive under the conditions
known from twistor theory. We give an elementary proof of the involutivity
conditions. In the particular case of a pseudo-Riemannian manifold, we study
a subbundle of the isosplitting bundle, called the twist-reflector space, which
composes twistors and reflectors.
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1 Introduction

The twistor spaces, an invention of R. Penrose e.g. [13], were intensively studied in
view of their utility in theoretical physics, and their interesting differential geomet-
ric properties. The four-dimensional case is both the most interesting and the most
important e.g., [1] but, there also are general constructions for any even dimension
e.g., [12]. Usually, group representation theory is used in the proof of the integrability
conditions but, it is also possible to use a more elementary tool, the moving frame
method [3], [4], [5]. The basic fact is that a twistor is a complex structure in a tangent
space of the original differentiable manifold.

Geometric objects which are analogous to twistors, and can be studied by anal-
ogous methods have also been discussed. Such are the reflectors i.e., paracomplex
structures in the tangent spaces of a pseudo-Riemannian manifold of signature zero
(a neutral manifold) [6], and pairs of transversal Lagrangian subspaces tangent to an
almost symplectic manifold [21]

In the present work we again investigate the basics of twistor spaces and of the
analogous constructions quoted above. We show that the essence of a twistor-like
object is that it decomposes the complexified tangent space into a direct sum of
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two isotropic subspaces. In the case of a complex structure, these are the subspaces
of complex type (1,0) and (0, 1), respectively. This assertion about twistors follows
from the fact that, whenever we have a differentiable manifold M?” endowed with
either a symmetric or a skew symmetric, 2-covariant, non degenerate tensor field
g, the set of the isotropic decompositions mentioned earlier is the total space of a
bundle over M which, in a certain sense, behaves like a twistor space. Namely, it
has a pair of complex distributions, called the main structural distributions with the
same involutivity conditions as in the case of the twistor spaces. A second pair of
interesting, but never involutive, complex distributions also exists. A bundle of the
mentioned kind is called an isosplitting bundle.

Section 2 is devoted to the description of the isosplitting bundles for a symmetric
tensor g. The method which we use is the moving frame method of [5], [6]. We define
the relevant complex distributions, and establish the involutivity conditions of these
distributions by using an elementary argument instead of representation theory. In
case n = 2, and for the Levi-Civita connection of g, we again find the condition of
self or anti-self duality of the Weyl curvature tensor. Section 3 gives the correspond-
ing results for the case of a skew symmetric tensor. In Section 4 we show that the
structural distributions are conformal invariants.

Of course, one may ask what is the interest of having an involutive complex distri-
bution S on a manifold, since the latter is not related to a foliation, and it doesn’t even
provide a partial complex structure [11]? The answer is that an involutive, complex
distribution still allows for the definition of an exterior differential along the distribu-
tion S i.e., a differential on the global sections of AF¥S* which makes the latter into an
interesting cochain complex. Moreover, the existence of S leads to a spectral sequence
of complex differential forms, similar to the spectral sequence of a real foliation [7],
which converges to the complex valued de Rham cohomology of the manifold. The
study of this spectral sequence was not yet made but, it might lead to interesting
results.

However, a more interesting situation is that where the distribution is integrable
in the sense of L. Nirenberg [11] since then the manifold has an atlas with a certain
number of complex analytic coordinates. We find such a situation in Section 5, where
we take (M?2", g) to be a pseudo-Riemannian manifold of signature 2s > 0. Namely, we
define a twist-reflector as an object which unifies a twistor and a reflector. The twist-
reflector space is a subbundle of the isosplitting bundle. For a pseudo-Riemannian
manifold of constant sectional curvature, and its Levi-Civita connection, a conve-
niently chosen distribution is Nirenberg integrable. For s = n, the twist-reflector space
is the classical twistor space, and for s = 0 the twist-reflector space is the reflector
space of [6].

Finally, let us say that all the objects of the present paper are in the C°°-category.

2 Riemannian Isosplitting Spaces

The twistor space of an even-dimensional manifold is the space of the complex struc-
tures of the tangent spaces of the manifold e.g. [12], and we will use the interpretation
of such a complex structure as the decomposition of the complexified tangent space
into the (1,0) and the (0,1) components. A formal, complex generalization is avail-
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able, and it was studied by G. Legrand [8]. We consider this generalization, under an
appropriate terminology, and use it for a formal, twistor type construction.

Let M be a 2n-dimensional differentiable manifold, endowed with a complex Rie-
mannian metric g € T @>T* M (T°M := TM ®R C is the complexified tan-
gent bundle, I' denotes the space of global cross sections, and ® is the symmet-
ric tensor product). Then, an isosplitting of (M,g) at * € M is an ordered pair
(L1, Ly) of complementary, maximal (i.e., n-dimensional), g-isotropic subspaces of
T¢M (TEM = Ly @ Lsy). Equivalently, an isosplitting may be seen as a complex,
(1,1)-tensor F € EndTSM which satisfies the conditions

(2.1) F?=-Id., g(X,FY)+ g(FX,Y) = 0.

Namely, Ly, Ly are the (£y/—1)-eigenspaces of F.

Now, we will denote by Z(M,g) the space of all the isosplittings, and call it the
isosplitting space of (M,g). For n =1, Z(M, g) is just a double covering space of M.
Hence, hereafter, we always assume that n > 2. We will see that Z(M, g) is the total
space of a certain fibration on M, and that it has certain complex distributions with
interesting involutivity conditions, the same as in classical twistor space theory. We
get the results by using the moving frame method of [5], [6].

In the tangent spaces TSM (z € M), we distinguish null frames (eq, €q+) (a,b,... =
1,...n; a* := a + n), characterized by

(22) g(@a,Eb) = g(ea*yeb*) = 07 g(ea,Eb*) = 6ab-

The set of the null frames is a O(2n, C)-principal bundle 7 : N'(M,g) — M, where
O(2n, C) is realized by matrices of complex (n,n)-blocks as follows

(2.3) 0(2n,C) =

:{<g g) /YAC+ 'CA=0,'BD+ 'DB =0, tAD+tC’B:Id}.

