Conformally Closed Finsler Spaces

Makoto Matsumoto

Abstract

Let S be a set of a special kind of Finsler spaces. If F™ € S remains to belong
to S by any conformal change of metric, then S is called conformally closed. The
present paper is devoted mainly to studying conformally closed sets of Berwald
spaces and Douglas spaces.
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1 Introduction

Let us denote by F"™ = (M", L(z,y)) an n-dimensional Finsler space on a smooth
n-manifold M" with the fundamental metric function L(z,y), = = (2%),y = (y%). In
the present paper we are concerned with the theory of conformal changes of metrics:

(1.1) F" = (M",L(z,y)) = F" = (M", L(z,y)), L=eL,

with the conformal factor c¢(z).

M. Hashiguchi ([5], 1976) has developed the theory based on the new formulation
of Finsler connections initiated by the present author [9]. In the first place he found
conformally invariant tensors

(1.2) Bij = (9i; — 2lil;)/F, B =F(g" —21'l7),

where F' = L?/2 and (B%) is the inverse of the matrix (B;;).

Secondly he dealt with the quantities G’Z (z,y), from which the Berwald connection
BI' = (G,*;,G")) is constructed; G*; = 0;,G* and G = 9G";. On the conformal
change (1.1) he showed

(1.3) G'=G" - B¢, ¢ = Orc(x).

Then the changed Berwald connection (G ]-i k> Gij) of F™ is given as

(1.4) G, =G = B"c,, Gjp=G/,—B"ch,
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where BY"; = 0;B" and B"";, = 0,B";.
Thirdly he constructed the change of the Cartan connection CI" = (Fjik, Gi]-, Cjik).
Let us denote by (|;,|i) the h- and v-covariant differentiations in C'I". Then he showed

ot i ir
i o=Fh — U™ e,

We treat the conformal invariants U*;,. Putting V", = U, — B, we have
(1.5) 9nr9isV" 5 = LThij,
where the well-known T-tensor appears ([9]; [1], (3.5.3.1)), defined by

Thijk = LChijli + (hCijr, + @ ).

Here and throughout the following we shall use, as in [14], the abbreviations to avoid
long expressions of the similar terms:

WCijk + @ = hCiji + 1iChjr + 1iChir + 1:Chij,

huiFjr + ® = hniFje + hnjFix + harFij + hijFre + higFrj + hji Fhi.

Then he obtained the relation between the (v)hv-torsion tensors Pijk = C’].ikl0 as

A Finsler space is called a Landsberg space ([1], [9]) if P’} vanishes identically. As
a consequence of (1.6) with (1.5) we obtain Hashiguchi’s theorem: A Landsberg space
remains to be a Landsberg space by any conformal change of metric, if and only if
its T-tensor vanishes identically. We should like to define the notion of ”conformally
closed” by expressing this theorem as
Theorem H. A Landsberg space is conformally closed, if and only if its T-tensor
vanishes identically.

Since (1.5) shows Thijx = €**Thijk, the condition T = 0 is conformally invariant.
Hence, if we define the two sets:

- L(n) --- Landsberg spaces of dim. n,

- L.(n) --- conformally closed Landsberg spaces of dim. n,
then any F™ € L.(n) remains to belong to L.(n) by any conformal change of metric,
while for any F" € L(n)\L.(n) we have a function c(z) such that ™ = (M™,e°L) ¢
L(n). Thus L.(n) may be said to be closed in L(n) with respect to conformal changes
of metrics.

Further we should like to use ”conformally closed” in a sense as follows: Let us
consider an F™ with the 1-form metric L(a®) where a® = a2 (z)y® are n independent
1-forms of y® [10]. Since L(a®) is assumed to be positively homogeneous in a® of
degree one, the conformal change (1.1) yields L = e°L(a®) = L(e‘a®). Consequently
L = L(a%) is still a 1-form metric with @* = e‘a®. This property may be said as
follows:

Proposition 1. The notion of the 1-form metric is conformally closed.

As a consequence we may say that the notion of the Riemannian metric is confor-
mally closed and any Riemannian space is conformally closed. It is also obvious that
any conformally flat Finsler space is conformally closed, because if F'™ is conformal to
a locally Minkowski space, then the conformally changed F™ of F" is also conformal
to the locally Minkowski space.
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2 Conformally closed Berwald spaces, I

In Proposition 4 of the paper [13] the present author showed interesting Berwald
spaces of dimension three:

Example 1. Berwald spaces which are respectively conformal to Minkowski spaces
with the cubic metrics L; and Lo:

(L1)? = a* +9° + 2° = 3292, (L2)® = dys.

These Minkowski spaces (R?,L;) and (R?, Ly) have the remarkable property: Any
conformally changed spaces of these spaces are Berwald spaces.
Definition. A Berwald space is called conformally closed, if it remains to be a Berwald
space by any conformal change of metric. We denote by B.(n) the set of all conformally
closed Berwald spaces of dimension n.

