Extrema Constrained by C^k Curves

Oltin Dogaru and Vlad Dogaru

Abstract

In this paper we generalize the results obtained in Ref. [17].

§1 raises the following problem: what conection there exists between the local extrema of the function $f:D\subset R^p\to R$ and the local extrema of the functions $f\circ\alpha$, $\alpha\in\Gamma$, where Γ is a given family of parametrized curves?

§2 proves the existence of a C^k curve containing a given sequence of points. §3 solves the problem which was presented in §1 in the case of C^k curves.

Mathematics Subject Classification: 49K99

Key words: Minima constrained by C^k curves, C^k curves by sequences.

1 Introduction

Let us consider the extremum problem

$$\min f(x)$$
, subject to $x \in M$,

where M is a subset of R^p with a given structure. If M is an open set of R^p which coincides to the domain of f, then the extremum problem is called *unconstrained*; in any other case, the extremum problem is called *constrained*. Such problems, in which M is a C^k , $k \geq 2$, finite-dimensional differentiable were developed recently in Refs. [1]-[4], [6]-[9].

The extremum conditions (necessary and sufficient) depend on the fashion of defining the subset M. If M is a differentiable manifold, then they depend also on the geometrical structure of M. Frequently, M is considered as the union of a family of its subsets (a plane as the union of straight lines, an integral manifold of a Pfaff system as the union of some integral curves, and so on, Refs. [10]–[16]). Then the following two problems arise:

- 1) Let D be an open subset in R^p and $\{A_i\}_{i\in I}$ be a family of subsets of D having a common point $x_*\in A_i, \forall i\in I$. Suppose x_* is a local minimum point for each restriction $f\mid_{A_i}$ of the function $f:D\to R$ to the subset $A_i, i\in I$. Is x_* a local minimum point of f?
- 2) Let $f: D \subset \mathbb{R}^p \to \mathbb{R}$ and $\alpha_i: I_i \subset \mathbb{R} \to D, i \in J$ a family of parametrized curves. What connection we have between of functions $f \circ \alpha_i$, the extrema of the restrictions $f \mid_{\alpha_i(I_i)}$, and the extrema of the function f?

Balkan Journal of Geometry and Its Applications, Vol.4, No.1, 1999, pp. 45-52 © Balkan Society of Geometers, Geometry Balkan Press

The problem 1) and the problem 2), for the C^1 or C^2 curves, were solved in Ref. [17]. In this paper we shall solve the problem 2) for the general case of C^k curves and even for the analytic curves. For that reason we shall recall some notions about the curves.

Definition 1.1. Let $I \subset R$ be an interval. A function $\alpha: I \to R^p$ of class C^k , $k \ge 1$, is called *parametrized curve of class* C^k and is denoted by α . We shall say that:

- 1) α passes (just once) through the point $x_* \in \mathbb{R}^p$ if there exists (only one) $t_0 \in IntI$ such that $\alpha(t_0) = x_*$;
 - 2) α is a simple parametrized curve if α is injective;
 - 3) α is regular at the point $x_* = \alpha(t_0)$ if $\alpha'(t_0) \neq 0$;
- 4) α has a tangent at the point $x_* = \alpha(t_0)$ if there exists $m \in \overline{1, k}$, such that $\alpha^{(m)}(t_0) \neq 0$.

Definition 1.2. Two parametrized curves $\alpha: I \to R^p, \beta: J \to R^p$ of class C^k are called *equivalent* if there exists a diffeomorphism $h: I \to J$ of class C^k such that $\alpha = \beta \circ h$. We shall write $\alpha \sim \beta$.

Definition 1.3. The set $\tilde{\alpha}$ of C^k parametrized curves equivalent to $\alpha: I \to R^p$ is called *curve of class* C^k . The curve $\tilde{\alpha}$ has qualities 1) to 4) in the Definition 1.1, if a representative α has these properties.

