Strong Morphisms of Groupoids

Gh. Ivan

Abstract

We reffer to the groupoids in the sense of Ehresmann. The aim of this paper
is to give some various topics of strong morphisms of groupoids.
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Introduction

The concept of groupoid in the sense of Ehresmann is a natural generalization of the
algebraic notion of groupoid introduced by H. Brandt in the paper: Uber eine Verall-
gemeinerung der Gruppenbegriffe, Math. Ann., 96 (1926), 360-366.

The notions of topological and differentiable groupoids has been introduced by
Ehresmann in 1950 in his paper on connections ( cf. [4] )

Many authors have investigated the Lie groupoids ( in particular, symplectic
groupoids) in connection with their applications in differential geometry, symplectic
geometry, Poisson geometry, quantum mechanics ergodic theory , geometric quanti-
zation and gauge theories ( cf. [1], [11] - [15], [17] - [20] ).

Recent applications of Lie groupoids endowed with supplementary structures have
also contributed to a renewed interest in these studies.

In this paper we study a special case of groupoid morphism, namely: strong mor-
phism of Ehresmann groupoids.

Other special morphisms of groupoids are the following;:

- similar morphisms of Brandt groupoids ( these morphisms are used in [7] for
construct a cohomology theory of Brandt groupoids which extends the usual coho-
mology theory of groups;

- pullback, fibrewise injective ( resp., surjective, bijective ) and piecewise injective
( resp., surjective, bijective ) morphism of groupoids ( for various topics concerning
these special morphisms see [9] ).
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1 Morphisms of groupoids

In this section we construct the category of Ehresmann groupoids and some important
properties concerning the morphisms of groupoids are given.

Definition 1.1. ([15]) A groupoid (in the sense of Ehresmann) I" over I'y or groupoid
with the base I'g, is a pair (I'; T'g) of sets equipped with:

(i) two surjections «, 8 : ' —» Ty, called the source and the target map;

(ii) a (partial) composition law p : ['(9) — T, (2,y) — p(z,y) = v -y = xy, with
domain I'¢p) = {(z,y) e T x T | B(z) =a(y)};

(iii) an injection € : Ty — I',u — €(u) = @, called the inclusion map;

(iv)amapi:T — T, z — i(z) =271, called the inversion map.

These maps must satysfy the following algebraic axioms generalizing those of
groups:

(G1) (associative law) For arbitrary x,y, z € [ the triple product (zy)z is defined
iff £(yz) is defined. In case either is defined, we have (zy)z = x(yz) ; hence, the
triple zyz is defined whenever f(z) = a(y) and S(y) = a(z).

(G2) (identities) For each x € T' we have (e(a(x)),r) € [(ay; (z,€e(8(x)) € ['(2) and
e(ale) -7 =z - e(Bx)) =@

(G3) (inverses) For each x € T' we have (z,i(x)) € D();(i(z),z) € T'(2 and
z-i(2) = e(B(@)), i(2) @ =ec(a@) A

Every group G with e as unity, is a groupoid over Gy = {e}.

We denote a groupoid I" over 'y by (T, a, 8,€,4, u; Tg) or (T, e, 8;T0) or (I'; ).

For each u € T, the set T, = a t(u) (resp. ['* = 371 (u)) is called the a-fibre
(vesp. B-fibre) of T over u € T'y and if u,v € ', we will write ' =T, N T'".

A groupoid T" over T’y such that Iy is a subset of I is called ['y-groupoid or Brandt
groupoid.

We summarize some properties of these mappings obtained from definitions.
Proposition 1.1. Let I be a groupoid over I'y. The following assertions hold:

(i) xce= P oe=Idp,.

(i) a(ry) = a(z) and Bzy) =py) forall (z,y) €l

(

(

—~

2)-

iii) €(u) - €(u) = €(u) for each wu € Ty. :

iv) Let u,v € T'y. We have:

(a) if (x,€(u)) € T'(2) such that x - e(u) = = then e(u) = €(B(x)).
(b) if (e(v),x) € ') such that €(v) - z = x then e(v) = e(a(x)).

