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Abstract

In this paper we generalize the results obtained in Ref. [17].

§1 raises the following problem: what conection there exists between the local
extrema of the function f : D C R? — R and the local extrema of the functions
foa,a€l, where I is a given family of parametrized curves ?

§2 proves the existence of a C* curve containing a given sequence of points.

§3 solves the problem which was presented in §1 in the case of C* curves.

Mathematics Subject Classification: 49K99
Key words: Minima constrained by C* curves, C* curves by sequences.

1 Introduction
Let us consider the extremum problem
minf(z), subject to z € M,

where M is a subset of RP with a given structure. If M is an open set of R? which
coincides to the domain of f, then the extremum problem is called unconstrained; in
any other case, the extremum problem is called constrained. Such problems, in which
M is a C* k > 2, finite-dimensional differentiable were developed recently in Refs.
(1[4, [6]-[9]-

The extremum conditions (necessary and sufficient) depend on the fashion of defin-
ing the subset M. If M is a differentiable manifold, then they depend also on the ge-
ometrical structure of M. Frequently, M is considered as the union of a family of its
subsets (a plane as the union of straight lines, an integral manifold of a Pfaff system
as the union of some integral curves, and so on, Refs. [10]-[16]). Then the following
two problems arise:

1) Let D be an open subset in RP and {4;}ier be a family of subsets of D having
a common point z, € A;,Vi € I. Suppose z, is a local minimum point for each
restriction f |4, of the function f : D — R to the subset A;,i € I. Is z, a local
minimum point of f 7

2)Let f: D CRP - Rand a; : I; C R — D,i € J a family of parametrized
curves. What connection we have between of functions f o «;, the extrema of the
restrictions f |, (r,), and the extrema of the function f ?
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The problem 1) and the problem 2), for the C' or C? curves, were solved in Ref.
[17]. In this paper we shall solve the problem 2) for the general case of C* curves and
even for the analytic curves. For that reason we shall recall some notions about the
curves.

Definition 1.1. Let I C R be an interval. A function o : I — RP of class C*, k > 1,
is called parametrized curve of class C* and is denoted by a. We shall say that:

1) « passes (just once) through the point z, € RP if there exists (only one)
to € Intl such that a(tg) = x.;

2) « is a simple parametrized curve if « is injective;

3) «a is regular at the point x. = a(to) if o' (tp) # 0;

4) a has a tangent at the point . = a(ty) if there exists m € 1,k, such that
Definition 1.2. Two parametrized curves a : I — RP,[3 : J — RP of class C* are
called equivalent if there exists a diffeomorphism h : I — J of class C* such that
a = o h. We shall write a ~ .

Definition 1.3. The set & of C* parametrized curves equivalent to « : I — RP is
called curve of class C*. The curve & has qualities 1) to 4) in the Definition 1.1, if a
representative a has these properties.

From now we shall refer to a function f : D — R, where D is an open subset in
RP.

Definition 1.4. Let f: D — R, let . € D, and « : I — D be a parametrized curve
passing through z.. We shall say that

1) z. is a minimum point for f constrained by « if for any to € I, with a(ty) = z.,
the point %y is a local minimum point for foa, i.e., there exists a neighborhood I;, C I
of tg such that

f@.) = f(alty)) < f(a(t), V€.

2) x is a minimum point for [ constrained by ¢ if there exists a neighborhood V
of z, such that
f(zs) < f(z), VYreVna(l).

Remark. If z, is a minimum point of f constrained by the curve &, then z, is a
minimum point of f constrained by the parametrized curve a. The converse is not
true even so « is a simple parametrized curve. However, in case that a: I — D is a
simple and regular parametrzied curve and [ is a compact set, both notions coincide.
Definition 1.5. Let ', be a family of parametrized curves (curves) passing through
the point x,. We shall say that x, is a minimum point of f constrained by the family
[, if z, is a minimum point of f constrained by every curve of the family I';, .