From now we shall refer to a function $f:D\to R$, where D is an open subset in \mathbb{R}^p .

Definition 1.4. Let $f: D \to R$, let $x_* \in D$, and $\alpha: I \to D$ be a parametrized curve passing through x_* . We shall say that

1) x_* is a minimum point for f constrained by α if for any $t_0 \in I$, with $\alpha(t_0) = x_*$, the point t_0 is a local minimum point for $f \circ \alpha$, i.e., there exists a neighborhood $I_{t_0} \subset I$ of t_0 such that

$$f(x_*) = f(\alpha(t_0)) \le f(\alpha(t)), \quad \forall t \in I_{t_0}.$$

2) x_* is a minimum point for f constrained by $\tilde{\alpha}$ if there exists a neighborhood V of x_* such that

$$f(x_*) \le f(x), \quad \forall x \in V \cap \alpha(I).$$

Remark. If x_* is a minimum point of f constrained by the curve $\tilde{\alpha}$, then x_* is a minimum point of f constrained by the parametrized curve α . The converse is not true even so α is a simple parametrized curve. However, in case that $\alpha: I \to D$ is a simple and regular parametrized curve and I is a compact set, both notions coincide. **Definition 1.5.** Let Γ_{x_*} be a family of parametrized curves (curves) passing through the point x_* . We shall say that x_* is a minimum point of f constrained by the family Γ_{x_*} if x_* is a minimum point of f constrained by every curve of the family Γ_{x_*} .

2 C^k curves by given sequences of points

The aim of this paragraph is to show that certain conditions assume the existence of C^k curves which contain a given sequence of points. To this we recall shortly the prolongation theorem of Whitney (Ref. [5]).

Let $K \subset R^p$ be a compact set, $k = (k_1, \ldots, k_p)$ be a multiindex and $|k| = k_1 + \ldots + k_p$. A family of continuous functions $F = (f^k)_{|K| \leq m}, f^k : K \to R$, is called jet of order m. Denote $F(x) = f^0(x), x \in K$ and $D^k F = (f^{k+l})_{|l| \leq m-|k|}, |k| \leq m$. Naturally, for any function $g \in C^m(K)$ one can define the jet

$$J^m(g) = \left(\frac{\partial^k g}{\partial x^k}\right)_{|k| \le m}.$$

For any $x \in \mathbb{R}^p$ and a fixed $a \in K$, we introduce the Taylor polynomial function

$$T_a^m F(x) = \sum_{|k| \le m} \frac{(x-a)^k}{k!} f^k(a).$$

Denote

$$\tilde{T}_a^m F = J^m (T_a^m F), \quad R_a^m F = F - \tilde{T}_a^m F.$$

Prolongation Theorem 2.1. Let $F = (f^k)_{|k| < m}$. There exists a function $f \in$ $C^m(\mathbb{R}^p)$ with $g^m(f) = F$ if and only if

$$(R_x^m F)^k(y) = \mathcal{O}(|\S - \dagger|^{\updownarrow - ||||},$$

when $|x - y| \to 0$, for any $x, y \in K$ and any $|k| \le m$.

In the sequel we shall apply the preceding theorem in the case p=1 and K=1 $\{0\} \cup \{t_n | n \in N\}; \text{ where } t_n \in R \text{ and } t_n \to 0.$

Corollary 2.1. Let us consider $k \in N^*$. Given the real sequences $t_n \to 0$, $x_n^{(0)} \to 0$, $x_n^{(i)} \to a^{(i)}$, $i = \overline{1,k}$, there exists $f \in C^k(R)$ with $f^{(i)}(t_n) = x_n^{(i)}$, $\forall i \in \overline{0,k}$, if and only

$$(*) \qquad \frac{x_m^{(p)} - \sum_{i=p}^{k-1} \frac{(t_m - t_n)^{i-p}}{(i-p)!} x_n^{(i)}}{(t_m - t_n)^{k-p}} \to \frac{a^{(k)}}{(k-p)!}$$

for $m, n \to \infty$ and for any $p \in \overline{0, k-1}$.