(v)Forallz €' wehave fB(z7!')=a(z) and a(z™!) =73z

(vi) Foru € Ty we have (e(u))™! = e(u).

(vil) ¢oi=f, Boi=a and idoi=Idp.

(viii) For each u € T, the set I'(u) = a~!(u) N B~ (u) is a group under the
restriction of the partial multiplication (this group is be called the isotropy group at
u of the groupoid I').

(ix) In the case 'y C T, we have:

(a) 6(F0) = Fo.
(b) €(u) =u, foreach u e Ty A

In view of Proposition 1.1., the element e(a(z)) (resp. €(B(z)) ) is the left unit
(vesp., right unit) of x € I'. The subset €(I'y) is be called the unity set of .
Definition 1.2. (a) A groupoid I" over Ty is said to be transitive if the map a x § :
' — Ty x Tg, given by (a x 8)(z) = (a(z), B(z)), (V)z € T is surjective.

~
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(b) By group bundle we mean a groupoid I' over I'y such that a(z) = g(z) for
each x € I'. Moreover, a group bundle is the union of its isotropy groups I'(u) =
a~!(u),u € Ty (here two elements may be composed iff they lie in the same fiber.) A

If (T, a, ;1) is a groupoid over 'y, then Is(T')={z €T | a(z)=p(z)}
is a group bundle, called the isotropy group bundle associated to I'. It is easy to see
that €(T'o) C Is(T).

Proposition 1.2. If (T, a, 8;T9) is a groupoid, then the following assertions hold:

(i) (cancellation law) If - zy = x - 29 (resp., z1 - = zo-x) then 2z = 2».

(ii) If (z,y) € Tpy then (y~',a7')elp) and (z-y)~'=y~'-z7h

(iii) The isotropy groups I'(a(z)) and I'(8(x)) are isomorphic.

(iv) If T is transitive, then the isotropy groups of I' are groups isomorphes.
Proof. (i) and (ii) These assertions follows from definitions.

(iii) We prove that the map ¢ : I'(a(z)) — T['(3(z)),a — ¢(a) =z-a-z7'isa
isomorphism of groups.

(iv) It follows from (iii) and the fact that a x §: T' — Ty x [y is surjective. A
Example 1.1. (a) Nul groupoid. Any set B is a groupoid on itself with I' = Ty := B,
a = f = € := idp and every element is a unity, called it the nul groupoid. The
multiplication is given by z -z := x for all z € B.

(b) Coarse groupoid. If B is any non-empty set, then B x B is a groupoid over B
with the rules:

a(e,y) = z; B(z,y) = y;e(x) == (v, 2), i(z,y) = (y,2)

and
w((z,y), (Y, 2)) = (2,2) iff y=y"

The unit set of this groupoid, called it the coarse groupoid associated to B, is the
diagonal Ap of the cartesian product B x B.

(¢) Trivial groupoid. Let B be any non- empty set and G be a multiplicative group
with e as unity. Construct a transitive groupoid I' over B, called the trivial groupoid
on B with group G, in the following way:

''=BxBxgG; I'y:=B; alabz):=a; pabz):=b; eb):=(bb,e);

i(a,b,2) == (bhya,a ') and p((a,b,a),(¥,e.y) = (a,cay) i b=V

For this groupoid we have
e(To) = {(b,b,e) | be B} and T'(b)={(bbx) | =€g},

which are identified with B resp. G.

If G = {e}, then we can identify B x B x G with the coarse groupoid associated
to B.