2 CF curves by given sequences of points

The aim of this paragraph is to show that certain conditions assume the existence
of C* curves which contain a given sequence of points. To this we recall shortly the
prolongation theorem of Whitney (Ref. [5]).

Let K C RP be a compact set , k = (ki,...,kp) be a multiindex and |k| =
k1 + ...+ kp. A family of continuous functions F' = (fk)|K|§m, f*: K — R, is called
jet of order m. Denote F(z) = f°(z), z € K and D*F = (fk+l)|”3m_|k|, k] < m.
Naturally, for any function g € C™(K) one can define the jet
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mo (O
7o) = (W)lklsm'

For any x € RP and a fixed a € K, we introduce the Taylor polynomial function

m _ (m_a)k k
rr@ = Y T )

|k|<m

Denote ~ ~
T"F =J™T"F), RI'F=F—-T"F.

Prolongation Theorem 2.1. Let F' = (fk)‘k‘gm. There exists a function f €
C™(RP) with g™ (f) = F if and only if

(RF)*(y) = O(|§ — ¢ 11,

when |z —y| — 0, for any x,y € K and any |k| < m.

In the sequel we shall apply the preceding theorem in the case p = 1 and K =
{0} U {tp|n € N}; where t,, € R and ¢,, — 0.
Corollary 2.1. Let us consider k € N*. Given the real sequences t, — 0, a:£?) — 0,
:n%i) — a¥, i =1k, there exists f € C*(R) with fO(t,) = :v%i), Vi € 0, k, if and only
if

w3 (tm = tn)"" (3)
T — — T,
~ (i-p) alk)
(%) — -
(tm - tn)k_p (k - p)!

for myn — oo and for any p € 0,k — 1.
Lemma 2.1. (Ref. [17]) Let (zy), (yn) be two sequences of real numbers such that
1) xp #0, Ty # Tpy1, Yn € N;

2) there exists lim In _ r;

n—00 T,
3) there exists A > 0 with In_ 1‘ >\ VneN.
Tn+1
Yn+1 — Yn

Then the sequence s convergent towards r.

Tp4+1 — Tn

Lemma 2.2. If (x,,) is a sequence of strictly positive real numbers and x,+1 < ok T

Tp — Tm

Vn € N, where k € N*, then there exists u > 0 such that W

/J’a vm?” E N7 m#n'
1
Proof. For m =n +p, p > 1, it follows a:}/k ﬁx},{k. Denote t,, = :r}/k. We have

IN

Ty — Tin th —tk th=1l 4 4kt

@ ) )t
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k—1
1 1 k
(1 (o !
o <+2p+ +(2p> >_1—<§> '

- < ~.
= i 1_i k—1 1_l k 1_1 k
" or op 2

Lemma 2.3. Let (z,), (y,) two sequences of real numbers such that (z,) is strictly
monotone,

1
Yn = 0, i—" =0, |enit] € g leal, Vne N

n

where k € N*. Then ™97 ) for m,n — oco.

m — Tn
Proof. Suppose, for example, z, > 0, Vn € N. Let b,, = Ynt1 7Y Brom Lemma
ITn+1 — Tn
2.1 it follows b, — 0. Let m > n and pp,, = max{|byl,...,|bm—1|}. Then, for any
1 €n,m — 1 we have Yirl —Yi < Wmn, namely
Tit1 — T
Yi+1 — Yi
_,Umn S s . S /J’mn
Ty — Tit1
and therefore
m—1 m—1 m—1
—tmn P (@i = 2ip1) < Y Wit —4i) < fmn D (@i — Tiga).
i=n i=n i=n
It results
Y Z 9] <
Tm — Tn

Now the conclusion is obvious.
Lemma 2.4. Let (z,,), (yn) be two sequences of real numbers such that (x,,) is strictly

monotone, y, — 0, In 0, |Znt1] < 2—k|xn|, Vn € N, where k € N*. Then,
x

n
there exist two functions f,g € C*(R) and a sequence (t,) of real numbers such that

t, =0, f(tn) = Tn, g(tn) = Yn; f(l)(o) =0,Vie0,k—1, g(z)(o) =0,Vi€0,k and
F®(0) #0.

