Invariant Operators on Real and Complex Manifolds
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Abstract

The development of decomposition theory of the curvature tensors under the
action of some groups was initiated in [31], [30]. Since these results and their
ideas are very useful in the studies of some problems in geometry and topology
of manifolds, many mathematicians have worked using this algebraic treatment
of curvature tensors.

Interesting applications of the theory of decompositions are used in the study
of submanifolds in conformal differential geometry, classification of almost com-
plex manifolds [6], almost product manifolds [27]. In the K&hler geometry, de-
compositions of the K-curvature tensors were given in [19], [26], [32], for quater-
nionic Kéhler manifold [35] and the case of contact geometry is studied in [18],
[21]. In [20], [23] is investigated the trace decomposition problem. All these
splittings are in principle consequences of the general theorems on group repre-
sentations [44].

This paper develops the original ideas of C.Udrigte regarding the decom-
position problem of geometrical objects, introducing some (r,r)-tensor alge-
bras Inv(r), CInv(r), HInv(r), CHInv(r) of operators invariant under certain
groups ([13], [15], [36], [37]). These invariant tensor algebras, having the ele-
ments interpreted like endomorphisms on the space T-_ (M), enable us to get
a trace decomposition of this space, the results of [20] being special cases of our
theory.

The focus is on the infinite subset of projections which do provide good in-
sight in some problems of differentiable manifolds. Let us mention that the Weyl
projective curvature tensor, Weyl conformal curvature tensor, H-projective cur-
vature tensor, Bochner curvature tensor and the Thomas projective connection,
Thomas conformal connection, H-projective connection and complex conformal
connection are produced by this type of operators. Also, using some invariant
operators which are projections one gets the splitting of the space of tensors
of type (1,3) into three components invariant under some special groups into
infinitely many ways. We should remark that in particular cases, one finds the
Strichartz decomposition , Singer-Thorpe-Nomizu decomposition, respectively
Sitaramayya-Mori decomposition of the space of curvature tensors.

The extension of the invariant operators to 7,1 ,(M) and to the F(M)-
module A%_ (M), a new space which is required by our theory, leads us to
the problem of decompositions of tensors and connections. Finally, one gets
invariants for some transformations of geometrical object fields, extending the
Thomas-Weyl theory.
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Along the line developed in [43], [45], we are studied properties of pairs of
connections (I',II), where I" is an affine connection and II is the Thomas pro-
jective connection, respectively Thomas conformal connection or I' is the Levi-
Civita connection and IT is the H-projective related J-connection, respectively
complex conformal connection, we investigate some pairs of geometrical object
fields associated by certain invariant operators.

The study of geodesically related Riemannian manifolds [43], [41] was ex-
tended to semi-symmetric spaces geodesically related in [5] and to subgeodesic
correspondence in [28].

We continue the research in this direction studying in the last section some
geodesic and subgeodesic mappings [7], [8], [11], [14]. Certain properties of semi-
symmetric connection on Weyl generalized manifolds are also presented [9], [12].

Mathematics Subject Classification: 53A55, 53B10, 53B20, 53B35
Key words: invariant operators, decomposition problem, pairs of geometrical object
fields.

1 Pairs of geometrical object fields via
absolute invariant operators

The complete decomposition in Riemannian projective geometry was studied in [1],
where is solved the problem under the action of SO(n). The splitting of the space
of curvature tensors under the action of GL(V') was obtained in [33]. It is possible
to processe and develop the decomposition theory introducing a special algebra of
invariant operators, built with the Kronecker tensor.

1.1 Absolut invariant tensors algebra

Let V be a real n-dimensional vector space, where n > 2. Let T (V) be the vec-
tor space of all tensors of type (r,r) and 6;- be the symbol of Kronecker. In T (V)

J1

where S, is the group of permutations. Any element P € I'nv(r), which is an absolute
invariant tensor (i.e., VA € GL(V), Ao P = P), is interpreted like an endomorphism
on T! ,(V), producing a trace decomposition of this space. So, Inv(r) becomes an
algebra of absolute invariant operators, the product PQ of two elements P, () being
given by the rule P;ll"'l”’l ;’;]r gf"'J" g:ll___m_l.

It is interesting to study the pair (T, PT), VP € Inv(r), T € T!_,(V), where

(PT) (w, Xl, ceey Xr—l) = 20657_1 [.TJT(W, Xo’(l)7 ceey Xo-(rfl))-F

+ Z;;i .’L'I;.(C]%T)(Xo.(l), s Xa(k)a ey Xo’(rfl))w(XO'(k))]a
Vw e V!, VXy, X €V,0 € Sy, C} being the contraction map,Vk€ {1,...,r—1}.

Important geometrical meanings have the cases r = 3, 4, which appear in the
study of connections, torsion tensors, curvature tensors, Weyl projective curvature
tensors etc.

The operator P = {P’ "} € Inv(3) having the simplified expression P =
2111 + ... + 2615, where {I1, ..., I} is the basis, acts like un endomorphism on Ty (V).
Endowing Inv(3) with a structure of Lie over R, it is possible to clasify its subalgebras

we consider the vector subspace Inv(r) = {EJGST z,0.7® ...6;-:(") |z, €ER, o € Sr} ,
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Theorem 1.1.1 Dy = Span{ly, I, Is} and Dy = Span{l;, >, 15} are 3-dimensi-onal
Lie subalgebras and By = Span{l,,Is},Bs = Span{li,I3},Bs = Span{ly,I5} are
2-dimensional Lie subalgebras of the Lie algebra Inv(3).
Moreover, D, and Dy are solvable subalgebras, having the abelian ideals R, =
{P = al, —nals | « € R}, respectively Ro = {P = als —nals | a € R}.
24
Any operator P = {P¢ 7} € Inv(4) has the simplified expression P = 3 yZ;,
i=1
where {Z1, ..., 24} is the basis and is interpreted like an endomorphism on T3 (V). The
multiplication table PQ, Pb? 7, Qstr j-kl, of two elements of Inv(4) was determined
using a Borland C++ Programme.
The image P'° 7, T2, where P = {P "} € Inv(3) and T = {T%} € T5(V),

represents a traceless decomposition of T'. Let P = {ngl sp) € Inv(4) and T =

{T]?kl} € T4 (V). The image Pfkl gtijikl is a traceless decomposition of T'. The results
obtained by D. Krupka, J. Mikesh concerning the traceless decomposition of tensors
correspond to some particular cases of our theory.

Theorem 1.1.2 There are infinitely many endomorphisms in Inv(3), respectively

Inv(4), having traceless images.