The corresponding Lie algebra is
(2.4) o(2n,C):{<X Y> /U:—tX,Y:—tY,Z:_tZ}_

Furthermore, there exists a natural projection q : N'(M, g) — Z(M, g) defined by

(2.5) q(eq, eq+) = {L1 = span(e,), L2 = span(eq~)},

which shows that Z(M, g) is the quotient of N (M, g) with respect to the right trans-
lations by

(2.6) Gl(n, C) = {( ol )}

Hence, ¢ is a Gl(n,C)-principal fibration, and Z(M,g) is the total space of an
associated fibration p : Z(M,g) — M of N(M,g) with the homogeneous fiber
O(2n,C)/Gl(n,C). The real dimension of this fiber is 2n(n — 1), and the dimension
of the isosplitting space Z(M, g) is 2n>.
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2.1 Proposition. Any connection V on N (M, g) yields a natural decomposition
(2.7) T°T = HT & VI,

where V denotes the vertical (i.e., tangent to the fibers) distribution, and H denotes
a complementary, horizontal distribution. Moreover, T(M,g) also gets endowed with
two pairs of complex distributions (P, P), (Q, Q), where P and P are never involutive,
and Q, Q are involutive (both, simultaneously) iff the covariant torsion and curvature
tensors of V on M vanish on arguments which span a g-isotropic subspace.

Proof. The existence of the decomposition (2.7) is well known in connection theory.
Since N'(M, g) is a bundle of frames, it has a canonical, C*"-valued 1-form # defined
in the usual way e.g., [9] i.e., VX € T(., ... N, 0(X) is given by the components
(6%,0%") of m, X with respect to the basis (e,, €q+). This 1-form satisfies

(2.8) R =v"00 (ye€O(2n,0C)),

where R. denotes a right translation, and # = 0 defines the fibers of 7. In (2.8), if
we take v € Gl(n,C) of (2.6), we see that the pull-back of each part of the system
6% =0, 8% = 0 by local cross sections of ¢ is the annihilator of a distribution which is
globally defined on Z(M, g), and the intersection of these two distributions is exactly
the vertical distribution V¢(7).

In this paper, following [5], we will use the same notation for differential forms
and their pullbacks, and the context will tell which is what.

Then, we consider the horizontal distribution of the connection V on N (M, g), and
see that it projects to the required H°(Z). We notice that the Lie algebra o(2n,C)
has a symmetric decomposition [9]

(2.9) o(2n,C) = gl(n,C) ®m

given by

(2.10) (Z _t2>:<% —t2>+<23>

where each matrix belongs to the corresponding term of (2.9), and the two parts of
the right hand side of (2.9) are characterized by the zeroes of the corresponding terms
of (2.10). In view of (2.4), we also have

(2.11) A=—t\ p=-"pu

In particular, we have (2.10) for the case where the total matrix, say w, of the
left hand side of (2.10) is the connection form of V on N (M, g), and then, with the
notation of (2.8), we have [9]

(2.12) Riw = (ady ")w.

It is an immediate consequence of (2.12) that the first term of the right hand side of
(2.10) is a connection form of the principal fibration ¢, which we call the reduction of
V to q, and denote by V”. And, the forms A, p are horizontal and tensorial for the
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fibration ¢ [9] hence, the pullback of each system A = 0, u = 0 by local cross sections
of q defines a distribution on Z(M, g). The total system

(2.13) A=0,A=0,pu=0,a=0

defines the distribution H¢(Z).

At this point, it is essential to notice that the pullback of the forms (8,6, X, i, \, fz)
by local cross sections of ¢ defines complex, local, tangent cobases on Z(M,g), and
any structure defined by R,-invariant combinations of these forms Vy € Gl(n,C)
descends to a well defined global structure on Z(M, g).

In particular, the following equations define the distributions announced by Propo-
sition 2.1

(2.14) (P) 6 =0, A\=0, (P) 6#°=0, u=0,

@) 0% =0, pu=0, (Q) 6*=0, A=0.

The complex dimension of P, P, Q,Q is n(3n—1)/2, the dimension of PNP, QNQ
isn(n—1),and P®P = Q®Q = T°Z. The manifold I(M, g) has a bundle involution
t(Ly,Ly) = (Lo, L) which sends P to P and Q to Q. The proof is by lifting ¢ to
N (M, g), and we will give it in Section 4 because the relevant notation is there.

The most interesting case is that where one of these distributions is involutive.
Indeed, while in the complex case involutivity does not provide a foliation, it provides,
however, an exterior differential along the distribution which is similar to the exterior
differential along the leaves of a foliation.

The structure equations of V [9] are

n

(2.15) o = (6" Awp + 6" AN Z TE0' A 67,

b=1 i,j=1
n 1 2n ) )

(2.15%) A" = "(0" Apg — 6" Awh) + 3 > TE6 A,
b=1 i,j=1
n 1 2n

(2.16) dxp =D (A Aw? —wl AXY) Z Ry..;60" N O7,
c=1 3,j=1

(2.16%) duy = Z(wg A pld — pp Aws Z Rbmﬁl N
c=1 3,j=1

where T and R are the torsion and curvature coefficients, respectively, on N (M, g).
Accordingly, the Frobenius theorem tells us that the distribution P is never involutive,
and the distribution @ is involutive iff

(2.17) T2 =0 (the torsion condition),

C
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(2.18) Ry, =0 (the curvature condition).
If we recall that the covariant torsion and curvature tensors are
(219) T(X) Y; Z) = g(T(Xv Y): Z): R(X; Y; Z: U) = g(R(Z> U)Y) X):

where the arguments are tangent vectors at a point of M, we see that (2.17), (2.18)
are equivalent with

(220) Tabe = 0; Rabcd = 0
Since (2.20) must hold everywhere on N (M, g), the involutivity conditions become
(2.21) 7(X,Y,Z) =0, R(X,Y,Z,U)=0

for all the arguments such that span{X,Y,Z,U} is a g-isotropic, complex, tangent
subspace of some tangent space of M. Similarly, we see that P is never involutive,
and Q is involutive iff (2.21) holds for arguments with an isotropic span. Q.e.d.