Lemma 2.1. (Ref. [17]) Let $(x_n), (y_n)$ be two sequences of real numbers such that

- 1) $x_n \neq 0, x_n \neq x_{n+1}, \forall n \in N;$ 2) there exists $\lim_{n \to \infty} \frac{y_n}{x_n} = r;$
- 3) there exists $\lambda > 0$ with $\left| \frac{x_n}{x_{n+1}} 1 \right| \ge \lambda$, $\forall n \in \mathbb{N}$.

Then the sequence $\frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ is convergent towards r.

Lemma 2.2. If (x_n) is a sequence of strictly positive real numbers and $x_{n+1} \leq \frac{1}{2k}x_n$,

 $\forall n \in \mathbb{N}, \text{ where } k \in \mathbb{N}^*, \text{ then there exists } \mu > 0 \text{ such that } \left| \frac{x_n - x_m}{(x_n^{1/k} - x_n^{1/k})^k} \right| \leq$ $\mu, \; \forall m,n \in N, \; m \neq n.$

Proof. For $m=n+p,\ p\geq 1$, it follows $x_n^{1/k}\leq \frac{1}{2^p}x_m^{1/k}$. Denote $t_n=x_n^{1/k}$. We have

$$\frac{x_n-x_m}{(x_n^{1/k}-x_m^{1/k})^k}=\frac{t_n^k-t_m^k}{(t_n-t_m)^k}=\frac{t_n^{k-1}+\ldots+t_m^{k-1}}{(t_n-t_m)^{k-1}}\leq$$

$$\leq \frac{t_n^{k-1}\left(1+\frac{1}{2^p}+\ldots+\left(\frac{1}{2^p}\right)^{k-1}\right)}{t_n^{k-1}\left(1-\frac{1}{2^p}\right)^{k-1}} = \frac{1-\left(\frac{1}{2^p}\right)^k}{\left(1-\frac{1}{2^p}\right)^k} < \frac{1}{\left(1-\frac{1}{2}\right)^k}.$$

Lemma 2.3. Let $(x_n), (y_n)$ two sequences of real numbers such that (x_n) is strictly monotone,

$$y_n \to 0, \ \frac{y_n}{x_n} \to 0, \ |x_{n+1}| \le \frac{1}{2^k} |x_n|, \ \forall n \in \mathbb{N}$$

where $k \in \mathbb{N}^*$. Then $\frac{y_m - y_n}{x_m - x_n} \to 0$ for $m, n \to \infty$.

Proof. Suppose, for example, $x_n > 0$, $\forall n \in \mathbb{N}$. Let $b_n = \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$. From Lemma 2.1 it follows $b_n \to 0$. Let m > n and $\mu_{mn} = \max\{|b_n|, \dots, |b_{m-1}|\}$. Then, for any $i \in \overline{n, m-1}$ we have $\left|\frac{y_{i+1} - y_i}{x_{i+1} - x_i}\right| \le \mu_{mn}$, namely

$$-\mu_{mn} \le \frac{y_{i+1} - y_i}{x_i - x_{i+1}} \le \mu_{mn}$$

and therefore

$$-\mu_{mn} \sum_{i=n}^{m-1} (x_i - x_{i+1}) \le \sum_{i=n}^{m-1} (y_{i+1} - y_i) \le \mu_{mn} \sum_{i=n}^{m-1} (x_i - x_{i+1}).$$

It results

$$\left| \frac{y_m - y_n}{x_m - x_n} \right| \le \mu_{mn}.$$

Now the conclusion is obvious.