1.2 Generalization of Strichartz decomposition

Some absolut invariant operators which are projections do provide insight in some
problems of differential geometry. Let us mention that projections from Znwv(4) give
the Weyl projective curvature tensor and affine transformations of elements from
Znv(3) produce the Thomas projective connection. Moreover, properties of the pro-
jections enable us to get splittings of the space of tensors of type (1,3). So, for geo-
metrical reasons, we study the subset of projections of Znuv(r).

Theorem 1.2.1 There are infinitely many projective projections P € Inv(3), respec-
tively P € Inv(4).

These infinite families of solutions and their geometric representations can be
determined using ”MathCad Plus”. We should remark that, for » = 3, in particular if
x1 = x3 = 0, introducing the parameters z5 = A,z = 3, then x5 and z4, solutions of
the equation 22+ % (A p—1)+Xu = 0, belong to one sheet hyperboloids, independent
of the dimension of the vector space V.

R.S. Strichartz [33] found a decomposition of K(V'), the space of tensors of type
(1,3), verifying R.,, + R, = 0 and the first Bianchi identity, using properties of the
representation theory.

The projective projections from Span{Z,,Zr,...,Z12} C Inv(4) produce infinitely

many splittings of the space T4 (V) into three subspaces, invariant under to the group
GL(V).
Theorem 1.2.2 There are infinitely many nonvanishing projective projections P, Q, R €
Span{Zy,I7,...,T12}, such that P+ Q+ R =7;,PQ = QP = RQ = QR =0 and
TH(V) = ImP & ImQ & ImR holds, where

P =T+t uTi,

Qz%gﬁm—gmﬁ£;@@—zw+%%ﬂ%m—zm
Y10 + Ys Y12 Hyu

Yys + Y7
= - (I7 + Iy) —
R 5 (Zr + Iy) 5 5

(Zs + Tho) (Z12 + T11),
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where 1 +nyr + ys + y12 = 0,ny9 + y10 + y11 = 0.
Proposition 1.2.1 Any tensor R € T3 (V) splitts into infinitely many ways R =
R'+R”+R", such that R}; = 0, R”;; is a symmetric tensor, R} is a skew symmetric
tensor.
Proposition 1.2.2 The endomorphisms P € Span{Zi,Zs,...,Z12} of the algebra
Inv(4) applying K(V') into the same subspace are

P =Ty +yiZr — yils — y10Zo + y10Zio — (Y7 + y10)Z11 + (Y7 + y10)Zia.

Into this set of infinite family of endomorphisms from Span{Z,Z,..., 712}, its
finite subset of projections has particular geometrical meanings.
Remark 1.2.1 In the particular case

n n 1 1 1 1
=7 — T Is — T 7 i1 — 7
P ! n2—17+n2—18 n2—19+n2—110+n+1 S Tt
= — —(T7 — I3 — Tg + 110 — 27 2712), R = ———(T7 —Is + Iy — 1,
Q 2(n+1)( 7 —1Ig — 1Ly + Tho 1+ 2Z42), 2(n—1)( 7 —1Is + 1y 10)

we find again the Strichartz decomposition [33] (V) = ImP & ImQ & ImR of the
curvature tensors into three irreducible components under the action of the group
GL(V). This decomposition is not irreducible under O(n) or SO(n).

1.3 J-decompositions of geometrical object fields

Let M be a differentiable n—dimensional manifold, 7,”(M) the bundle of (r,r)-tensor
fields of M. Then ' ]
Ino(r) = {P.“"'“ =Y s, f05?”<1>...6;j(”) | fr € F(M), o€ S'r'}

Ji-dr J1
is the F(M)-module of absolut invariant tensor fields.

We define the F(M)-module denoted A _, (M), generated by the union of parallel
afine spaces of geometrical object fields of type (1,7 — 1) ([24]), whose difference or
skew symmetric part with respect to a pair of indices is a tensor field of type (1,7 —1).
Obviously, for » = 3, the affine space C, of affine connections on M, and the space
T3 (M) are examples of such parallel spaces. Each element P of Znv(r) acts like
an endomorphism on 7,! ; (M) and induces an affine transformation on AL (M),
producing trace decomposition of this space.

Along the line developed by T.Y. Thomas, G. Vranceanu which studied pairs of
connections (I, II), where ' is an affine connection and II is the projective Thomas
connection, we generalize the theory studying the graph (T, PT') of affine transforma-
tions P acting on the space A3.

Remark 1.3.1 If the projective projections act on the affine symmetric connections,
then in certain cases, for particular values of the coeficients 1, ..., g, we get the pair

of connections (I', IT), where II%, = I'%, — %H((S;’I‘t—k&t"f‘s), [y =T, is the projective
Thomas connection.

Theorem 1.3.1 There are infinitely many nonvanishing triplets P, Q, R, affine trans-
formations on AL (M), of projective projections from

Spangy{Ti, Ir, - . -, iz}, such that P+ Q+ R =17,, PQ = QP =RQ = QR = 0.
Moreover, AL(M) = ImP & ImQ & ImR.

The relation between the geometrical object fields from AL(M), respectively
AL (M) is determined by the next closed diagrame which reflects an invariance of

gauge type.
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Theorem 1.3.2 Let P = £L’1I1 + Z’QIQ + 1‘6.[6, P = lel + y7Z7 + ygzg + y211-21 +
y2oLoo + Youlos, T = 211y + 27dy + 2315 + 221121 + 22202 + 224124, R = 11 — Iy
be affine transformations on AL (M), respectively AL(M). There are infinitely many
projective projections P, T, P such that next diagrame is closed

r 2 n
+ +
A A
(%) R IR
R T
T\ v P,
W

where (C,1) is a pair from AY(M), T being an affine symmetric connection and
IT = PT the exotic Thomas connection,

_ orr
(A, A) is a pair from AL(M), associated to (U',II) by the rule AT, = st + Iy,
(R, ) is a pair from AL(M), R being the curvature tensor field associated to T and
7 the exotic curvature tensor field associated to w and

W is the exotic projective Weyl curvature tensor field, W = (P + Q)7 = (T +S) R.
Corollary 1.3.1 In the hypothesis of the previous theorem, if moreover the Ricci

tensor associated to the affine connection T is symmetric, then the diagrame (x) is
closed for the next cases

)P=1,T=P¢c{0,T1,yrZr + (1 — nyr)Ls, Iy — yrZr + (nyr — 1)Ig };
1
2) P=1I — E-’z; T =P e€{0,L1,y7Zr + (1 — nyr)Is, Iy — y7Zr + (nyr — 1)Ig};

1
3) P=1 +xl, — (1 4+ nxy)ls, zo € F(M)\ {_E}’

n—1 n—1
4) P=0,T =0, P€{0,Z1,y:Zr + (1 —nyr)Is, 1 —yiIr + (nyr — 1)1g};

1
5) P = ﬁIQ’ T=0,Pe€{0,T1,yrZr + (1 — nyr)Ls, T1 — yrZr + (nyr — 1)Ig};

1 1
T:PE{O,Il— I+ Ig};

1
6) P = z215 + (1 —TLZUQ)IS, T2 € f(M) \ {E}, T = 0, P e {O,Il—
1

1
7
T

_|_

118}, where y7 € F(M).