The involutivity conditions established above can be made more precise. Namely,
one has

2.2 Theorem. The distributions Q and Q of the isosplitting space Z(M,g) are in-
volutive iff the following two conditions are satisfied: i) the skew symmetric part of
the Ricci curvature tensor p of V is an exact 2-form

(2.22) SIo(X,Y) = (¥, X)] = ~(n — Dda(X, Y),

and the torsion of V is
(2.23) TX,)Y)=aX)Y —aY)X;
ii) the curvature of V is given by

(2.24) R(X,Y,Z U)=g(X,Z)s(Y,U) — g(X,U)s(Y, Z)

_g(Y, 2)s(X,U) + g(V,U)s(X, Z) — %[g(X, Z)da(Y,U)
—g9(X,U)da(Y, Z) — g(Y, Z)da(X,U) + g(Y,U)da(X, Z)],
where

T )+ o) - 25

(2.25) s(X,Y) = 9(X, Y],

and o is the scalar curvature of V.

Proof. The usual proofs of this kind of results is by representation theory e.g., [12],
[1]. Instead, we use only a simple algebraic argument here. Namely, 7(X,Y, Z) and
R(X,Y,Z,U) are polynomials with respect to the components of their vector ar-
guments in a fixed basis, and (2.21) means that these polynomials must belong to
the ideal generated by the polynomials which express the isotropy of the subspaces
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span{X,Y, Z} and span{X,Y, Z U}, respectively. That is, the involutivity conditions
(2.21) are equivalent with

(2.26) T(X,Y, Z) = a(X)g(Y, Z) + B(Y)g(X, Z) + ~(Z2)9(X,Y),

(2.27) R(X,Y,Z,U) = a(X,Y)g(Z,U) + b(X, Z)g(Y,U)

+e(X,U)g(Y, Z) +d(Y, Z)g(X,U) +e(Y,U)g(X, Z) + f(Z,U)g(X,Y),

where XY, Z U are arbitrary vector fields, and «, 3,7, a,b,c,d, e, f are tensor fields.
Terms in g(X, X) and similar do not enter because 7, R are linear in each argument.

Now, since 7(X,Y, Z) = —7(Y, X, Z), (2.26) reduces to (2.23).

Furthermore, since for any metric connection we must have

R(Xa Ya Z) U) = _R(X7 Ya U; Z)7 R(Xa Ya Z) U) = _R(Y7X7 Z) U):

(2.27) becomes
(2.28) R(X,Y,Z,U) = g(X, 2)b(Y,U) — g(X,U)b(Y, Z)

Finally, we must impose the Bianchi identity [9]

(2.29) > RX,)Y,ZU)= > 1(T(ZU),Y,X)
Cycl(Y,Z,U) Cycl(Y,Z,U)

+ Z vZT(Ua Y7 X)7
Cycl(Y,Z,U)
which, if (2.23) holds, is equivalent to

(2.30) Y RX,)Y,ZU)= >  da(ZU)g(X,Y).
Cyel(Y,Z,U) Cyel(Y,Z,U)

Inserting here the R of (2.28) one gets
(2.31) Y (X, 2)da(UY) = D g(X,Z)b(Y,U) = b(U,Y)],
Cycl(Y,Z,U) Cyel(Y,Z,U)
and a contraction gives
(2.32) b(Y,U) —b(U,Y) = —da(Y,U).
It follows that 1
b(X,Y)=s(X,Y) - §da(X,Y),

where
1
2
and, if this expression is inserted in (2.28), one gets (2.24), with (2.25) following by
contractions. Q.e.d.

From Theorem 2.2, we get the standard result

s(X,Y) = -[b(X,Y) +b(Y, X)],
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2.3 Corollary. If V is the Levi-Civita connection of g, Q and Q are involutive iff g
is a locally conformal flat metric.

Proof. Indeed, the torsion condition (2.23) holds with o = 0, and the curvature
condition (2.24) reduces to the vanishing of the Weyl curvature tensor. Since we
assumed that dim M > 4, the result follows. Q.e.d.

The distributions P, Q, P, Q defined by (2.14) are the main structural ingredient
of the isosplitting space. Hence, they deserve a special name. We will say that @, Q
are the main structural distribution, and P, P are the secondary structural distribution
of (Z(M,g),V).

As in classical twistor theory, in real dimension 4 (n = 2), if M is oriented, and if
g has a real volume i.e., det(g) is a positive, real number, a more interesting result is
available.

For any n, and if M is orientable and ¢ has a real volume, Z(M,g) has two
components as follows. If £ € Z(M, g),, v € M, and we see it as F' of (2.1), £ has an
associated 2-form w € A?TS* defined by w(X,Y) = g(FX,Y), and, up to the sign,
w™/n! is equal to the volume of g. To see this, use a null frame (e,,e,+) such that
q(easeq+) = & Then, Fe, = /—1leq, Feq: = —v/—leg,w = /=13 1_ 62 A0, and

going over to the g-orthonormal frame

(2.33) fa = (ea +€ax),  far = (ea — €a+),

Nis

and its dual coframe

a 1 a a* a* \4 -1 a* a
we get
(2.35) w" = (=1)P D 2Pl AL A 2

Accordingly, the two announced components, say Z4 (M, g) consist of those £ which
have w™ positive or negative, respectively, with respect to a fixed orientation of M.

Now, we may ask whether it is possible for the distribution @) to be involutive
on one of these two components only. The involutivity conditions will still be (2.20)
but, only for either positive or negative null frames. If n > 3 there is no difference
between this situation and that of Proposition 2.1 and Theorem 2.2 since any triple
of tangent vectors (X, Y, Z) which span an isotropic subspace may be seen as a subset
of the set (e,) of both a positive and a negative null frame. Hence (2.20) still implies
Proposition 2.1 and Theorem 2.2, and no weaker condition will ensure the involutivity
of @ on one of the manifolds Z4 (M, g).

The situation is different for n = 2. In this case, let span{X,Y} be a g-isotropic
plane, let (X,,Y.) be another pair of tangent vectors at the same point as (X,Y)
such that (X,Y, X,,Y,) is a null frame, and let (F, F», F3, Fy) be the orthonormal
frame associated with this null frame by (2.33). Then, (2.35) shows that w? is positive
(negative) iff (Fy, Fy, F3, Fy) is negative (positive) with respect to the orientation of
M.