Moreover, the function f and the sequence (t,) do not depend on the sequence
Proof. Let t, = zi/". Then, the function f(z) = 2'/* and the sequence (¢,) satisfy
the required properties. In order to get the function g we should apply the Corollary
2.1to0 t, = 2i/%, 22 =y, 2¥) = 0 and a® = 0, Vi € T, k. Obviously, the condition
() from the statement (Corollary 2.1) is fulfilled, for any p > 1. For p = 0 this

condition becomes % — 0, for m,n — oo. Taking into account that
m — 'n
Yn —Yn _ Ym —Yn ITm — ITn

(tm - tn)k Tm — Tn (tm - tn)k

Yrm ynk — 0, for m,n — oco.

(tm - tn)

and using the Lemmas 2.2 and 2.3, it results
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Thus we obtain a function g € C*(R) which satisfies the required properties.
Theorem 2.2. Let (x,,) be a sequence of distinct points of RP, convergent to the point
a € RP. Then, for any k € N*, there exist a subsequence (z,, ) and a parametrized
curve o : R — RY of class C*, which contains the set of points {x,, ,a} such that
has a tangent at the point a. Moreover, if a = a(ty), then a9 (ty) =0, Vi € 1,k — 1,
a®) (o) # 0 and there exists a sequence (tp,) with ty, — to and a(ty,) = p, .

. . T
Proof. By a translation, we can suppose a = (0,...,0) € RP. Since u, = ﬁ
In
is bounded, considering it likely a subsequence, we can asssume u, — u € RP. By
a rotation, we can suppose u = (1,0,...,0). Consequently, if =, = (z.,...,zP), it
follows

— 1.

z,,
|x}l|\/1 () ++ ()
x! -
Hence z}, > 0 for sufficiently large n and —+ — 0, Vi € 2, p. Obviously, there exists a
x

n
subsequence (z,,,) such that 21~ >0and 2} <Ll VmeN.

N 1 Nt = 28T, ) o
Apllying Lemma 2.4 to the pair of sequences (z,, ) and (z!, ), i € 2,p, we obtain

the functions p; : R — R, i € 1,p of class C* and a sequence (t,,) of real numbers such
that ty — 0, @i(tn) = @ , i € L,p, 9 (0) = 0,i € T,p, j € 0,k — 1, p¥(0) = 0,
i € 2,p and apgk) (0) # 0. Then, the parametrized curve a(t) = (¢1(t),...,pp(t)),
t € R, has the required properties.

3 Minimum constrained by C* curves

Let D be an open subset in RP and z, € D. For any k € N* we denote by F’;* the
family of all C* parametrized curves passing just once through the point z,, each
having a tangent at z.. Let

T s

Ak = {a €T lalty) = 2., aD(to) =0, i€ T, E—1, a®(to) # 0}
and

BF = {a €T* |a(ty) = x4, Im € 1,k — 1 such that o™ (ty) # 0} , for k > 1.
Theorem 3.1. Let f : D — R. Then, x. is a local minimum point of f, if and only
if, there exists k € N* such that xy is a minimum point constrained by the family
Ak

Proof. We can suppose f(z.) = 0. If z, would not be a local minimum point of
f, then there exists a sequence of distinct points (z,) of RP, with z, — x. and
f(zy) < 0,Vn € N. Taking into account the Theorem 2.2 we find a curve a € A’;*
such that x, is not a minimum point of f constrained by «. Contradiction.

It is interesing to remark that Theorem 3.1 does not impose any condition upon
the function f. Then, more surprising is the fact that Theorem 3.1 fails for the family
B’;* or for the family of all analytic curves passing through the point z,, even if f is
of class C*°.
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Examples. 1) Let f : R® - R,

fla,y) = (yF — ") (y* — 2Fak ),

where kK € N, k > 1. It is obvious that f is of class C"*° and that the critical point
2. = (0,0) is not a local minimum point of f. Let us show that z. = (0,0) is a
minimum point of f constrained by the family Bg’;*.