Taking into account the case 3), we deduce that the proiective Weyl curvature
tensor field W is invariant to infinitely many transformations of exotic connections

1
F£>H,P =1 4+ 22l — (1 +nao)lg, 22 € F(M) \ {_E}

The study of the closed diagrame and the geometrical interpretation of the results,
when operators P,P,T are generated by all elements of the bases of Znv(3) and
Inwv(4), remains an open problem.
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2 Pairs of geometrical object fields via
conformal invariant operators

Our algebra of conformal invariant operators C'Inv(r) illustrates a general approach
of the decomposition problem, in Riemannian geometry, in particular cases corre-
sponding to the Singer-Thorpe-Nomizu splitting of the space of the curvature tensors
and also extends the Thomas-Weyl theory.

2.1 Algebra CInv(r) of conformal invariant operators

Let V be a real n-dimensional vector space, n > 2, endowed with the inner product
g = (gij), where g=' = (¢"/) and § = (8%) the Kronecker symbol. In the vector space
T (V) of tensors of type (r,r) we define the vector subspace

i1 eeidy o Lo (r
CITL'U(’I") = {P, PJZ:]ZT = EO’EST .’I}a-(sjl(l) .. _(5]-7‘( ) +

Z :rangT(l)jT(2)gi”(l)i”(2) 6;:2; 6;::; | 5,2, €R, 0,7 €S, },
a(1)<a(2), 7(1)<7(2)
where S, is the permutation group. Any element P € C'Inv(r) is a conformal invariant
tensor (i.e. VA € CO(V),Ao P = P). We endow CInv(r) with a structure of real Lie
algebra, as in the subsection 1.1, containing the subalgebra Inuv(r).

The algebra C'Inv(3) arroses during the study of connections, torsion tensors etc.
The operators P = {P%",} € Inv(3) are endomorphisms on the space T3 (V), having
the simplified expression P = Elemili + E?:lxj_l,_ﬁGj, where {I1,...,Is,G1,...,Go}
is the basis.

For r = 4, in the algebra C'Inv(4) containing the operators P = {Pled 7 1} in-
terpreted like endomorphisms on the space T4 (V'), having the simplified expression
P = E?ilyﬂi + Ezl 2;Gi, {Th,...,Z24,G1,...,Gr2} being the basis, we study for
geometrical reasons the subalgebra

D ={P =T +yiLr + ysls + 21G1 + 22G2 + 23G3 + 24G4 }.

For particular values of the coeficients, an operator P € D produces the conformal
Weyl curvature tensor field.

Theorem 2.1.1 Endowing D with a structure of Lie algebra, all its subalgebras are
Lie algebras.

Remark 2.1.1 There are infinitely many endomorphisms in CInv(3) and CInv(4),
having traceless images.

2.2 Generalization of Singer-Thorpe-Nomizu decomposition

For geometrical reasons it is worthwhile to investigate the infinite set of conformal
projections on tensors of type (1,7 —1). Indeed, the conformal Weyl curvature tensor
field is produced by a projection of the subalgebra D C CZnwv(4) and the conformal
Thomas connection is built by one affine transformation of a projection from CZnwv(3).

In [31] I.M. Singer and J.A. Thorpe studied the descomposition of the space R(V')
of tensors R of type (1, 3), verifying R7,, + R, = 0 and Rysy + Rspu = 0. This is also
investigated by K. Nomizu [30], for generalized tensor fields.

Moreover, the space of tensors of type (1,3) splitts in infinitely many ways into
three subspaces, images of some projections from CInv(4). So, using the method of
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conformal projections, we extend Singer-Thorpe-Nomizu decomposition of curvature
tensors.

Theorem 2.2.1 There are infinitely many nonvanishing conformal projections P, Q, R €
D such that P+ Q+ R =17;,PQ = QP = RQ = QR = 0. Moreover, the splitting
TH(V) = ImP & ImQ& ImR into three invariant subspaces with respect to the group
CO(V') holds, where

4
+ 22 + nz + 21 +nz
P=T+yTr +ysTo + Y 2Gi, Q= - LT 2T g, BTATMAG
prt n n
+ 2z +z
Rz—y717—y818—2’1g1—2‘292+y7 2g3+y8n LG,

nyr +ys+21+1=0,20 +nzs + 24 = 0.
Proposition 2.2.1. Any tensor R of type (1, 3) splitts into infinitely many possibilities
R =R + R+ R" such that Rj; = 0, R”;; = R;j — %Kgij, R} = %Kgij, where

K:Rijgij.
Remark 2.2.1. In the particular case
P—III+II+1QIQ+ : g : g
T T T 2 2 a2 T ) —-2)" m—1D(n—-2)""
1 1
R = -
n(n —1) G n(n —1) G,
1 1 1 1 2 2
= - Ta — _
Q P n—2g1+n—292 n(n—?)g3+n(n—2)g4’

TH(V) = ImR & ImP @& ImQ implies the irreducible orthogonal Singer - Thorpe -
Nomizu decomposition under the group O(n) of curvature type tensors

LV)=L1(V)D Lw (V)& L2(V), where

L1(V) ={L € L(V) with constant sectional curvature },

L1(V) ={L € £(V) with vanishing scalar curvature },

Lw (V) ={L € £(V) with vanishing Ricci tensor },

L5(V') = the orthogonal complement of Ly (V) in £{(V),

L(V) = {L € R(V) verifying the first Bianchi identity }.

Our general aprouch is motivated by this particular case.

2.3 ¢ - g - decompositions of geometrical object fields

Let (M, g) be a Riemannian n - dimensional manifold, 7,1 ; (M) the F (M )-module of
tensor fields of type (1,7 — 1) and AL_, (M) the affine F(M)-module over 7,1 ; (M),
built in the subsection 1.3.