Consequently the Minkowski spaces (R?,L;) and (R*, Ly) in Example 1 belong
to B.(3).

Now (1.4) leads to the conformal change of the hv-curvature tensor Gjikl = 31Gjik
of BI:

(2.1) Gjikl = Gjikl - B“;'klcrﬂ Bi?‘kl = alBi?'k-
A Finsler space F™ is called a Berwald space ([1], [9]), if BT is linear, that is, G;k
are functions of position alone. Therefore F” is a Berwald space, if and only if G},
vanishes identically. Hence (2.1) shows
Proposition 2. A Berwald space is conformally closed, if and only if B“;-kl vanishes
identically. o

~ Since By = 0;0,0,B' and B, defined by (1.2) is written as B*" = (L?/2)g" —
y'y’, we obtain
Theorem 1. A Berwald space is conformally closed, if and only if L?¢% are homo-
geneous polynomials in (y*) of degree two.
Remark. Compare the expression of Theorem 1 with that of the definition of Douglas
space ([3], p. 388). Both are expressions peculiar to Finsler geometry. Cf. Theorem 7.
Example 2. We deal with a Finsler space F™ with the m-th root metric L:

L™ = apie.a(2)y"y* -y,

where the coefficients ap;....(x) are components of a covariant symmetric m-tensor
([13], [14], [17], [18], [22]). We define covariant (m — r)-tensors

i (2,Y) = piji (2)y"* -y L7,
and the inverse (a/) of the matrix (a;;). Then a’ = a'"a, is equal to I’ = y*/L and
g7 = {a" + (m — 2)aia’}/(m — 1).

Consequently Theorem 1 leads to

Proposition 3. A Berwald space with a m-th root metric is conformally closed, if
and only if L2a% are homogeneous polynomials in (y°) of degree two.

Example 1. (1) We pay attention to the space (R*, L;) again. Putting (y') =
(&,9,2), we get
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(L1)%a' = (y')? —4?y®, (L1)%a"® = —y'y® —2(y%)%.

Hence Proposition 3 shows that (R3, L,) is conformally closed as a Berwald space.
(2) We consider the space (R", L), a generalization of (R?, Ls) of Example 1,
where L, given by
" = n!ylyQ . _yn’

is called the Berwald-Modr metric ([9], Proposition 24.2; [22]). H. Shimada shows
L2a11 — —TL(TL _ 2)(?/1)2, L2a12 — ny1y2.

Hence (R", L) is conformally closed as a Berwald space.
Example 3. The ecological metric L ([1], (5.4.1.2); [22]) is given by

L™= (y")™ 4+ ()™

H. Shimada shows L%a'* = L™/(y')™ 2 and a'? = 0. Hence the Minkowski space
(R", L) is not conformally closed as a Berwald space.
Example 4. We treat a simple quartic metric L:

L4 — 6(y1)2y2y3-

It is easy to show typical L%a;; = 2y%y3, L%a12 = 2y*y3, ass = 0, L%ax3 = (y')?,
and we have

L2a11 — _(yl)Z, L2a12 — 2y1y2, L20,22 — _4(y2)2, L20,23 — 2y2y3-

Consequently the Minkowski space (R3, L) is conformally closed as a Berwald space.
Example 5. Let us consider a Minkowski space (R3, L) with another quartic metric
L:
L4:6y1y2y3Y; Y:yl +y2 _+_y3
We have typical L?a;; = 2y%y3, L%a;» = y3(2Y — y?), and hence
Da'' = L*(y")*{4y*y® — (2Y —y")},
Da" = Ly'y*{(2Y —y")(2Y — %) —20°(2Y — %)},

where D = L*(Y? —y'y? —y%y® —y®y"). Accordingly Proposition 3 shows that (R?, L)
is mot conformally closed as a Berwald space.
Example 6. Finally we consider a Minkowski space (RB, L) with the quartic metric
L:
LY =6(y")*{(v*)” + (¥°)*}-

We have typical L?a11 = (y°)” + (¥*)?, L?a12 = 2y'y?, L?az: = (y')?, as3 =0, and
hence

L2a11 — _2(y1)2’ L2a12 — 4y1y2,

L2a22 — 2{3(y3)2 _ (y2)2}, L2a23 — _8y2y3-

Therefore (R3, L) is conformally closed as a Berwald space.
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3 Conformally closed Berwald spaces, 11

We shall write the condition 95,0;0;(Fg®) = 0, F = L?/2, stated in Theorem 1 in
terms of well-known tensors of F™.
Put Fy;..k, = Op0; -+ O, F. We have Fj,; = gp; and hence g F;. = 62, from which
we obtain )
(On9"")Fae + g** Fye, = 0,

(On059°Y) Fae + (0n9°Y) Faei + (8:9°%) Faen + g*“Fyen; = 0,
(0n0:0;9°) Fae + {(010:9°N) Faej + @ } + { (009" Faeij + ® ¥ + 9* Fyenij = 0.