Lemma 2.4. Let (x_n) , (y_n) be two sequences of real numbers such that (x_n) is strictly monotone, $y_n \to 0$, $\frac{y_n}{x_n} \to 0$, $|x_{n+1}| \leq \frac{1}{2^k} |x_n|$, $\forall n \in \mathbb{N}$, where $k \in \mathbb{N}^*$. Then, there exist two functions $f, g \in C^k(R)$ and a sequence (t_n) of real numbers such that $t_n \to 0$, $f(t_n) = x_n$, $g(t_n) = y_n$, $f^{(i)}(0) = 0$, $\forall i \in \overline{0, k-1}$, $g^{(i)}(0) = 0$, $\forall i \in \overline{0, k}$ and $f^{(k)}(0) \neq 0$.

Moreover, the function f and the sequence (t_n) do not depend on the sequence (y_n) .

Proof. Let $t_n = x_n^{1/k}$. Then, the function $f(x) = x^{1/k}$ and the sequence (t_n) satisfy the required properties. In order to get the function g we should apply the Corollary 2.1 to $t_n = x_n^{1/k}$, $x_n^{(0)} = y_n$, $x_n^{(i)} = 0$ and $a^{(i)} = 0$, $\forall i \in \overline{1,k}$. Obviously, the condition (*) from the statement (Corollary 2.1) is fulfilled, for any $p \geq 1$. For p = 0 this condition becomes $\frac{y_m - y_n}{(t_m - t_n)^k} \to 0$, for $m, n \to \infty$. Taking into account that

$$\frac{y_m - y_n}{(t_m - t_n)^k} = \frac{y_m - y_n}{x_m - x_n} \cdot \frac{x_m - x_n}{(t_m - t_n)^k}$$

and using the Lemmas 2.2 and 2.3, it results $\frac{y_m - y_n}{(t_m - t_n)^k} \to 0$, for $m, n \to \infty$.

Thus we obtain a function $g \in C^k(R)$ which satisfies the required properties. **Theorem 2.2.** Let (x_n) be a sequence of distinct points of R^p , convergent to the point $a \in R^p$. Then, for any $k \in N^*$, there exist a subsequence (x_{n_m}) and a parametrized

 $a \in R^p$. Then, for any $k \in N^*$, there exist a subsequence (x_{n_m}) and a parametrized curve $\alpha : R \to R^P$ of class C^k , which contains the set of points $\{x_{n_m}, a\}$ such that α has a tangent at the point a. Moreover, if $a = \alpha(t_0)$, then $\alpha^{(i)}(t_0) = 0$, $\forall i \in \overline{1, k-1}$, $\alpha^{(k)}(t_0) \neq 0$ and there exists a sequence (t_m) with $t_m \to t_0$ and $\alpha(t_m) = x_{n_m}$.

Proof. By a translation, we can suppose $a=(0,\ldots,0)\in R^p$. Since $u_n=\frac{x_n}{||x_n||}$ is bounded, considering it likely a subsequence, we can assume $u_n\to u\in R^p$. By a rotation, we can suppose $u=(1,0,\ldots,0)$. Consequently, if $x_n=(x_u^1,\ldots,x_n^p)$, it follows

$$\frac{x_n^1}{|x_n^1|\sqrt{1+\left(\frac{x_n^2}{x_n^1}\right)+\ldots+\left(\frac{x_n^p}{x_n^1}\right)}}\to 1.$$

Hence $x_n^1 > 0$ for sufficiently large n and $\frac{x_n^i}{x_n^1} \to 0$, $\forall i \in \overline{2, p}$. Obviously, there exists a subsequence (x_{n_m}) such that $x_{n_{m+1}}^1 > 0$ and $x_{n_{m+1}}^1 \le \frac{1}{2^k} x_{n_m}^1$, $\forall m \in \mathbb{N}$.