The conformal operators P are extended to 7,' ;(M), imposing the condition
Ty, Lor € F(M), 0,7 € S, and generate a F(M )-module of invariant endomorphisms
under conformal transformations, denoted CZnv(r). We denote also with P the in-
duced transformation on the affine F(M)-modulule AL_, (M), which produces a con-
formal decomposition of this space.

Let T be the Levi-Civita connection associated to g and P a conformal projection.

We find the pair of geometrical object fields (f‘,Pf‘) of AY(M), where PT is called
the exotic conformal connection.
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For ;1 = 1,25 = 25 = —27 = —%, we obtain the pair of connections (T, P T),

where P f‘ is the conformal Thomas connection. This particular case motivates the
general method of conformal projections.

Taking into account the study made in the vectorial case, one gets
Theorem 2.3.1 There are infinitely many nonvanishing triplets P, Q, R, conformal
projections on AL(M), affine transformations of operators from
Spangiy{Ti,Zr,18,G1, .., Ga} such that P+ Q+R =17,,PQ = QP =RQ = QR =
0, which produce the splitting AL (M) = ImP & ImQ & ImR.
Theorem 2.3.2 Let (M,g) be a Riemann space.

We consider P = x11; + x21> 4+ xglg + ©7G1 a conformal projection on A% (M),
4 4

T =wnl +yrlr + ysIs + Zzigi;T, = yizl + y'717 + yézs + Zzigz conformal
=1

i=1
projections on AY(M) and R = I, — Iy affine transformation on AL(M). Let

o r
(A, A) be a pair from AL (M) associated by the rule AT, = 5 stl +TI7. . T to the
x

pair (IO‘,F) from AL(M), where Io‘ is the Levi-Civita connection corresponding to g,
and P 10‘: r,

(;{, R) be a pair from AL(M) containing the curvature tensor field associated to T

and the exotic curvature tensor field associated to P IO‘: r,
C be the exotic conformal Weyl curvature tensor field.
The diagrame

T |
{ {
A A
(*) R IR
R R
T\, ST
C

is closed for the next cases

1
a) P=1, — —L, T =T’ arbitrary conformal projections on AL(M);
n

1
b) P=—1Iy, T'=0,T arbitrary conformal projections on AL(M);
n
1

1
C}P211+1'2I2_(1+n1'2)16;m2#_577—:7—,:0 OTT:T’Zzl—n_IZ7+
1
Ta:
n_1 8 . 1
d)P:1'2I2+(1_nm2)I67m2#E)T:TIZO OTT’ZO andezl_n_IZ'T"_

1

Z.
n—1"%
1 , 1 1
e)P:II_EI2+~T616—$6G1,T:T:Il— _2I7+ _2184-
1 1 1 1
+ Gi — Gs + Gz — Ga.

n—2 n—2 (n—1)(n-2) (n—1)(n-2)
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Moreover, the diagrame reflects an invariance of gauge type of the exotic conformal
Thomas connection and the exotic conformal Weyl curvature tensor field with respect
to the orthogonal group.

Proposition 2.3.1 The conformal Weyl curvature tensor field is invariant to in-

finitely many transformations of exotic conformal connections T’ £)1",P =1 -

1
EIQ + 26l — G, x6 € .7:(M)

For z¢ = —% one finds P f‘: I, the conformal Thomas connection. This extension
of the known properties of the conformal Weyl curvature tensor illustrates strikingly
the generality of our method.

The study of the invariants and the geometrical interpretation of the results for
the general diagram (x), built with operators generated by all elements of the bases
from CZnv(3) and CZnwv(4) remain an open problem.

3 Pairs of geometrical object fields via
H- projective invariant operators

The decomposition problem in holomorphically projective geometry was studied in
[29]. We continue the research in this direction introducing the algebra of H-projective
invariant operators.

3.1 Algebra HInv(r) of H-projective invariant operators

Let V be a real n-dimensional vector space, n = 2m and T} (V) 'the vector space of
tensors of type (r,r) on V. Using the Kronecker symbol § = (d;) and the complex
structure J = (J; *) of V we define the vector subspace

HIno(r) =4 Y w870 .60+
ocES,

+ Z Tordj e J; - "’(2)5;:;) ) ;;((Tr)) | 25,257 € R,0,T €S, p
T(1)<7(2)
where S,. is the group of permutations ( H is the abbreviation from ”holomorphic”).

Every element P € HInv(r) is an invariant tensor with respect to the subgroup
G={AeGL(V)AJ =JA} (ie. VA€ G,Ao P = P ). We interpret every tensor of
HInv(r) like an endomorfism on T}'_;(V'), so HInv(r) is a real algebra the algebra
of absolut invariant tensors Inv(r) being a subalgebra.

Every P = {P!*7,} € HInv(3) is an endomorphism on T3 (V'), having the sim-
plified expression P = 2?21 xil; + E;il zj+eH;, where {I1,...,Is,Hi,..., Hig} is
the basis in HInwv(3).

For r = 4, every element of HIm;(4) is written in the basis {Z1,...,Zo4, Hi,-. .,
Higa} like P = 7 yiZi + 2144 . If the Ricci tensor is symmetric, then an
operator P € Span{Il,L,Ig,’Hl,.. ’Hg} produces the H - proiective curvature
tensor field. These operators appear during the study of some close diagrame, which
reflects an invariance of gauge type of the exotic H-proiective J-connections and the
exotic H-proiective curvature tensor fields.
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For geometrical reasons we study in detail a subalgebra in HInwv(4), namely
& = Span{Zy,Z7,Zs, H1, Hs, Hs, He, H7, Hs }. Indeed, the K - curvature tensor fields
are generated by certain operators from the subalgebra €. If P € Span{Z,,Z7,Zs,
Hi,...,Hs} is a H - proiective projection, then P € £.

Endowing £ with a structure of Lie algebra, all the subalgebras are Lie subalgebras.

It is interesting to analyse the infinite family of H-proiective projections, in par-
ticular of E and &, where E = Span{Iy, I, Is, Hy, Ho}, which aroses in the study of
some geometrical object fields. Indeed, the affine transformation of a projection from
HZnwv(3) produces a symmetric H-projective J - connection. Moreover, the space
of tensors of K - curvature type is connected with the subset of projections of the
subalgebra &.

3.2 4-J-decompositions of geometrical object fields

Let (M,J) be an almost complex n-dimensional manifold (n = 2m) and T,} | (M)
the F(M)-module of tensor fields of type (1,7 — 1). Any H-proiective operator P on
T} (M) is extended to 7,1, (M), imposing the condition z,,z,, € F(M),o,7 € S,
and generates a F (M )-module H-proiective invariant tensor fields, denoted HZnuv(r).