(d) A vector bundle E " M is a group bundle on M. Here I := E is the total
space, ['g := M is the base space, @ =  := 7 so that I'(s) := W, Er X B, ( E, is
the fibre at x ) and the composition law is fibrewise addition.A

Other examples of groupoids are the following: the fundamental groupoid of a
topological space ( see [6]), the disjoint union of a disjoint family of groupoids ( see
[9] ) and the action groupoid ( see [13] ).
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Definition 1.3. Let (T', o, 8,¢,i, u; o) and (I, o/, B, €,i', u'; T'y) be two groupoids.
A morphism of groupoids or groupoid morphism is a pair (f, fo) of maps f: T — I
and fp : [y — Ty such that the following two conditions are satisfied:

(1) flu(z,y)) = p'(f(x), fly)) for every (z,y) € T(y)

(2) @of=fooa and B'of=fyopB.A

If To =T and fo = Idr,, we say that f is a I'p- morphism.A

Note that the condition (1) ensure that (f(z), f(y)) € F’(Q), ie. u'(f(x), fly)) is
defined whenever p(z,y) is defined.

Applying Propositions 1.1 and 1.2 we obtain:
ProposiEi\(ln 1.3. The groupoids morphisms preserve unities and inverses, i.e.
f@) = fo(u), MueTy and f(z7!) = (f(z))~!, (V)z € T;in other words,
we have: foe=¢ofy and foi=iof A
Proposition 1.4. A pair (f, fo) : (I';To) — (I'"; () is a groupoid morphism iff the
following condition holds:

3) M(w,y) €Ty = (f(@),fW) €Ty and  f(ulx,y)) = p'(f(2), f(y))

Proof. The condition (3) is a consequence of Definition 1.4. and Prop.1.3.
Conversely, let f : T' — T which satisfy (3) and we define the map fy : Ty — T},

by fo(u) = o' (f(e(u))), (V)u € Ty. We prove that o'of = fooa and S'of = fpof.
Indeed, since (z,€(5(z))) € 'z it follows that (f(z), f(e(8(x)))) € [, and

f(@) - f(e(B(x)))) = f(z - e(B(x))) = f(=); but f(z) - € (' (f(2))) = f(2);
= ¢ (B'(f(@)) = f(e(B(x)) = o/ (€'(B'(f(2)))) = ' (f(e(B(x))))

and applying Prop.1.1. we obtain succesivelly

B'(f(x)) = (foe a)(e(B(x)) = B'(f(x)) = fo(B(x))

i.e. 8’ o f = fo o 5. Similarly we prove that o' o f = f, 0 . /A
Example 1.2. (a) If (T',a,,€;T) is a groupoid, then  (Idr,Idr,) is a groupoid
morphism.

(b) If (f, fo) : (T,To) — (I';T§) and (g,90) : (I',T§) — (", T§) are groupoid
morphisms, then the composition (g, go)o(f, fo) : (I, Ty) — (I',Ty) defined by
(9,90) © (f, fo) = (g° £, g0 © fo) is a groupoid morphism.A

If (f,fo): (I;Tp) — (I';T) is a groupoid morphism, then for every u,v € Ty
we have:

F(Tw) €Dy s F(0Y) C (D) and (L) € (D200
Then the restriction of f to I',,, 'V, 'Y, respectively, defines the groupoid morphisms

Ly — Dyy; I — (0O, — ()20,

denoted by f,, f* and f.
Definition 1.4. A groupoid morphism (f, fo) : (I'; To) — (I'; I}) is said to be iso-
morphism of groupoids if there exists a groupoid morphism (g, go) : (I'';Tg) — (T, To)
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with (g, go)o(f, fo) = (idr,idr,) and (f, fo)o(g,g0) = (Z.d[‘!,l-dri)). Two groupoids
(I5To) and (IM;TY) are said to be isomorphic if there exists an isomorphism
(f, fo) : (T;To) — (I';T).A
Proposition 1.5. Let (f, fo) : (I';Ty) — (I';T§) be a groupoid morphism. Then
the following assertions hold:

(i) If f is injective ( resp., surjective ), then also is fy.

(i) (f, fo) is an isomorphism iff the map f is bijective.

(if) f(Is(T)) C Is(T").