It is known that the orientation of this latter frame is positive iff *(F; A Fy) =
F;5 A Fy, and negative iff «(Fy A Fy) = —F3 A Fy, where x is the Hodge star operator
transposed to multivectors. By (2.33), the equivalent form of this condition is
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(2.36) x(XAY)=+£XAY,

respectively. Thus, the pair (X,Y) is either a part of a frame with positive corre-
sponding orthonormal frame or of a negative one, but not both. This implies that we
have separate involutivity conditions of @) on each component Z4 (M, g).

Let us look at the following decompositions of the torsion and the curvature of V
seen as defined on bivectorial arguments:

(2.37) T=T,+T,, R=R;+R-,
where 1
T\(XAY)= §(T(X AY)+T(x(X AY))),
Th(X AY) = %(T(X AY)—T(*(X AY))),

RUXAY,ZAU) = %(R(X/\Y,Z/\U) +R(X AY,+(ZAT))),

1
Ry(X ANY,ZAU) = §(R(X/\Y,Z/\U) —R(XAY,x(ZAD))).
Then, we get

2.4 Proposition. Let (M, g) be an oriented, complex-Riemannian, four-dimensional
manifold, with a real g-volume, the isosplitting space T (M, g), and the g-compatible
connection V. Then, the main structural distributions Q, Q are involutive on I (M, g)
iff, for any isotropic plane s = span{X,Y}, the following two conditions hold: i)
T2(X AY) € s, and ii) Ry = 0. The same conditions for Ty, Ry ensure the involutivity
of Q,Q onI_(M,g).

Proof. The conditions stated by this proposition are exactly the involutivity condi-
tions (2.21) expressed for isotropic planes which satisfy the second (first) condition
(2.36). Notice that the form of the torsion condition is specific for n = 2. Q.e.d.

As a consequence of Proposition 2.4, we get the basic result [1]

2.5 Theorem. Let (M*,g) be as in Proposition 2.4, and let V be the Levi-Civita
connection of g. Then Q and Q are involutive on T, (M,g) iff the Weyl curvature
tensor of V is self-dual, and Q,Q are involutive on T_ (M, g) iff the Weyl curvature
tensor of V is anti-self-dual.

Proof. Generally, the Hodge star also acts on tensor-valued forms and, on four-
manifolds, * is involutive on the spaces of 2-forms, and decomposes these spaces
into the sum of the (+1)-x-eigenspaces called the self-dual and anti-self-dual parts. It
follows easily that T1, Ry, T, Ry are the self-dual and anti-self-dual parts, respectively,
of T, R, where T is seen as a T'M-valued 2-form, and R is seen as a A2 M -valued 2-form.

By the same polynomial argument as in the proof of Theorem 2.2, the torsion
condition of Proposition 2.4 is equivalent to

T,(X,Y) = a(X)Y — o)X (a=1,2),

for any arguments X, Y. In particular, this condition holds with & = 0 in the case of
the Levi-Civita connection V.
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And, the polynomial argument yields an expression of type (2.28) for R,(X A
Y, X AY), a = 1,2, respectively, which, in view of the symmetries of R and of the
Bianchi identity, turns out to provide the self-duality and anti-self-duality of the Weyl
curvature tensor precisely. Q.e.d.

2.6 Remark. The orientation considerations, Proposition 2.4 and Theorem 2.5 can
also be transposed to the case where the metric g has a purely imaginary volume i.e.,
det(g) is a negative, real number. In order to do so it suffices to apply the mentioned
results to the metric (—1)'/?"g which has a real volume, and the same isosplitting
space as ¢.

The following result is an immediate consequence of (2.12)

2.7 Proposition. The connection V defines a complex Riemannian metric vy and
two global y-isosplittings on the isosplitting space Z(M, g).

Proof. The required metric is

(2.38) y= (0" @6 +6" ®6")
a=1
HrAQpu+pRA+FAR A+ D N).
The distributions which define the global isosplittings are

(I) (P') 6* =0, A=0, A=0, (P") 0°=0, p=0, a=0,

(IT) Q) 0¥ =0, p=0, G=0, (Q") 6*=0, A\=0, XA=0.

Q.ed.
We end this section by

2.8 Proposition. Different metric connections of (M, g) define different distributions
P, Q.
Proof. In order to change the connection, we must add to the matrix (2.10) an

0(2n, C)-valued, horizontal, tensorial 1-form of type ad, say ( Z —ti ), where o

and v are skew-symmetric matrices [9]. The equations (2.14) of P, @ show that the
change of connection preserves one of these distributions if either o or v are combi-
nations of the forms #%" alone. But, it is easy to see that, in this case, the 1-form of
the connection change cannot be tensorial unless it vanishes. Q.e.d.

3 Symplectic Isosplitting Spaces

In this section, we consider a manifold M?2" endowed with a non degenerate, skew
symmetric tensor field o € T A2T*°M i.e., a complez-almost symplectic manifold, and
define the isosplitting bundle Z(M, o) in exactly the same way as for a Riemannian
metric g in Section 2. In particular, an isosplitting, which, now, is a pair of complex,
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tangent, transversal, Lagrangian subspaces (L1, L2), can be seen as F' satisfying (2.1)
again.

In order to describe the structure of Z(M, o), we look at the principal bundle
S(M, ) of symplectic frames (e, , €4+ ), with dual coframes (§%,0%") (a = 1,...,n; a* =
a + n), such that

(3.1) o= 6"N0".
a=1

Again, (2.5) defines a projection g : S(M,g) — Z(M, o) which is a principal fibration
of structure group Gl(n,C) seen as a subgroup of the complex symplectic group
Sp(n,C). On the other hand, Z(M, o) is an associated bundle of S(M, o) over M
with the fiber Sp(n, C)/Gl(n, C) of real dimension 2n(n+ 1). Hence, Z(M, o) has the
real dimension 2n(n + 2).

We recall that the Lie algebra of the complex symplectic group is

(3.2) sp(n,C) = X r JU=-'X, V=1, 2="7},
zZ U

and it has the symmetric decomposition

(3.3) sp(n, C) = gl(n,C) ® n,

where n consists of the matrices (3.2) with X =U = 0.