subsequence (x_{n_m}) such that $x_{n_{m+1}}^1>0$ and $x_{n_{m+1}}^1\leq \frac{1}{2^k}x_{n_m}^1, \forall m\in N$. Applying Lemma 2.4 to the pair of sequences $(x_{n_m}^1)$ and $(x_{n_m}^i), i\in \overline{2,p}$, we obtain the functions $\varphi_i:R\to R, i\in \overline{1,p}$ of class C^k and a sequence (t_m) of real numbers such that $t_m\to 0, \ \varphi_i(t_m)=x_{n_m}^i, \ i\in \overline{1,p}, \ \varphi_i^{(j)}(0)=0, \ i\in \overline{1,p}, \ j\in \overline{0,k-1}, \ \varphi_i^k(0)=0, \ i\in \overline{2,p}$ and $\varphi_1^{(k)}(0)\neq 0$. Then, the parametrized curve $\alpha(t)=(\varphi_1(t),\ldots,\varphi_p(t)), \ t\in R$, has the required properties.

3 Minimum constrained by C^k curves

Let D be an open subset in R^p and $x_* \in D$. For any $k \in N^*$ we denote by $\Gamma^k_{x_*}$ the family of all C^k parametrized curves passing just once through the point x_* , each having a tangent at x_* . Let

$$A_{x_*}^k = \left\{\alpha \in \Gamma_{x_*}^k | \alpha(t_0) = x_*, \quad \alpha^{(i)}(t_0) = 0, \ i \in \overline{1, k-1}, \ \alpha^{(k)}(t_0) \neq 0\right\}$$

and

$$B_{x_*}^k = \left\{\alpha \in \Gamma_{x_*}^k | \alpha(t_0) = x_*, \ \exists m \in \overline{1, k-1} \text{ such that } \alpha^{(m)}(t_0) \neq 0\right\}, \text{ for } k \geq 1.$$

Theorem 3.1. Let $f: D \to R$. Then, x_* is a local minimum point of f, if and only if, there exists $k \in N^*$ such that x_0 is a minimum point constrained by the family A_x^k .

Proof. We can suppose $f(x_*) = 0$. If x_* would not be a local minimum point of f, then there exists a sequence of distinct points (x_n) of R^p , with $x_n \to x_*$ and $f(x_n) < 0$, $\forall n \in \mathbb{N}$. Taking into account the Theorem 2.2 we find a curve $\alpha \in A_{x_*}^k$ such that x_* is not a minimum point of f constrained by α . Contradiction.

It is interesing to remark that Theorem 3.1 does not impose any condition upon the function f. Then, more surprising is the fact that Theorem 3.1 fails for the family $B_{x_*}^k$ or for the family of all analytic curves passing through the point x_* , even if f is of class C^{∞} .

Examples. 1) Let $f: \mathbb{R}^3 \to \mathbb{R}$,

$$f(x,y) = (y^k - x^{k+1})(y^k - 2^k x^{k+1}),$$

where $k \in N$, $k \ge 1$. It is obvious that f is of class C^{∞} and that the critical point $x_* = (0,0)$ is not a local minimum point of f. Let us show that $x_* = (0,0)$ is a minimum point of f constrained by the family $B_{x_*}^k$.

Let $D^{-} = \{(x, y) \in \mathbb{R}^{2} | f(x, y) < 0 \}$. For any $(x, y) \in D^{-}$ it results

$$\left|\frac{y}{x}\right| < 2|x|^{1/k}$$

and

$$\frac{|y|}{|x|^{(m+1)/m}} > |x|^{-1/m(m+1)},$$

with |x| < 1 and $m \in \overline{1, k - 1}$.