(iv) A groupoid morphism (f, fo) such that f is surjective and fy is injective ( in
particular, every surjective I'g- morphism of groupoids ) preserve the isotropy group
bundles, i.e. f(Is(T)) = Is(I'").

Proof. (i) This follows imediately from Definition 1.3. and Proposition 1.4.

(ii) It is a consequence of Definition 1.4. and of the assertion (i).

(iii) Let 2’ € f(Is(T")). Then 2’ = f(z) with 2 € I's(T') and we have

o/ () = o' (f(2)) = fola(x)) = fo(B(x)) = B'(f(x)) = B'(2"),

since a(z) = f(z); hence &’ € Is(T"). Therefore, f(Is(I')) C Is(T").

(iv) It suffices to prove that I's(I'") C f(Is(T)). Let o' € Is(I") i.e. ' € T such
that a(z") = f'(2"). For ' € I' there exists z € I such that ' = f(x), since f is
surjective. Then o'(f(z)) = f'(f(x)) and we obtain that fo(a(z)) = fo(8(z)). Hence,
a(z) = B(x), since fo is injective. Thus, z € Is(T) and z' € f(Is(T)). Therefore,
15(I") C J(I5(D)).A
Example 1.3. (a) Let (T, «, 8,¢; ) be a groupoid and (I x Ty, o/, 5',€;Ty) the
coarse groupoid associated to I'g.Then a x f : I' — Ty x Iy, (a x B)(z) =
(a(z), B(x)) is a ['p- morphism of the groupoid I into the coarse groupoid 'y x T'y.

b) Let (T', a, 8, €, 4, u; o) be a groupoid over I'yg and X a set with the same cardinal
as g, i.e. there exists a bijection ¢ from I'g to X. Then I' has a canonical structure
of a groupoid over X, that is (T, o', 8',€',i', u'; X) is a groupoid over X where o' :=
woa; ' = poB; € = cop~ ;i := poi; ' := p.Moreover, (idr,p) : ([';Tg) — (T; X) is
an isomorphism of groupoids.A
Example 1.4. (the induced groupoid) Let (T, o, 8, €;Tg) be a groupoid, X an abstract
set and f: X — [’y a map from X to I'g. Then the set:

1) =A{(z,y,0) e X x X xT' | f(z) =afa),f(y) = Bla)}

has a canonical structure of groupoid over X with respect to the following rules:

a*(z,y,a) = x; 8" (x,y,0) == y; € (2) := (z,2,6(f(2))); 1" (2,9, 0) := (y,2,i(a)),

and
w((2,y,0), (', 2,0)) := (2,2, u(a,b))
iff y=1y"and (a,b) € [(y).

The groupoid (f*(T), a*, 8%, €*, u*; Ty) is called the induced groupoid or the inverse
image of T under f; it is denoted sometimes by f*(T").

If f*(T) is the induced groupoid of " under f : X — [y then fff: f*(I) — T
defined by ffi(z,y,a) = a together with f define a groupoid morphism (ff,f) :
(f*(0);X) — () and it is called the canonical morphism of an induced
groupoid./\
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2 Strong morphisms of groupoids

This section is dedicated to study of a particular type of groupoid morphisms, namely:
the strong morphisms of groupoids. One of the most important results of strong
morphisms is the correspondence theorem for subgroupoids ( resp., for normal sub-
groupoids ).

Definition 2.1. A subgroupoid of a groupoid (I';Ty) is a pair (I';T() of subsets,
where I C T, TI{ C Iy such that the following conditions are verified:

(i) a(I") CTo;  BIY) C T

(ii) for every x,y € I such that the product z -y is defined implies that = -y € I,
i.e. I is closed under the partial multiplication.

(iii) Mu el = e€(u)el’

(iv) M)z el! = a7 lel.

A subgroupoid (I';I}) of (I';Ty) is wide if I’y = Tp. A
Definition 2.2. A normal subgroupoid of a groupoid (I';T'y) is a wide subgroupoid
N of T such that: for any A € N and any = € T such that 8(z) = a(\) = B(\) we
have z- A 271 € N.A
Example 2.1. (a) If (I'; T) is a groupoid, then €(T'g) = {& | w € Ty} is a normal
subgroupoid of T' over Ty, called the nul subgroupoid of T'.