Accordingly, if we fix a connection V on S(M, o), the connection form will be
given by (2.10) with the only difference that the matrices A\, will be symmetric
matrices now. As in Section 2, the connection form satisfies (2.12), we also have the
canonical 1-form 6 which satisfies (2.8), and the pullback of (8%, ,\, u, X\, i) by
local cross sections of ¢ is a local cobasis on Z(M, o). Furthermore, the tangent space
T¢Z(M, o) again has the decomposition (2.7), and, on the other hand, we may define
the structural distributions P,Q, P, (Q given by (2.14) in the present case too. The
(complex) dimension of these distributions is n(3n + 5)/2, and, here again, we have
the natural involution ¢ : Z(M,0) — Z(M,o) given by ¢(Ly, Le) = (L2, L;) which
exchanges P by P and Q by Q. (The proof is in the next section.) In fact, the whole
Proposition 2.1 is valid and, in particular, we have

3.1 Proposition. The distributions P, P are never involutive, and the main struc-
tural distributions @), are involutive iff the covariant torsion and curvature tensors
of V, defined by (2.19) vanish on arguments which span a o-isotropic subspace.

The same proof as for Proposition 2.1 holds.

The significance of the involutivity condition of Q,Q given by Proposition 3.1
can be revealed by using again the polynomial argument of the proof of Theorem
2.2 namely, that we must have the expressions (2.26), (2.27) with g replaced by o.
But, some of the symmetries of the tensors are now different. In particular, instead
of (2.23) we get

(3.4) T(X,Y) = a(X)Y — a(Y)X + o(X, V)T,

where U is a (complex) vector field on M, or, equivalently
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(3.5) T=aAN{Id)+oU.

This torsion condition has an interesting significance. Namely, if do(X,Y, Z) is
evaluated via the V-covariant derivative, (3.4) implies

(3.6) do = Ao,

where 8 = 2a + i(U)o. It is well known that, if n > 3, (3.6) implies that df = 0,
and (M, o) is a locally conformal symplectic manifold e.g., [17]. If n = 2, (3.6) always
holds but, # may not be closed.

On the other hand, it is known that there always are connections V on S(M, o)
such that

(3.7) 7(X,Y,2) = éda(X, Y, Z)

e.g., [18], [21]. Thus, if (3.6) holds, connections V which satisfy the torsion condition
(3.5) exist. More exactly, a comparison of (3.4) and (3.7) yields

(3.8) T(X,Y)=B(X)Y - B(Y)X + o(X,Y)t, 5,

where 4,0 is defined by i(,8)c = —f. It is well known that the case T = 0 may
occur iff do = 0.
In the symplectic case, the symmetries of the curvature are [18]

R(Xa Ya Z) U) = R(Y)X) Z: U)) R(Xa Ya Z) U) = _R(X7 Ya U; Z):
hence, the curvature involutivity condition becomes
(3.9) R(X,Y,Z,U)=a(X,Y)o(Z,U) + b(X, Z2)o(Y,U)

-b(X,U0)o(Y,Z)+b(Y,Z)o(X,U) = b(Y,U)o(X, Z),

where a is symmetric, and a,b are such that the Bianchi identity (with torsion) is
satisfied.
Accordingly, we get

3.2 Theorem. The distributions Q,Q of the isosplitting space Z(M,o) are invo-
lutive iff the torsion and curvature of V are given by the formulas (3.5) and (3.9),
respectively. If this happens then, necessarily, either n = 2 or (M, o) is a locally con-
formal symplectic manifold. In particular, if do = 0, if V is torsionless, and if V has
a reducible curvature Q,Q are involutive.

Proof. Except for the last, all the assertions of this theorem have already been proven.
The notion of a reducible curvature was defined in [18], and it exactly means that
R(X,Y,Z,U) is given by (3.9) with a = 2b. Q.e.d.

The basic example of a symplectic connection with a reducible curvature is the
Levi-Civita connection of a K&hler manifold of constant, holomorphic, sectional cur-
vature.

Notice that the reducibility of the curvature is not a necessary condition of invo-
lutivity even in the torsionless case. Indeed, if T' = 0, the Bianchi identity without
torsion for the curvature (3.9) is
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(3.10) > R(X,Y,ZU) = ((i(X)a) Ao) (Y, Z,U)
Cycl(Y,Z,U)

—2((i(X)b) A o) (Y, Z,U) + 2((i(X)o) A bo) (Y, Z,U) = 0,

where
Bo(X,Y) = Lb(X,Y) ~ b(Y, X)),

This relation yields a = 2b, and a reducible curvature, if b is symmetric, but not in
the general case.

3.3 Remark. The development of this section is, in fact, the same as that given for
a real 2-form o in [21] but, here, we gave a more detailed analysis of the involutivity
conditions. The present development also includes the symplectic twistor spaces of
[19]. We notice that the present Theorem 3.2 shows that there was an error in The-
orem 2.1 of [19]. Namely, the flatness condition of that theorem was only a sufficient
but not a necessary condition for the integrability of the complex structure of a sym-
plectic twistor space. On the other hand, we notice that Proposition 2.8 holds in the
symplectic case as well.

Finally, we should notice that we do not have an analog of Theorem 2.5 in the
symplectic case. The reason for this is as follows. If we assume that ¢™ is a real form
on M, it defines a volume form and a symplectic Hodge star [10] given by

n

#® = il 8) 7,

which is such that x> = Id. Hence, if n = 2 it is still true that the spaces of tan-
gent bivectors decomposes into a self-dual and an anti-self-dual component. However,
by computing with a symplectic frame, it turns out that, whenever span(X,Y) is
isotropic, we must have *(X AY) = —X AY, unlike in the Riemannian case where
both signs could be encountered in (2.36). Thus Z(M*, ), has only one component.

4 Conformal Invariance Properties

As in the classical twistor theory, the isosplitting spaces of Sections 2, 3 remain un-
changed if the metric g or the 2-form ¢ undergo a conformal transformation

(4.1) g = ey, o' = e,

respectively, where h is an arbitrary (complex) function. Moreover, we will see that
the behaviour of the distributions P, by the transformation (4.1) is the same as
that of the almost complex structures of the classical twistor spaces. We show this
for the Riemannian and the symplectic case, simultaneously ; the symplectic version
is written in parentheses. An accent always denotes objects related to the new metric
g (2-form o).