Let AL_; (M) be the affine F(M)-module over 7,' ; (M), built in the subsection
1.3. We denote also with P the affine transformation induced on the affine F(M)-
module AL_, (M).

If T € C, the space of affine connections, one gets the pair of geometrical object
fields (T, PT') from A3(M). In the set of J-connections we determine properties of
J-connections compatible with a Hermitian metric and in particular we study the
case of the Kéhler manifolds.

Theorem 3.2.1 Let (M,g,J) be a Kdihler manifold. The H-proiective projections
P € E which produce pairs of geometrical object fields (IO‘,F =P IO‘), where IO‘ is the
Levi-Civita connection and T' a J-connection are

P = Il,P = Il +£L’2I2 +£L’6I6 + (]. + nxo +1‘6)H1 — :L’QHQ y

P=0,P=ux3l>+ xz¢lg + (1 — NTo — ZUﬁ)Hl —x2Hy, 3,26 € .7:(M) .

Remark 3.2.1 In the particular case xs = x4 = —x7 = —2g = o 1= 1

one gets the pair of connections (f‘, P f‘: '), where I is a J-connection H-projective
related with the Levi-Civita connection and P = I; — #2(]’2 + I — H7 — Hg) is

the unique H-projective projection which applies f‘ to the symmetric J-connection
r=Pr.
Let (M,g,J) be a Kdhler manifold and Lx (M) the F(M)-module of K-curvature
tensqr ﬁeldsh i.e. the set of tensor fields R;kl of type (1, 3) verifying
1) R;’kl + R;'lk =0, 2) Rijkl + Rjikl = 0, where Rijkl = gsist'kl,
3) ZCR;-M = 0 (Bianchi I), 4) R, J, * = J,"R?,, (Kahler identity).
Jokol
Theorem 3.2.2 There are infinitely many endomorphisms
P € Spanyn{Ti, Ir,Is, "1, - . . , Hs} in HInv(4),
such that P apply Lk (M) into Lx(M).
Corollary 3.2.1 The H-projective projections P € £ defined on Li (M) are
P =11 +y:Z7 + ysLs + viH1 +v3sHs + vsHs + viHe — ysHr — yrHs, where
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a) % +nyr +ys — v = 0,vs arbitrary; b) yr =ys =v; =v3 =0
and the supplementary projections
Q =yrLr + ysTs + viH1 + vsHsg + v3Hs + viHe — ysHr — yr Hs, where

a) nyr+ys —v; = %,v;; arbitrary; b) y; = ys = v1 = v3 = 0. Moreover, PR = y1 R
and these operators are symmetric with respect to the induced inner product on
Lk (M). Also, for every projection, one gets Lx (M) = ImP, ImQ = 0.
Remark 3.2.2 If

n n 1 n

n
73:Zl_n2—4z7+n2— n2—4H1_n+2H2+n2—4
1 2 2 2

+n+2H4+ n2—4H5 - n2—4H6_ n2—4H7+ n? —4rH8
and R € L% (M), then PR is the H-proiective curvature tensor field and PR €
L% (M), the set of (1,3)-tensor fields verifying 1), 3), 4).

Hence L% (M) = ImP & KerP, where ImP = {L € L) (M) with vanishing Ricci
tensor field }.

We determine some pairs of geometrical object fields from AL (M), respectively
AL (M) associated by affine transformations of certain H-projective operators from
HZInwv(3), HInv(4), generalizing properties of J-connections H-projective related with
the Levi-Civita connection and of the H-projective curvature tensor field.
Theorem 3.2.3 Let (M, g,J) be a Kdihler manifold and

P = 561[1 + CEQIQ + 376[6 + CE7H1 — CIZQHQ,P = y111 + y7I7 + ygzg + 1}17‘[14‘

+voHo + v3Hs + vaHye + v5Hs + veHe + v7HT + v8Hs

T =211 + 21Z7 + 23T + wiH1 + waHa + wzHsz + waHye + wsHs + weHe+

+wrHr +wgHg, R =711 — I»
affine transformations on A(M), respectively AL(M).

There are infinitely many H -projective projections P and H-projective transfor-
mations P, T such that next diagrame

Ha+

LA
{ {
A A
(*) R IR
R R
™ P
H

is closed where .
(D, = PT) is a pair from AY(M), T is the Levi-Civita connection and T the ezotic

J-connection H -projective related with f‘,

o ° 3Fr
(A, A4) is a pair from AL(M), associated to (T',T), by the rule A", = W‘;l +I7 I,
(;{, R) is a pair from AL(M), R being the curvature tensor field associated to IO‘, R
the exotic curvature tensor field associated to I,
H the exotic H-projective curvature tensor field.

In the particular case
P :Zl - n2TL_ 41-7 + TLZTL_

n 1 n
Zg—nz_ 7‘[1-n+27'[2+ _47'[34-

4 4 n?
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1 2 2 2 2
Tl t n2—4H5_ n2—4H6 B 112—4%7+ n2—4H8'
one gets PR the H-projective curvature tensor field. The H-projective projection

P=1I- #2(12 + I — H, — H>) produces the pair of connections (f‘, P f‘: '), where

' is the J-connection H-projective related with f‘ If T = P we find again that the H-
projective curvature tensor field is invariant under the H-projective transformations
of .J-connections.

It remains an open problem the geometric interpretation and the study of the
generale diagrame (%) built with operators generated by all elements of the bases of
HInv(3) and HInv(4).

4 Pairs of geometrical object fields via
conformal holomorphic invariant operators

The complete decomposition of K-curvature tensors [32], [26], [19] characterizes spaces
of constant holomorphic sectional curvature. Introducing the algebra CH Inv(r) of
0 — J — g operators, we extend the Sitaramayya-Mori decomposition and also we
determine general invariants under some transformations of geometrical object fields.

4.1 Algebra CHInv(r) of conformal holomorphic
invariant operators

Let V be a real n-dimensional vector space, n = 2m, endowed with the complexe
structure J = (J; %) and the Hermitian inner product g = (gi5), ¢ = (9%). Let
6 = (6%) be the Kronecker symbol, Ji; = J;*gp; and T (V) the vector space of
tensors of type (r,r) on V.