Let $\alpha \in B_{x_*}^k$. We can suppose $x_* = \alpha(0)$. If, by reductio ad absurdum, the point x_* would not be a minimum point of f constrained by the parametrized curve α , then would exist a sequence (t_n) with $t_n \to 0$ and $\alpha(t_n) = (x_n, y_n) \in D^-$, $\forall n \in N$. Consequently, the numbers x_n and y_n satisfy the above conditions (*) and (**). Obviously, if $\alpha(t) = (x(t), y(t))$, then $x(t) = t^m(a + tf(t))$ and $y(t) = t^m(b + tg(t))$ where $a^2 + b^2 > 0$, $m \in \overline{1, k-1}$ and f,g are continuous functions. We assume that $a \neq 0$. Hence, $\left| \frac{y_n}{x_n} \right| = \frac{|b + t_n g(t_n)|}{|a + t_n f(t_n)|}$. Using the relation (*), we get that $\left| \frac{y_n}{x_n} \right| \to 0$ and therefore b = 0. Hence,

$$\frac{|y_n|}{|x_n|^{(m+1)/m}} = \frac{g(t_n)}{|a + t_n f(t_n)|^{(m+1)/m}} \to |g(0)|.$$

On the other hand, using the relation (**), it results that $\frac{|y_n|}{|x_n|^{(m+1)/m}} \to \infty$. Contradiction. Now, we assume that a = 0. Then,

$$\left| \frac{x_n}{y_n} \right| = \frac{|t_n||f(t_n)|}{|b + t_n g(t_n)|} \to 0,$$

which is a contradiction to the relation (*).

2) Let $g: R \to R$, $g(x) = e^{-1/x^2}$, for any x > 0 and g(x) = 0 for any $x \le 0$. Let $f: R^2 \to R$, f(x,y) = y(y-g(x)) which is of class C^∞ . Also, it is obvious that the critical point $x_* = (0,0)$. Let us show that $x_* = (0,0)$ is a minimum point of f constrained by the family $\Gamma_{x_*}^{\omega}$, where $\Gamma_{x_*}^{\omega}$ is the family of all analytic parametrized curves passing through the point x_* .

Let $D^- = \{(x,y) | f(x,y) < 0\}$. It follows that for any $(x,y) \in D^-$ we have x > 0 and

$$(*) 0 < ye^{1/x^2} < 1$$

Let $\alpha \in \Gamma_{x_*}^{\omega}$. We can suppose $x_* = \alpha(0)$. If, by reductio ad absurdum, the point x_* would not be a minimum point of f constrained by α , then would exist a sequence

 (t_n) with $t_n \to 0$ and $\alpha(t_n) = (x_n, y_n) \in D^-$, $\forall n \in N$. Hence, the numbers x_n and y_n satisfy the above condition (*) and $x_n \to 0$, $y_n \to 0$. Obviously, if $\alpha(t) = (x(t), y(t))$, then $x(t) = t^p(a + \ldots)$ and $y(t) = t^q(b + \ldots)$, with $ab \neq 0$. It follows that

$$y_n e^{1/x_n^2} = [(x_n^2)^{q/2p} e^{1/x_n^2}] y_n (x_n^2)^{-q/2p} \to \infty \cdot \frac{|b|}{|a|^{q/p}} = \infty,$$

which is in contradiction to the relation (*).

In the following, we shall denote by $\tilde{\Gamma}_{x_*}^k$ the family of all C^k curves passing through the point x_* , regular at x_* .

Theorem 3.2. Let $f: D \subset \mathbb{R}^p \to \mathbb{R}$. If there exists $k \in \mathbb{N}^*$ such that for any $\tilde{\alpha} \in \tilde{\Gamma}^k_{x_*}$ the point x_* is an extrema point of f constrained by $\tilde{\alpha}$, then x_* is a local extrema point of f.