Following a well known result of Riemannian geometry, let us denote by C(g)
(C(0)) the set of g-metric (o-almost symplectic) connections on the manifold M?",
and define the Weyl mapping w : C — C' by V' = w(V) where
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(4.2) V%Y =VxY + (Xh)Y + (Yh)X — g(X,Y)gradgh.

(VY =VxY + (Xh)Y + (Yh)X — o(X,Y)grad,h.)

In formulas (4.2), X,Y are vector fields on M, and grad,h is the Hamiltonian vec-
tor field of h characterized by i(grad,h)c = —dh. Remember that the Levi-Civita
connections of g, g' are related by the Weyl mapping.

What we are going to prove is

4.1 Theorem. Two connections which are related by the Weyl mapping define the
same distributions (), Q) on the isosplitting space but, they do not define the same
distributions P, P unless h = const., and the two connections coincide.

Proof. First, we establish a notation [20] which will allow us to treat the Riemannian
and symplectic case simultaneously. Namely, let Greek indices run from 1 to 2n, and
put o* := a+n (mod.2n) (a = 1,...,2n). Then, define the symbol s,(a) to be the
constant 1, and the symbol s, (a) to be —1 for @ = a, and 1 for a = a* (a = 1,...,n).
Hereafter, we do not write the index of the symbol s(«), and we make the convention
that g and N (M, g) mean o and S(M, o), respectively, in the symplectic case. This
provides the formulas of this section with a common, Riemannian-symplectic charac-
ter. In particular, a null frame (symplectic frame) (e,) = (eq,€q+) is characterized by
the following values of the components of g (o)

(4.4) Jap = 3(5)6055*

Furthermore, using the local connection equations, one gets the local connection
forms w of V with respect to local fields of null-frames (symplectic frames):

(4.5) @y = s(8)9(Vea,ep).

Accordingly, the global connection form (2.10) on the principal bundle N (M, g) writ-
ten as

b b b b

We Wo w A

4. ¢ a; = a a
(4.6) (WZ WZ* ) < /‘g —wy >

is given by [9]
(4.7) wi = n5.de] + ).t

where 7 is the projection of the bundle space on M, & are the natural coordinates on
N (M, g) with respect to the local frames of (4.5), and 7 is the inverse matrix of &.
(The Einstein summation convention is used here.)

Now, the conformal change (4.1) provides a bundle equivalence

(4.8) d:N(M,g) —>NM,g) (r'=mo0d),
where ®((ey)) = (e"eq), and using (4.7) (4.2) and (4.5) we get

wp = nﬁdﬁa” + nﬁﬁa"n *w,)
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= @[3 de + Y sy EaT (s( @ + (Nt = s(k)hy87 )],
YK

where the computation is at an arbitrary null-frame, 6 is the canonical 1-form, and we
put dh = h,0%. Furthermore, keeping in mind the coordinate expression of the right
translations on N (M, g), and using the fact that if (e,) is a null-frame (symplectic
frame) so is (s(a)eq+ ), the result of the previous computation becomes

(4.9) wlf = o + hat'? — s(ﬁ)s(a)hB*GIa*,

where, in fact, h means ho w'.
From (4.9), and keeping in mind our notation, of course, we get

(4.10) AL =N + ho 6" + hye 0,

(4.11) ph =% b 4 het” + hy8'

whence the conclusions of the theorem follow. Q.e.d.
In particular, we get

4.2 Corollary. The distributions Q,Q defined by the Levi-Civita connection of a
metric g on the isosplitting space T (M ,g) are invariant by a conformal transformation

of the metric. The distribution P, P are invariant only by homothetical transforma-
tions (i.e., h = const. in (4.1)).

Corollary 4.2 tells us that the triple (Z(M, g), Q(V),Q(V)), where V is the Levi-
Civita connection of g is, in fact, determined by the conformal structure defined by g
i.e., by the maximal “atlas” {(U,,g,)}, where {U,} covers M, each g, is a complex-
Riemanniann metric on U,, any two metrics g, are related by (4.1) on their common
domain, and (M, g) belongs to the atlas. This explains why the integrability of @
is characterized by a condition on the Weyl curvature tensor which is a conformal
invariant of the metric.

Notice that the involutivity conditions of Theorem 2.5 also are conformally in-
variant. The x-operator needed there can be taken with respect to any metric g, in
the conformal structure since this operator is conformally invariant in the involved
situation. The invariance may be seen by expressing * either in an orthonormal or a
null frame (as in (2.36)).

Furthermore, if the mentioned conformal structure has a homothetical substructure
i.e., a similar atlas where the metrics are related by (4.1) with constant functions h,
the distributions P, P are invariants of this homothetical structure. A nice example is
given by the locally conformal almost Kdhler manifolds [15] which are almost Hermi-
tian manifolds (M, g) where the conformal structure defined by g has a distinguished
substructure {(U,, g,)} given by local almost Kahler metrics g,. This substructure
necessarily is homothetical.

The notation used during the proof of Theorem 4.1 allows us to keep a previous
promise, and prove

4.3 Proposition. The involution ¢(L1, L) = (L2, L1) defined in Sections 2, 3 sends
P to P and @ to @) in both the Riemannian and the symplectic case.
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Proof. The formula i((e,)) := (s(a)eq) defines a lift of ¢ to the corresponding bundle
of frames, which has the local equations €7 = s(a)€?, in the coordinates used in (4.7).

Now, the definition of 7 and (4.7) yield
(4.12) (0% = s(a)f®, (WP = s(a)s(ﬂ)wﬁ*

a*)

whence the required results. Q.e.d.

5 Twist-Reflector Spaces

Now, we will apply the method of Section 2 to the geometrically and physically
important case where g is a real, pseudo-Riemannian metric of a non-negative, even
signature 2s > 0, on an even-dimensional manifold M?2". We will also denote by
p =n + s the positive inertial index of g, and by ¢ = n — s its negative index.

In this case the isosplitting space has an interesting subspace which we want
to discuss here. (Subspaces of twistor spaces also appeared in a different context
namely, the bundles of analytical tangent subspaces on almost Hermitian manifolds
[12, 22]. We give the following definition: a twist-reflector of (M, g) is an orthogonal
decomposition T, M = U &V, where g/y has signature zero, g/v is positive definite,
(U,g/v) is endowed with a real isosplitting, U = Uy @ Us, and (V,g/v) is endowed
with a complex isosplitting, V = K @ K, where the bar denotes complex conjugation.
The name comes from the fact that, if s = n, the twist-reflector is a usual twistor,
and, if s =0, it is a reflector [6].