(b) If (T';I') is a groupoid, then Is(I') = (J,cr, Iy is a normal subgroupoid of I'
over [y, called the inner subgroupoid of T'.

(c) The kernel of a groupoid morphism (f.fo) : (I';To) — (IV;T) defined by:
Kerf={zel | f(z) €€} isanormal subgroupoid of I over I'y.A
Proposition 2.1. Let (f, fo) : (T;T9) — (I';T) be a groupoid morphism. Then
the following assertions hold:

(i) If ('; Q) is a subgroupoid of (I'; T), then (f~1(Q'); £ (%)) is a subgroupoid
of (F, Fo)

(ii) If €' is a normal subgroupoid of I'', then f~()') is a normal subgroupoid of
I such that Kerf C f~1(Q).

Proof. (i) We prove that (f~1(Q'); f, *(Qh)) satisfies the conditions of Definition 2.1.

- alfmHY)) C £y Q). Indeed, if u € a(f~H()) it follows that u = a(x)
with z € f=1(). Then fo(u) = fola(z)) = o/(f(z)) € Qf, since f(z) € Q' and
o (V) C Q. Hence, u € f5 ' (Qf). Similarly,  S(f~1()) C f3 ().

- Let z,y € f~1(Q) such that = - y is defined, i.e. 8(z) = a(y). It follows that
f(x), f(y) € @ and §'(f(x)) = fo(B(x)) = fola(y)) = o/(f(y)); hence, f(z) - f(y) is
defined in I'". Then f(x) - f(y) € ', since ' is subgroupoid. Then f(z -y) € ', i.e.
x -y € f1(Y).Therefore, the condition (ii) of Definition 2.1. is verified.

- For every u € f; }(%) we have e(u) € f~1(Q'). Indeed, fo(u) € Q) and we
have € (fo(u)) € €, since ' is subgroupoid. Then f(e(u)) € ', i.e. e(u) € f~1(Q).

- For every x € f71('), we have z~! € f=1(Q). Indeed, from f(z) €
follows (f(x)) "t € ', since Q' is subgroupoid. Then f(z~!) € ', ie. 271 € f1(Q).

(ii) In view of (i) follows that f~1(Q';Ty) is a subgroupoid of (T';T).

Let A € f~5() and = € T such that 8(z) = a(\) = B()\) and we prove that
z-A-z7t e fHY).

Indeed, we have £() € @ and B'(f(x)) = fo(B(x)) = fola(\) = a'(f()) and
B(£(@)) = folB(x)) = fo(BO)) = B(FIN). From f(N) € @, B'(f(2)) = o/ (f(N)) =
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B'(f(N\)) and the fact that Q' is normal in I follows f(z)- f(\)-(f(z)) "t € Q. Hence,
flz-X-z e, iez-X-z7! € f71(Q). Therefore, f~(9') is normal.

- We have Kerf C f='(Q'). Indeed, for z € Kerf, we have f(z) = € (u') with
u' € T, and by the condition (iii) of Definition 2.1. follows €’(u') € Q. Then f(x) € ',
ie.z € f71(Q). A
Corollary 2.1. Let f : I' — I be a [y- groupoid morphism. Then the following
assertions hold:

(i) If (U'; Q) is a subgroupoid of (T';Ty), then (f~1(Q'); fo *(Qh)) is a subgroupoid
of (I';To).