Let D~ = {(z,y) € R?|f(z,y) < 0}. For any (z,y) € D~ it results

y‘ 1/k
LAPY
() 2] < 2lal
and

ly| -1 +1
() |a:|<m+1)/m>|m| fmtmen,

with |z] <1land m € 1,k — 1.

Let a € B’; We can suppose z, = a(0). If, by reductio ad absurdum, the point
z, would not be a minimum point of f constrained by the parametrized curve «a, then
would exist a sequence (t,) with ¢, — 0 and «a(t,) = (xn,yn) € D™, Vn € N.
Consequently, the numbers z, and y, satisfy the above conditions (%) and ().
Obviously, if a(t) = (x(t),y(t)), then z(t) = t™(a + ¢tf(t)) and y(t) = t™(b + tg(t))
where a? +b% > 0, m € 1,k — 1 and f, g are continuous functions. We assume that

b+ thg(t

a # 0. Hence, Inl w Using the relation (x), we get that Inl 0 and
n la +tnf(tn)l Tn

therefore b = 0. Hence,

lynl g(tn)

20| (P FD/m T [ o+t f (£n) [P FD/m - 1g(0)].
On the other hand, using the relation (xx), it results that 7 — 00. Con-
|xn|(m+1)/m

tradiction. Now, we assume that a = 0. Then,

 Jtallf ()
|b + tng(tn)|

Tn

Yn

— 0,

which is a contradiction to the relation (x).

2) Let g : R = R, g(z) = e=/%°, for any = > 0 and g(z) = 0 for any z < 0.
Let f: R? — R, f(x,y) = y(y — g(x)) which is of class C*. Also, it is obvious that
the critical point z, = (0,0). Let us show that z, = (0,0) is a minimum point of f
constrained by the family I'Y , where I'Y is the family of all analytic parametrized
curves passing through the point z,.

Let D~ = {(z,y)|f(z,y) < 0}. It follows that for any (z,y) € D~ we have > 0
and

(%) 0< yel/’”2 <1

Let a € T’y . We can suppose . = «(0). If, by reductio ad absurdum, the point
z, would not be a minimum point of f constrained by «, then would exist a sequence
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(t,,) with t, = 0 and a(t,) = (zn,yn) € D™, ¥n € N. Hence, the numbers z,, and y,,
satisfy the above condition (*) and z, — 0, y,, — 0. Obviously, if a(t) = (z(t),y(t)),
then z(t) = t?(a +...) and y(t) = t4(b+...), with ab # 0. It follows that

ynel/zi ::[(xi)q/Zpel/mi]yn($i)4ﬂ/2p 00 - |0 = 0,

which is in contradiction to the relation (k).

In the following, we shall denote by f"; the family of all C* curves passing through
the point z,, regular at z,.
Theorem 3.2. Let f : D C RP — R. If there exists k € N* such that for any & € f";
the point x. is an extrema point of f constrained by &, then x. is a local extrema
point of f.
Proof. Let us suppose that z, is not a local extrema point for f and f(z.) = 0. Then,
there exist two sequences (z,,) and (y,,) of distinct points of D with z,, = Z, y,, — T,
f(z,) <0 and f(y,) >0, Vn € N. By the Theorem 2.2 there exist two subsequences
(z,,,) and (y,,.), two C* parametrized curves o and 3, and two sequences of real
numbers (t,,,) and (¢..) with ¢, — 0, t.. = 0, ¢;, > 0 t.. > 0 such that a(t,,) = zp,,
and S(t.) = yn,, Ym,r € N. Then, it is easy to show that there exists a parametrized
curve v : R — RP of class C* such that v(t) = a(t), Vt < 1, y(t) = B(1/t), Vt > 3,
v(2) = z. and 7'(2) # 0. It follows that 4 € f"; and ¥ contains the points z,,,, and
Yn,, Ym,r € N. Hence, the point x, is not a local extrema point of f.
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