For a given twist-reflector, the pair (U; @ K,Us @ K) is an isosplitting. Before
characterizing all the twist-reflector isosplittings, we give one more definition. Let L
be a subspace of the complexification V ® C, where V' is a real vector space. M. Then
LN L is the complexification of a subspace of V', and the dimension of this subspace
is called the real index of L. Coming back to the pseudo-Riemannian manifold (M, g),
we notice that the maximal possible, real index of a g-isotropic (complex), tangent
subspace L is ¢. Indeed, if L is isotropic so is LN L, and it is known that the maximal
possible dimension of a real, isotropic, tangent subspace of (M, g) is ¢, e.g., [14].

An isosplitting (L1, Ls) at « € M comes from a twist-reflector if the distributions
L1, Ly have real index ¢, and are of the form

(5.1) Li=(INL)®A,  Ly=(LsNLs)® A,

for some subspace A of Li. It is easy to understand that, if A exists, it is unique
and, in the notation used at the beginning, the twist-reflector has U; = L; N Ly,
Uy =LyN Ly, V=A®A. Any isotropic, tangent subspace of M which has the real
index ¢ belongs to isosplittings which are twist-reflectors.

We will denote by Z(M, g) the space of all the twist-reflectors, and use the method
of Section 2 to study this space, which is the announced subspace of Z(M, g).

A tangent null frame (e;,e;+) (i = 1,...,n) of g at z € M will be called an adapted
null frame if it puts g into the form

q s
(5.2) g=> (0"®0% +0" @67 +> (@ 0" +9" 09",

a=1 u=1
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where (8,0, 9%, 9%) is the dual coframe of the given frame decomposed as (e;, ;) =
(€as fur€as, fu) (@ =1,..,q; a* = a+n; u=1,..,5). The set of the adapted null
frames is a principal subbundle 7 : A(M,g) — M of N (M, g) of Section 2, with the
structure group O(p, q) represented as a subgroup of O(2n, C) given by formula (2.3).
The corresponding Lie algebra is the subalgebra of (2.4) which has matrices X,Y, Z
of the form

X1 X2 Y1 X_2 Z1 —tX3

oo (% B )ovo( L0 B) 2(2 78),
where X is a real, square matrix of order ¢, Y7, Z; are real, square, skew symmetric
matrices of order ¢, X5, X3 are complex (s, ¢)-matrices, X, is an anti-Hermitian matrix
of order s, and Yj is a complex, square, skew symmetric matrix of order s. This
follows either by a straightforward inspection of the action of O(p, q) on adapted null
frames or, easier, by writing down the moving frame equations i.e., the expression of
(deq,dfy,deq-,df,) as combinations of the basic vectors themselves, and by looking
at the consequences of the relations de, = deq, deq~ = deq~, df, = df, and at the
conditions of (2.4).

In particular, for the connection form (2.10) of any metric connection V of (M, g),
we have

[ w1 w2 _ AL W _( m —t@:s
(54) w_<w3 W4>’>\_<—t@2 )\4>aﬂ—<@3 A4>’

with the same reality and symmetry properties as for the corresponding blocks of

(5.3).
The projection g of (2.5) will be replaced by ¢ : A(M,g) — Z(M, g) given by
(55) 1/}(6117 fu; €ax, fu) = {U = Span(ea; ea*)> V= Span(fu: fu)})

with the obvious isosplittings of the two subspaces. And, it follows that v is a principal
fibration with the structure group Gl(q,R) x U(s) seen as the group of the matrices
with a diagonal of blocks

(5.6) (4,B,'A7",B) (A€GI(¢,R),B € U(s)),

and zeroes on all the other places. Furthermore, the natural projection p’ : Z(M, g) —
M is an associated bundle of A with a homogeneous fiber of real dimension n(n —
1) + 2gs. Therefore, the real dimension of Z(M, g) is n(n + 1) + 2gs.

Now, if we choose a metric connection V, we can proceed as in Proposition 2.1, and
get a horizontal-vertical decomposition TZ = HZ & VZ, where V has the equations

(5.7) 6 =0, ¥ =0, 6 =0, 9* =0,

given by the components of the canonical 1-form on A(M, g) as in the case of Propo-
sition 2.1, and H has the equations (2.13) where the blocks of the connection form
are those shown by (5.4).

Then, the important point to be made is that (2.8) and (2.12) now lead to the
fact that each part of the canonical 1-form shown by (5.7), and each block of the
connection form (5.4) transform independently of the other parts or blocks by right
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translations by elements of the form (5.6). Moreover, the symmetric decomposition
(2.9) is now replaced by a symmetric decomposition

(5.8) o(p,q) = (g9l(q, R) ® u(s)) ® v,
given by
w1 Wo AL Wo
t7
w3 Wy — W2 A4 _
(5.9) [0 _t@3 by —tuws =
tos Aty —twy
w0 0 0 0 wWo AL w2
_ 0 W4 0 0 + W3 0 —t(IJQ A4
- 0 0 —twl 0 1 _t@3 0 —tW3 ’
0 0 0 Wy tos A —tws 0

and it follows that the first term of (5.9) is a connection form of the principal fibration
¥ (the reduction V" of V to ), while the second term is a horizontal, tensorial form
and, therefore, the pullback of the blocks of this term by local cross sections of
define a vertical cobasis on Z(M,g). If we add the horizontal cobases given by the
pullback of (8%, 9%, 6% ,9%), we get complete local cobases on Z (M, g).

Let us recall the following notions which are important for complex distributions
L on arbitrary differentiable manifolds M. If: i) L is involutive, and ii) L + L is also
an involutive distribution of constant dimension, L is Nirenberg integrable e.g., [11],
[16], and M has a partial complex structure i.e., an atlas with some of the coordinates
complex, and with transition functions which are complex analytic in the complex
coordinates, and C* in the real coordinates [16]. On the other hand, if the real index
of the complex distribution L is zero, L is an almost CR-structure, and, if L is also
Nirenberg integrable, L is a CR-structure on M [2].