(ii) If Q' is a normal subgroupoid of T', then f=1(Q') is a normal subgroupoid of
T such that Kerf C f=1().
Proof. We apply the Proposition 2.1.A
Remark 2.1. If (f, fo) : (I;To) — (I';T) is a groupoid, then not always, Imf =
{f(z) | x €T} is a subgroupoid of I'". For example, let

I = {(0,0); (0,1); (1,0); (1,1)} = B x B

the coarse groupoid associated to set B = {0,1} and let the map f : ' — Z defined
by f(0,0) = 0; f(0,1) = 1; f(1,0) = —1; f(1,1) = 0. W e denote by fo : B — {0}
the map defined by fo(0) = 0 and fo(1) = 0. We can prove easily the conditions of
Definition 1.3. are satisfied for the pair (f, fo) of the coarse groupoid I' over B into
the group additiv Z of entiers numbers over {0}, having Imf = {0, —1,1} which is
not a subgroup of Z. Hence Imf is not a subgroupoid. A

Definition 2.3. A strong morphism of groupoids or groupoid strong morphism is a
groupoid morphism (f, fo) : (I;I') — (I'';T§) such that the following condition
holds:

(4) for every  (f(z), f(y)) € {5y wehave (z,y) € 2.2

Remark 2.2. The concept of strong morphism has considered by A. Ramsay ( cf.
[18] ) in the case of Brandt groupoids, called it true morphism of groupoids. A
Remark 2.3. If (f, fo) is a strong morphism of groupoids, then

Fui Ty — T f7 1TV — (D)W and £ T — (1)l

= =

are also strong morphisms of groupoids. A
Theorem 2.1. (i) If (f, fo) : (I;To) — (I';T4) is a groupoid morphism such that
the map fo is injective, then (f, fo) is a groupoid strong morphism.

(ii) Every I'o- morphism of groupoids f : T' — T is a groupoid strong morphism.
Proof. (i) We suppose that (f(z), f(y)) € 1"’(2), with 2,y € I'. Then

B'(f(z) = o' (f(y))=(B" o f)(z) = (&' o f)(y)=(fo o B)(z) = (fo o a)(y)=

= fo(B(x)) = folaly))=B(z) = aly)(since fo is injective)==(z,y) € ['y).

Hence (f, fo) is a groupoid strong morphism.

(ii) This is a consequence of (ii), since fo = Idp,. A
Example 2.2. (i) The morphism a x §: T' — 'y x 'y, given in Definition 1.2., is a
groupoid strong morphism.
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(ii) The canonical morphism (ff, f) of induced groupoid f*(T') of T by f: X —
[y is not a groupoid strong morphism. A
Proposition 2.2. Let (f, fo) : (I';T) — (I'';T}) be a groupoid strong morphism.
Then the following assertions hold:

(i) If (Q;9Q0) is a subgroupoid of (I'; T'y), then (f(22); fo(Q0)) is a subgroupoid of
(T";T4). In particular, Imf is a subgroupoid of I over I'm fj.

(i) If f is surjective and Q is a normal subgroupoid of T', then f(2) is a normal

subgroupoid of T".
Proof. (i) We have ( "(f(2)) C fo(). Indeed, for any u' € o/(f(2)) exists y' €
f(Q) such that v’ = « (y) For y' € f(Q) exists y € Q such that f(y) = y’. Then
u' = d(y) = (f( ) = fo(a(y)); hence u’' € fo(Q), since a(y) € Qp. Similarly,
B'(f( ) € fo(Qo).

- We have €'(u') C f(2), for all u" € fo(Qo).Indeed, for u' € fo(Qp) exists u € Qo
such that v’ = fo(u) = €(u') =€ (fo(u)) = f(e(u)) € f(), since e(u) € Q.

- Let 2 ,y € f(Q ) such that z' - y' is defined.-We prove that z' - y' € f(Q).
Indeed, ' = f(x),y' = f(y) with z,y € Q. Since, ' - y' is defined it implies that
(f(z), f(y)) € F( 2> and we have (z,y) € [y, since f is a groupoid strong morphism.
Hence z - y is defined. We have x -y € (2, since (2 is subgroupoid of I';and therefore
2y = f(z)- f(y) = f(z-y) € FQ).