The triplet (4, .J, g) determines the next vector subspace

CHIno(r) = {P = i i

Jiedr J
! oc€S, !
o (1) 00 i (3) o (r)
+ 2. TorGjryinn 9’7 D0 0+
o, 7ES,, T(1)<7(2),0(1)<0(2)
g o ige) £te(3) sla(n)
+ Z xUTJJr(l) (1)JJT(2) @ 61}(3)"'6jr(r)+
o, 7ES,, T(1)<7(2)
o (1) 00 1o (3) o (r)
+ E xJTJjT(l)j‘r(2) St (2)6jr(3) "'6jr(r)+
o, 7ES,, (1)< (2), T(1)<7(2)
i i (2) i lo(a) Lo (r)
+ E I‘JTJJ'T(UJ‘T(2) er(s) to(1) glo(2)to(3) (5].7_(4)...(5]'1_“)4-
o, 7ES,, T(1)<7(2), 0(2)<0(3)
lo(1)to(2) J. lo(3) g, ) o (4) o (r)
+ > J Jiray 9ir(2)dr3) 617(4)"' )

o, T€Sy, 0(1)<0a(2), T(2)<7(3)
T, Zor €ER, 0,7 €S},
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where Ji; = J; *gr;, J9 = Jp'g", S, is the group of permutations and CH is the
abbreviation of ”conformal holomorphic”. The subspace CHInv(r) is endowed with
a structure of Lie algebra, considering any P as an endomorphism on T,!_; (V).

Any element P € CHInv(r) is invariant with respect to the group G, where
G=Cco(V)NSp(m,V)NG, G={AeGL(V)|AJ = JA};VA€G, AoP =P.

We should remark that CHInv(r) contains the subalgebras Inv(r), CInv(r) and
HInv(r). Hence the d-operators, the d-g-operators and the d-J-operators belong to a
much more general algebra of §-J-g-operators.

For r = 3, the algebra CHInv(3) is generated by the endomorphisms P =
S @il + E?Zl 246Gy + Yo TisrHe + Yoy ©3341C01 + S0, Tany s By +
22:1 m51+rKr-

For geometrical reasons one studies the subalgebra F' = Span{I;, >, Is,G1, Hy,
H,, C1}, which aroses during the developement of the theory of the conformal complex
connections on Kahler manifolds [45]. Introducing a structure of Lie algebra on F, all
its subspaces are Lie subalgebras.

In the case r = 4, any element P = {P2? "} of CHInv(4), has the simplified
expression P = Z?il yili + 23711 z;G; + Eig vpHy + 2121 wCp + ZZ; wsBs +
222:1 CEpK:p, where {Il, ...,124, gl, ceny Q72, 7‘[1, ceny 7‘[144, Cl, ceny C72, Bl, ceny 872,

Ki,..., K2} is the basis in CHInv(4).

The subset F = Span{Z,,77,7s,G1,...,G4,B1,...,B6,Hs, Hs, H11}, which con-
tains the algebra F' = Span{Z,7Z7,Zs,G1,- .., Ga, B1, B2, B3}, appears in the general-
ization of the theory of the Bochner curvature tensors on almost Hermitian manifolds.
In the infinite set of conformal holomorphic projections one projection from CHnwv(4)
produces the Bochner curvature tensor field and the affine transformation of a projec-
tion from CHnv(3) a complex conformal connection in the case of a K&hler manifold.
Remark 4.1.1 In particular, if P € F' is a conformal holomorphic projection, for
w; = we = w3 = 0, one gets a conformal projection and for z; = 290 = 23 = 24, =0
one finds a projective projection.

Theorem 4.1.1 There are infinitely many conformal holomorphic nonvanishing pro-
jections P,Q, R € F' such that P+ Q+R =7, PQ=QP =RQ = QR =0 and
TH(V)=ImP & ImQ & ImR.

4.2 ¢-J-g-decompositions of geometrical object fields

Let (M,g,J) be an almost Hermitian manifold, 7,1 | (M) the F(M)-module of tensor
fields of type (1,7 —1) and AL_; (M) the affine F(M)-module over 7,-_; (M), built in
the subsection 1.3.

The conformal holomorphic operators P on T} ;(M) are extended to T,} | (M)
imposing z,, t;, € F(M), o,7 € S, and generate a F(M)-module of invariant
endomorphisms denoted CHZnv(r). The affine transformation of P induced on the
F(M)-module AL_, (M), denoted also with P, produces a conformal holomorphic
decomposition of the space AL_, (M).

Theorem 4.2.1 Let (M, g, J) be a Kdihler manifold. The conformal holomorphic pro-
jections of F' = Spang {1, I2, Is,G1, Hi, Hy, C1 } which produce pairs of geometri-

[e] e} e} [e]
cal object fields (I',T' = P T), where T is the Levi-Civita connection and ' = P T is
a J-connection, called the exotic complex conformal connection, are
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P = Il, P = Il + 1’212 + Z’GIG + 1’7(G1 + Cl) + (]. + nry + g + 21‘7)H1 - 1‘2H2,
P = O,P = 1’2I2 + Z’GIG + 1’7(G1 + Cl) + (]. —NTx2 — Tg — 21’7)H1 - 1‘2H2.

Remark 4.2.1 In the particular case o = g = T34 = —x7 = —T13 = —T17 =
1 1
—n—+2,m1 =1lonefinds P=1, — n—+2(I2 + Is — Gy — Hy — Hy + C4) and the pair

of connections (f‘,P f‘), where P f‘ is a complex conformal connection on a Kahler
manifold (M, g, J) [45].

For r =4, let (M, g,J) be an almost Hermitian manifold and let F be the F(M)-
module generated by the operators
P=y1lh +yrlr +ysls + E?:l 2iG; + 25:1 w;Bj + vsHs + veHe + vi1Hi11-

Let R € Lk (M), Li (M) being the space of K—curvature tensor fields on M. We
define R = PR, the exotic Bochner curvature tensor field and we study the pair of
geometrical object fields (R, PR).

Theorem 4.2.2 The endomorphisms P of F applying the space Lx (M) into L (M)
are

P=unTi +y:(Zy —Zs — G1 + Go + Bs — Bs + Hs — He + 2H11 + 2Bs)+

+25(Gs — G4 + By — By + 2B3),
where y1,yr, 23 € F(M).