Now, instead of looking at the distributions P,Q of Section 2 (which, however,
can be considered), we define the complex distributions P, Q by the equations

(5.10) (P) 0% =0,0" =0, wy =0, @ =0,
w3:0, )\1:0, )\4:0

(5.11) (Q) 0 =0,9"=0, w, =0, ws =0,

(:J3:0, u1:0, X4:0

The dimension of these distributions is n(n + 1)/2, and their real index is ¢(¢ +1)/2.
On the twist-reflector space Z(M,g), we will give the name structural distributions
to P, Q rather than to P,Q of Section 2. We could also define P and Q analogous
to P,Q of Section 2 but, this doesn’t provide important new information. A change
of the metric connection used will lead to different distributions P, Q for the same
reasons as in Proposition 2.8.
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5.1 Theorem. i). If either s = 0 ors =n, P = P, Q = @ on Z(M,g), and the
results of Theorem 2.2 hold.

ii). If s # 0,n, the distribution P is never involutive, and if the distribution
Q is involutive the torsion and curvature of V are those given by (2.23), (2.24). In
particular, if V is the Levi-Civita connection, and Q is involutive g is locally conformal
flat. If, moreover, g has constant sectional curvature, @) is Nirenberg integrable.

Proof. We begin by discussing the involutivity of the distributions P, Q. The struc-
ture equation (2.15*) shows that d#* has terms which are products of forms #° and
forms in the block u1 hence, P is never involutive. The same equation (2.15*), written
for the present forms #*", 9", and the connection matrix (5.9) shows that the torsion
condition for the involutivity of Q is the annulation of the torsion tensor 7 of (2.19)
on any triple of arguments among the vectors (e,, f,,) of any adapted null frame of
(M, g).

Then, the structure equations (2.16*) applied to the other equations of Q, with
the exception of wy = 0, w3 = 0, show that the involutivity of Q implies a curvature
condition which is the vanishing of the covariant curvature tensor R of V on the same
kind of arguments on which the torsion vanished.

Let us notice that, if the tensors 7, R vanish on some arguments, they also vanish
on linear combinations of these arguments. On the other hand, for any isotropic
subspace I of any dimension h, there exists a basis of the subspace which may be
embedded into an adapted null frame. It is enough to start with a real basis (iy) of
INI (a=1,..,real index of I) , and to continue with a basis (jz) of a complement
of INT in I. Because span(i,) is a maximal, real subspace of I, the vectors js will
be outside I. Therefore, we may embed the (iy) into the (e,) part, and the (jz) into
the (f.) part of an adapted null frame.

Hence, if (X,Y, Z,U) span an isotropic subspace I, then, by expressing them as
linear combinations of the partial, adapted null frame of I constructed above, we see
that 7, R vanish on X,Y, Z,U. Thus, the involutivity conditions obtained so far are
equivalent with the vanishing of 7 and R on any arguments which span a g-isotropic
subspace of some tangent space TSM, x € M.

Now, we are exactly in the same situation as in the proof of Theorem 2.2, and the
proof of the latter, as given in Section 2, also provides us with the required expressions
of the torsion and curvature tensors, which proves i) and the first two assertions of
ii).

For s # 0,n, these necessary involutivity conditions are not sufficient since they
do not ensure that dws, dws belong to the ideal generated by the equations of Q.

On the other hand, in the case of a metric of constant curvature and its Levi-
Civita connection, (2.24) has a classical form, e.g. [9], which shows that the Frobenius
involutivity condition of Q + Q, defined by the equations

6" =0, ws =0, @3 =0, g =0,

holds. It is also clear that Q + O is of a constant dimension. Therefore, Q + Q is
Nirenberg integrable. Q.e.d.
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5.2 Remark. If Q is Nirenberg integrable, according to Nirenberg’s theorem [11],
Z(M, g) has a local atlas with coordinates of the form (z*, 27,27, y*), where x,y are
real coordinates, z are complex coordinates, and

stpan(a 9

w,@> ANop=1,.,q9(¢g+1)/2,0=1,...,s2n —s+1)/2).

5.3 Remark. If we come back to the distributions P, Q) of Section 2, but on Z(M, g),
the proof of Theorem 5.1 shows that, again, P is never involutive, and () is involutive
iff the conditions of Theorem 2.2 hold.

The metrics g of the present section are real hence, they have either a real or
a purely imaginary volume, and the twist-reflector space Z has the components Z
defined as in Section 2. Indeed, a twist-reflector is a particular isosplitting, and we
have for it the volume form (2.35) (multiplied by ¢ if det(g) < 0). If the twist-reflector
has a neutral component U and a positive component V', w of (2.35) is a sum of a
2-form on U and a 2-form on V', both defined as in Section 2. As in Section 2, we
have again Proposition 2.4 and Theorem 2.5 for the distribution Q. For Q, if s # 0,n,
these results only give necessary involutivity conditions. (As in the proof of Theorem
5.1, we first act on those equations of @ which, in Section 2, defined the distribution
Q)

If s = n, the twist-reflector space is the classical twistor space, and, above, we
have proofs of the basic integrability results which is elementary, in the sense that it
does not use representation theory. We also see that this is the only case where we
have a CR-structure on Z, a complex structure, in fact. On the other hand, if s =0
we get the reflector space of a neutral manifold, and the integrability conditions of its
natural almost paracomplez structure [6].

Furthermore, as in Section 2, we have

5.4 Proposition. If (M>",g) is a pseudo-Riemannian manifold of signature 2s > 0
and V is a metric connection, V defines a pseudo-Riemannian metric v on Z(M, g),
and the distributions P, Q are y-isotropic distributions.

Proof. The required metric is

q s
(5.12) Y=Y (0 @0 +67 ®6%) + Y (@9 + 9" ®0")

a=1 u=1
—tT‘()q B+ 1 @A +ws ®ws +ws @ we
+0y ® @3 + W03 @@ + Mg @ Ag).

Q.ed.
We end by the remark that, if s < n, the main structural distribution Q of the

Levi-Civita connection also is only a homothetical invariant, not a general conformal
invariant. But, of course, in the case s = n, Q defines the conformally invariant almost
complex structure of the classical twistor space.
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