- For any 2’ € f(Q2) we have (2')7! € f(Q). Indeed, 2’ = f(z), with z €
Q = @) t=(f(z)t=fl@ )€ f(Q),since z7 € Q.

Therefore (f(2); fo(Q0)) is a subgroupoid of (I'; I'y).

(ii) By (i)  (f(%); I‘O) is a subgroupoid of (I'; (), since fo is surjective.

Let A" € f(Q) and z' € T' such that 5'(z') = o'(\) = p'(\). We prove that
N ()L E F(Q).

Indeed, A" = f(\) with A\ € Q and z' = f(z) with z € T, since f is surjective. From
(f(), FOO), (fN), (f(z)~1) € (2), it follows that (z, ), (X\,z™"') € ['(z), since f is
a groupoid strong morphism. It follows that = - A -2~ ! is defined and z - A - 271 € Q,
since  is normal in T'. Hence, f(z-A-z7!) € f(Q) and

f@)-f) - f@™) = f@) - f) - (f@)™ =" X (@)™ € f().

Thus, f(2) is a normal subgroupoid of T'. A
Corollary 2.2. Let f : T' — I" be a I'g- morphism of groupoids. Then the following
assertions hold:

(1) If (©;Q0) is a subgroupoid of (T;Tg), then (f(Q); fo(Qo)) is a subgroupoid of
(T";To). In particular, Imf is a subgroupoid of T' over Imfy.

(i1) If f is surjective and Q is a normal subgroupoid of T, then f(Q) is a normal
subgroupoid of T".

Proof. We apply Theorem 2.1.(ii) and Proposition 2.2.A

If (T;T) is a groupoid, we denote by S(I';Tg) ( resp., N(I') ) the set of the
subgroupoids ( resp., the normal subgroupoids ) of (I'; T'y).

If (f,fo) : (I;Tg) — (I';T) is a groupoid morphism, we denote by S(I'; ) (
resp., J\N/(F) ) the set of the subgroupoids ( resp., the normal subgroupoids ) of (I; Ty),
which contains the kernel of f, i.e.:

SITTo)={Q | Q s a subgroupoid of (I';To) such that Kerf C Q}
NT) ={Q | Q isanormal subgroupoid of T such that Kerf C Q}.
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In view of Example 2.1.(a),(b),(c) we have that S(I';Tg), N(T) ), S(I';Tp) and
N(T') ) are nonempty sets.
Theorem 2.2. (the correspondence theorem for subgroupoids) For any sur-
jective strong morphism of groupoids (f, fo) : (I';'To) — (IY;Ty), there exists a bi-
jection from the set S(I'; T) of the subgroupoids of (I'';Ty) to the set S(T';To) of the
subgroupoids of (T';Tp).
Proof. We take the maps

¢ :S(T;Tp) — S(I';Tp)

and

Y S(I';Th) — S(I';Ty),
given by:
(5) e(Q) = f(Q), (WQeSD);
(6) H(Q) = F7HQ), (W € ST).

By Proposition 2.2.(i), it follows that f() is a subgroupoid of I, for all Q €
S(I). Hence, ¢ is well-defined. Also, by Proposition 2.1.(i),it follows that f~(Q') is
a subgroupoid of T', for all Q' € S(I'"). Hence, ¢ is well-defined.

The maps ¢ and ¢ given by (5) and (6) have the following properties:

(7) Yop= Idg(r) and @ o = Idg(r.
The equalities (7) are equivalently with:
Q) =9, MeeST) and f(F7H(Q) =, (M eST).

- () If x € Q, then f(z) € f(Q) and we have z € f~'(f(2)). Hence, Q C
7).

- (b) If z € f~Y(f(Q)), then f(z) € f(N2) and exists y € Q such that f(z) = f(y).
We have f(z) - (f(y))~! = €¢(f(y)). Therefore, f(z-y~') = €'(f(y)) and we obtain
that ¢ -y ' € Kerf. Thus, z -y ! = 2z, with 2 € Kerf C Q. Hence, x = z - y with
Y,z € Q and we have z € Q. Therefore, f1(f(Q2)) C Q.