Remark 4.2.2 Our general approuch is motivated by the particular case y; =

1
- = ————— which d th ir of ¢ fields (R,PR), R
e CECET) which produces the pair of tensor fields (R, PR),

being the curvature tensor field and PR = R the Bochner curvature tensor field
defined for the class of almost Hermitian manifolds.
Theorem 4.2.3 Let (M, g,J) be an almost Hermitian manifold and
P=Y7_ i+ 2321 246Gy + e, TisrHe + Y, 334101 +
+ Eizl Ty2ysBs + Zizl 5140 Ko,
P =yl +yrIr +ysls + Z?Zl 2;G; + Z?Zl w;Bj + vsHs + veHe + vi1Hi,
P =yiTy + YhTr + yhTs + Yimy 21Gi + 35—y wiB;j + vhHs + v He + viy Han,
T =1, — I affine transformations on AY(M) and A (M).
There are infinitely many transformations P, P and P’ such that

r £ o7
{ {
A A
T4 LT
R R

Pl B |P

s a closed diagrame, where
(f‘, ) is a pair from AL(M), f‘ being the Levi-Civita connection and I’ = P f‘,

o o rr
(A, A) is a pair from AL (M) associated to (T, T), by the rule A”,, = %;tl +I,. I,

(R, ]c%) the exotic curvature tensor fields associated to (I‘,f‘), R = TA,]%: T /01
and 3
B the exotic Bochner curvature tensor B =P'R =P R.




Invariant Operators on Real and Complex Manifolds 83

This is a general method to determine the transformations of exotic connections
under which the Bochner curvature tensor field is invariant.

4.3 Extension of the Sitaramayya - Mori decomposition

In [26] H.Mori studied the decomposition of the space of K-curvature tensors. The
same orthogonal decomposition, for a real Hermitian n-dimensional vector space, V,
n = 2m, is determined by M.Sitaramayya [32] : Lk (V) = LL (V) LY (V) @ L2 (V),
Where

( ) ={L € Lg(V) | L with constant holomorphic sectional curvature },

W)= {L € Li(V) | L with vanishing Ricci tensor },

W) @ £2.(V) = {L € Lk (V) | Tr(L) = 0},

El x(V )EBCW( y={LeLx(V)|K(L)=A,X€R}.

The theory of conformal holomorphic operators gives a new method to get the
Sitaramayya-Mori decomposition. Studing the nonvanishing conformal holomorphic
operators from F, one finds the orthogonal decomposition.

Theorem 4.3.1 The conformal holomorphic projections P, Q, R
€ F, defined on Lx(M) such that P+ Q+R=7;, PQ=9QP =0, RQ=9QR =0
and Lx(M) =ImP &ImQ & ImR are:

1
P = n——|-2(H3 —MHa + Br — Bz + 2B3),

1
Q = Il—n—+4{[17—13—H1+H2+B4—B5+H5—7‘[6+27‘[11]—

1
- n—H[H3—H4+81+283]},

1
R = n+4{[17—13 4+ Hi1 — Ho +B4—B5+7‘[5—7‘l6+27‘[11] -
- g[m —Hy + By — Bo + 2B5]}.

Using general affine transformations of conformal holomorphic projections on
A (M) it is possible to characterize all splittings into three components of this affine
space.
Theorem 4.3.2 There are infinitely many nonvanishing triplets P, Q, R, confor-
mal holomorphic projections on AL (M), affine transformations of operators from
Span]: {11,17,18,91, 94,81,82,83}, S’LLCh thatP—l—Q—f-R:Zl,PQ = QP =
0,RQ = QR 0. Moreover AY(M) = ImP & ImQ @& ImR,

4

3
P=T1+yiZr +ysIs + Y z:Gi + Y, w;B;,
i=1

Y7 + 22 Ys + 21

Q = —yrlr —ysls — 21G1 — 2G> + Gs + - G4,
3
+ 2z +z
R = —<Z3+ u>g3 - <Z4+M>g4 —ZwiBi,
n n Pt

where 1 +ny7 +ys + 21 =0, 22 +nz3 + 24 + w1 + w3z = 0, we being arbitrary.

The F(M)-module of invariant (r,r)-tensor fields Znwv(r),CZnv(r),
HZInv(r),CHInv(r) were built interpreting every element as an operator on 7,1, (M),
which has affine induced transformations on the affine (M) - modulule AL_, (M)
of geometrical object fields of type (1,7 — 1). It is possible to built another algebras
considering any operator as an endomorphism on 7,°(M) (the multiplication PQ
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being given by the rule P;'"@4'“ ), having an affine transformation on an affine
J1---Jr Yk1.. kn /0

F(M)-module A%(M) of geometrical object fields of type (0,r), defined similar with
AL (M),

We should remark that it is worthwhile to study also the cases r = 2 or r = 6.
Indeed R- R, Q(g, R), the tensor fields which characterize the pseudo-symmetry or the
semi-symmetry property are produced by affine transformations on A3(M) of some
absolut invariant operators of Znv(6). Also, the Obata operators © and ', which
determine the pairs of linear connections compatible with certain G-structures are
built by some affine transformations on A3 (M) of conformal invariant operators of
CInv(2).

Particular projective projections, defined using the representation theory, were
studied in [22], illustrating that there is a connection between the subgroups of the
permutation group S, and the corresponding subalgebras of operators, built using our
theory.

5 Geometry of pairs of connections

5.1 Geodesically and subgeodesically related manifolds

Spaces with constant curvature and Einstein spaces geodesically related were stud-
ied in [43]. Properties of recurrent and birecurrent spaces geodesically related were
obtained in [41], [28]. In [5] appeared another direction of study on Riemannian man-
ifolds. Pseudo-symmetric spaces, which verify

(*)R- R and Q(g, R) are linear dependent at every point of M,
represent a natural generalization of the semi-symmetric manifolds (R - R = 0) [34]
and arrose during the study of the totally umbilical submanifolds of semi-symmetric
spaces, as well as during the consideration of geodesic mappings. The condition (x) is
equivalent to

R-R=LQ(g,R) , L being defined on the set U = {x € M | R # R(1) at z},

1
R(1) = m(% - G4)R,

defb daefb db dab
(R- R)hijklm = (6I(J;ig'elcflrfb - 511?]'61{172 - 52{;1@172 - 6Z{jkalrfb)(ci (R® R))abcdef:
C} being the contraction of the (1,7)-tensor R ® R,
defcb bd db bd
(Q(9, R))nijhim = (055 — Opashin — apacts — gpaclie —
_6cdafeb _ 6cdafbe _ 6cdeafb _ 6cdeabf)(g ® R)abcdef-

hijklm — %hijkim — Chijkim ~ Ohijkim
Replacing the Riemann tensor with the conharmonic tensor,

1
Z =1 - m(17 —Ts — G1 + G2)]R, one gets the tensor R-Z.If R-Z = 0, then

(M, g) is a conharmonic semi-symmetric space (or Z-semi-symmetric).
For A, D symmetric tensors of type (0,2), we define
(R~ Anije = (=05z57 + 0776 (C1 (A @ R))aved,
Q(g, D) = (53357 — Ol — 05k — 0571 (9 ® D)abed,
where C} is the contraction and ”,” is the covariant derivative with respect to g.
Two Riemann spaces V,, = (M, g) and V,, = (M, ) are &'-subgeodesically related,
the tensor of correspondence being —g;;, if the Yano formulae are satisfied
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where v; si € are the components of a 1-form, respectively vector field. This is equiv-
alent with the existence of a difeomorphism f, called subgeodesic map, between these
two spaces, which applies the &‘-subgeodesics into the ¢'-subgeodesics.