Proof. Let us suppose that x_* is not a local extrema point for f and $f(x_*) = 0$. Then, there exist two sequences (x_n) and (y_n) of distinct points of D with $x_n \to x_*$, $y_n \to x_*$, $f(x_n) < 0$ and $f(y_n) > 0$, $\forall n \in N$. By the Theorem 2.2 there exist two subsequences (x_{n_m}) and (y_{n_r}) , two C^k parametrized curves α and β , and two sequences of real numbers (t_m) and (t'_r) with $t_m \to 0$, $t'_r \to 0$, $t_m > 0$ $t'_r > 0$ such that $\alpha(t_m) = x_{n_m}$ and $\beta(t'_r) = y_{n_r}, \forall m, r \in N$. Then, it is easy to show that there exists a parametrized curve $\gamma: R \to R^p$ of class C^k such that $\gamma(t) = \alpha(t), \forall t \leq 1, \gamma(t) = \beta(1/t), \forall t \geq 3, \gamma(2) = x_*$ and $\gamma'(2) \neq 0$. It follows that $\tilde{\gamma} \in \tilde{\Gamma}^k_{x_*}$ and $\tilde{\gamma}$ contains the points x_{n_m} and $y_{n_r}, \forall m, r \in N$. Hence, the point x_* is not a local extrema point of f.

References

- R.L. Bishop, R.I. Crittenden, Geometry of Manifolds, Academic Press, New York, New York, 1964.
- [2] D. Gabay, Minimizing a Differentiable Function over a Differentiable Manifold, Journal of Optimization Theory and Applications, Vol. 37, pp. 177-219, 1982.
- [3] N.I. Hicks, Notes of Differential Geometry, Van Nostrand Publishing Company, Princeton, New Jersey, 1965.
- [4] D.G. Luenberger, *Introduction to Linear and Nonlinear Programming*, Addison-Wesley Publishing Company, Reading, Massachusetts, 1973.
- [5] B. Malgrange, *Ideals of Differentiable Functions*, Oxford University Press, Oxford, England, 1964.
- [6] J.N. Milnor, Morse Theory, Princeton University Press, Princeton, New Jersey, 1969.
- [7] T. Rapcsak, Minimum Problems on Differentiable Manifolds, Optimization Vol.20, pp. 3-13, 1989.
- [8] M. Spivak, A Comprehensive Introduction to Differential Geometry I-V, Vols. 1-5, Publish or Perish, Berkeley, California, 1979.

- [9] C. Udrişte, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, Holland, Vol.297, 1994.
- [10] C. Udrişte, O.Dogaru, Extrema with Nonholonomic Constraints, Buletinul Institutului Politehnic Bucuresti, Seria Energetica, Vol. 50, pp.3-8, 1988.
- [11] C. Udrişte, O.Dogaru, Mathematical Programming Problems with Nonholononic Constraints, Seminarul de Mecanică, Universitatea din Timișoara, Vol. 14, 1988.
- [12] C. Udrişte, O.Dogaru, Extreme Condiționate pe Orbite, Buletinul Institutului Politehnic București, Seria Mecanică, Vol.51, pp. 3-9, 1989.
- [13] C. Udrişte, O.Dogaru, Convex Nonholonomic Hypersurfaces, The Mathematical Heritage of C.F.Gauss, Edited by G.M.Rassias, World Scientific Publishers, Singapore, pp. 769-784. 1990.
- [14] C. Udrişte, O.Dogaru,, I. Ţevy, Sufficient Conditions for Extremum on Differentiable Manifolds, Proceedings of the 22nd Conference on Differential Geometry and Topology Applications in Physics and Technics, Bucharest, Romania, 1991.
- [15] C. Udrişte, O.Dogaru, I. Ţevy, Extrema Points Associated to a Pfaff Form, Proceedings of the International Conference on Differential Geometry and Its Applications, Bucharest, Romania, 1992.
- [16] C. Udrişte, O.Dogaru, I. Ţevy, Open Problems in Extrema Theory, Workshop on Differential Geometry and Applications, Bucharest, Romania, 1993.
- [17] O.Dogaru, I. Ţevy, C.Udrişte, Extrema Constained by a Family of Curves and Local Extrema, Journal of Optimization Theory and Its Applications, vol.97, nr. 3(1998), 605-621.

University Politehnica of Bucharest Department of Mathematics I Splaiul Independenței 313 77206 Bucharest, Romania