From (a) and (b), it follows the first equality of (7").

- () 2" € fF(fHQ")), then 2’ = f(z) € f(Q) with z € f~1(Q') and follows
f(z) € Q. Hence z' € . Therefore, f(f1(Q')) C Q.

- (d) If 2" € ¥, exists z € I such that ' = f(z), since f is surjective. Then
z € f71(Q), since f(z) € Q. Therefore, 2’ € f(f1(Q')). Hence, Q' C f(f~ ().

From (c) and (d), it follows the second equality of (7).

From (7), it follows that ¢ is invertible. Hence, v is a bijection.A
Corollary 2.3. (the correspondence theorem for subgroupoids via a I'y-
morphism) For any surjective T'g-morphism of groupoids f : T — I, there exists a
bijection from the set S(I';Ty) of the subgroupoids of (I';Tg) to set S(T';Ty) of the
subgroupoids of (I'; Tp).

Proof. It is a consequence of Theorems 2.1.(ii) and 2.2. A
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Applying the Propositions 2.1.(ii) and 2.2.(ii) we can prove similarly the following
theorem.

Theorem 2.3. (the correspondence theorem for normal subgroupoids) For
any surjective strong morphism of groupoids (f, fo) : (I';To) — (I'; 1Y), there exists
a bijection from the set N'(I') of the normal subgroupoids of (I';T)) to the set N'(T)
of the normal subgroupoids of (T;To) which contains Kerf.A

Corollary 2.4. (the correspondence theorem for normal subgroupoids via
a T'o-morphism) For any surjective I'g-morphism of groupoids f : I — I, there
exists a bijection from the set N'(T') of the normal subgroupoids of (I';Ty) to the set
./\~/'(I‘) of the normal subgroupoids of (I';To) which contains Kerf.

Proof. It is a consequence of Theorems 2.1.(ii) and 2.3. A

Remark 2.3. (i) The Theorems 2.2 and 2.3. generalise the correspondence theorems
for subgroups and normal subgroups by a surjective morphism of groups.

(ii) The Theorems 2.2 and 2.3. are not true for arbitrary surjective morphisms of
groupoids.

(iii) If (f, fo) : ([;T) — (I";T4) is a groupoid strong morphism, then (f, fo) :
(T;To) — (Imf;Imfy) is a surjective strong morphism of groupoids, where . fo
are given by f(z) = f(z), (V)z el and fo(u) = fo(u), (V)ueLp.A
Theorem 2.4. For any strong morphism of groupoids (f, fo) : (I';To) — (I';T%),
there exists a bijection from the set S(Imf; Imfo) of the subgroupoids of (Imf; Imfo)
to the set S(I';Ty) of the subgroupoids of (T';Ty).

Proof. We apply the Theorem 2.2. of the strong morphism of groupoids (£, fo) :
(T;To) — (Imf;Imfy) associated to (f, fo). A

Similarly, we can prove the following theorem.

Theorem 2.5. For any strong morphism of groupoids (f, fo) : (I';To) — (I';T),
there exists a bijection from the set N'(I') of the normal subgroupoids of (I';T}) to
the set ./\7(1") of the normal subgroupoids of (I';Ty) which contains Kerf. A
Corollary 2.5. Let f : I' — I a T'yg- morphism of groupoids. Then the following
assertions hold:

(i) There exists a bijection from the set S(Imf;Imfo) of the subgroupoids of
(Imf;Imfo) to the set S(T';Tg) of the subgroupoids of (T'; ).

(11) There etists a bijection from the set N (Imf) of the normal subgroupoids of
(Imf;Imfy) to the set ./\7(1") of the normal subgroupoids of (I';Ty) which contains
Kerf.

Proof. This is a consequence of Theorems 2.1.(ii), 2.4 and 2.5. A
Remark 2.4. We conclude that the strong morphisms of groupoids have the same
properties as the morphisms of groups. A
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