V,, and V,, are trivial subgeodesically related if ¥; — & =0, Vi € {1,....,n}.

If ¢ = 0 then V}, and Vj, are geodesically related and the Yano formulae become
the Weyl formulae. If ¥;; = fg;;, where f € F(M), then V, and V,, are special
geodesically related. The correspondence is trivial if ¥; =0, Vi € {1,...,n}.

1
The Weyl projective curvature tensor field W = [Z; — 1 (Z7 —I3)]R is invariant
n—
under geodesic maps.

We study Riemannian manifolds geodesically related with conharmonic semi-
symmetric spaces and also pseudo-symmetric manifolds subgeodesically related.

Theorem 5.1.1 Let V,, = (M, g) and E = (M,g), n > 3, be nontrivial geodesically
related Riemannian manifolds. If V,, is Z-semi-symmetric, then V,, and V,, are spaces
with constant curvature or the geodesic correspondence is speciale.

Theorem 5.1.2 Let V,, = (M,g) and V,, = (M,3), n > 3, be nontrivial geodesically

related Riemannian manifolds. If Vi, is a space with irreducible curvature tensor field
and Vy, is Z-semi-symmetric, then V,, and V,, are spaces with constant curvature.
Theorem 5.1.3 Let V,, = (M,g) and V,, = (M,g), n > 3, nontrivial £'-
subgeodesically related Riemannian manifolds, the tensor of correspondence being —g.
If Vi, is a space with irreducible curvature tensor field and V., is Z-semi-symmetric,
then V,, = (M,g) and V,, = (M, = €**g) are spaces with constant curvature.
Theorem 5.1.4 Let V,, = (M,g) and V,, = (M,g), n > 3, be £ -subgeodesica-lly
related Riemannian manifolds, the tensor of correspondence being —g, such that Epy, =
0, where &pr, = En gk — Enér + %{ifighk. If V,, = (M,g) a conharmonic semi-symmetric
space and with irreducible curvature tensor filed, then V,, = (M, g) is Einstein space.
Theorem 5.1.5 Let V,, = (M,g) and V,, = (M,g), n > 3, be two Riemann spaces
&' -subgeodesically related, the tensor of correspondence being —g, such that B =
%Tr(B)g, where B is the (0,2)-tensor field having the components Brs = & s — &:&s.

If V,, is a pseudo-symmetric space, then V, is a pseudo-symmetric space.

Theorem 5.1.6 Let V,, = (M,g) and V,, = (M,g), n > 3, be £ -subgeodesically
related Riemannian spaces, the tensor of correspondence being —g.

Then R -g = Q(g, F), where F is the symmetric tensor of type (0,2), having the
components Fij = i — &j — (i — &) (¢; — &), where 7;” represents the covariant
derivatives with respect to the metric g.

Proposition 5.1.1 Let V,, = (M,g) and V,, = (M,3), n > 3, be £'-subgeodesically
related Riemannian spaces, the tensor of correspondence being —g.

If V,, is a pseudo-symmetric space, the map L which satisfies (¥) on U is constant
and Fij = fgij + hg;;, where f,h € F(M), h being nonzero, then the relation

T+h) |9~ £@9)7) =0
holds on the set U.
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5.2 Semi-symmetric connections on Weyl generalized
manifolds

Let (M, g) be a Riemannian space, n-dimensional, f € F(M) be a nowhere vanishing
function, § = {e*g|\ € F(M)} be the conformal structure generated by g and and
the Weyl f-structure W/ : g~ A (M), where W/ (e*g) = W/ (g) — fd\, VA € F(M),
A (M) being the space of the 1-forms on M. Weyl generalized manifolds (M, g, W)
are a natural extension of Weyl spaces (M, g, W), obtained for f =1 ([2]).

A linear connection V on M is compatible with the Weyl f-structure W/ and
associated to the 1-form w if

(Vixg) (Y, Z) + W (g)(X)g(Y, Z) + w(Y)g(X, Z) + w(Z)g(X,Y) = 0.

V is called o-semi-symmetric connection if T'(X ,Y) = o¢(Y)X —0(X)Y , where o
is a 1-form and T is the torsion tensor.

We study semi-symmetric connections on Weyl generalized manifolds.
Theorem 5.2.1 Let (M, §, W7) be a Weyl generalized manifold. There exists a
unique o-semi-symmetric connection compatible with the Weyl f-stucture and associ-
ated to the 1-form w, where g, f, W/ (g),w are given, determined by

VexY =Vyx Y+ 30 (g)(X)Y + (307 (9) + fo) (V)X - (X, V)

(3w () + o -)"

% being the Levi-Civita connection associated to g.
Theorem 5.2.2 If n > 2, then the tensor field

i ki 1 mi * K mi * K
Djy = Ry — 5= {ij <R mi mgmz> - 2 ( mk m%m)} :
* 7

. Y 1 i _ ps *
where K is the scalar curvature, Rjkl = Rjkl —ﬁéthk, Bpr, = R%,,., Rjk = Rjki and

1
Q= §(I®I—g®§), is an invariant under the transformation of a o-semi-symmetric

connection, compatible with Weyl f-structure W7 into the G-semi-symmetric connec-
tion V, compatible with the Weyl f-structure Wf.

We should remark that this invariant is produced by an affine transformation on
AL (M) of an operator of CZnv(3).

The invariant tensor D characterizes the flatness of the Weyl generalized spaces.
Theorem 5.2.3 Let (M, §, W/ )be a Weyl generalized manifold, ¥V semi-symmetric
connection, compatible with the Weyl f-structure W7. Then

1. There exist local the 1-forms p and q such that the space endowed with the
semi-symmetric connection given by

(5.2.1) VixY =VixY +q(Y)X +p(X)Y — g(X,Y)q*
is flat;

2. The tensor D is vanishing
are equivalent.
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