Since Fy.; = 3jgdc = 2Cy.j, the above three equations give respectively

(31) 6'hgab — _2cabh’
(3.2) On0ig"* = 4(C™,C,0 + CC.hy) — F™h,,
(3.3) 0n0;0;9%° = 2(F*},,C.0; + F",,0% + @ )

_8{(Crahcsbi + Crbhcsai)cr;: +O } - Fal;zij)

where F“”hi = ¢ g" F,4p; and F‘“}Lij = g‘"gbsFrshij.
Let us transvect these equations with y, = ga,y". (3.1) and (3.2) give respectively
YaOng®® = 0 and y,0,0;9°° = F®,, = 2C,t.. Further (3.3) yields

YaOn0:0;9"" = 2F", ., — 4(C)7.Ch + ® ).
Now we have B“bhij = 0,0;0;(Fg®) of the form

(3.4) Babhij = Fhijgab + (Fhi(éjgab + Fhéiéjgab +®)+ Féhéiéjg“b.

Hence we have
yaBabhij = 2Chijy" + QL(IhCibj +®)+ F{Qthij - 4(Chricrbj +®)}
In the author’s paper [14] the following equation has been given:
FFhijk = LThijk — WnCijk + @ ) + L*C?p50,

C2hijk = Chircjrk +O,

where the tensor C2, defined first in [14], is symmetric. Therefore we obtain yaB“bhij =
2LThijTg”’, and consequently B“bhij = 0 implies T-tensor = 0.

This fact, T-tensor = 0, is certainly in expectation. In fact, first B“bhi- =0 is the
necessary and sufficient condition for F" to belong to B.(n), and B.(n) C L.(n) is
clear. Consequently Theorem H shows T-tensor = 0 of F™. We have another reason:
(2.1) gives

gi(;jikl = e2c(injikl - yiBirjszr)-
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As it is well-known ([2], §2), F™ is a Landsberg space, if and only if injikl = 0.
Therefore the above implies that F™ is a conformally closed as a Landsberg space, if
and only if yiB“"jkl = 0, and hence Theorem H shows that yiB“"jkl = 0 is equivalent
to T-tensor = 0.

Now we shall continue to calculate B“b,“.j = 0 from(3.4) on the assumption ”T-
tensor = 0”. By substituting from(3.1), (3.2) and (3.3), after the long computation,
we conclude

1
(3-5) §Babhij — Chijhab + (L2Chric2abrj _ hz’jcabh +0 ) _ LQCabrCQThij _ Tal;”.j’
where T“b,”.j = g g*Tysnij is defined in [14] as
(3.6) 2Thijrt = LThijili — (hunCije + h1iChjr + hijChik + hirChij)

+L2(Clrh02rijk + Clricarhjk + Czerthik + Clrkcarhij)'

It should be remarked that Tp;;, C? hijk and further T4z are completely symmetric
tensors.

Therefore we can conclude
Theorem 2. A Berwald space is conformally closed, if and only if the T-tensor van-
ishes and

(3.7) Chijh® + (L*Cy,C*%,; — hpiC% + @ ) — L2 C*"C?,p55 — Ti5 = 0.

4 Conformally closed Berwald spaces of dimension
two

The present section is devoted to conformally closed Berwald spaces of dimension
two. Let us apply Berwald’s theory of two-dimensional Finsler spaces in terms of the
Berwald frame field (I,m) ([1], [2])- Then the angular metric tensor h;; is written as
hij = em;m; with the signature e = £1 and the C-tensor is LCh;; = Imy;; with the
main scalar I(z,y), where my;; is the abbreviation of mpm;m;. Cartan’s h-covariant
derivatives Cpj, is

LChijik = mpii (L1l + 1 amy),

where I11j, + Iomy, = I, = 0pI — (0,1)G".

F? is a Berwald space if and only if I; = I » = 0. Then one of the Ricci formulae
Ii>—1>1=—RI>, where LéiI = I.omy, yields I,» = 0 or the Gauss curvature R = 0.
It is obvious that Iy = I 5 = I,» = 0 show I = const., and a Berwald space with & = 0
is locally Minkowski. Consequently we have Berwald’s theorem ([1], Theorem 3.5.3.1;
[9], Theorem 28.2): We define five sets of Finsler spaces of dimension two such that

- B(2) - -- Berwald spaces,

- B1(2) - - - spaces with I = const. and R # 0,
- B»(2) - - - spaces with I = const. and R =0,
- B5(2) - - - spaces with I., # 0 and R =0,

- M(2)--- locally Minkowski spaces.
Then we have

~—
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(4.1) B(2) = Bi(2)NBx(2) N B3(2)  (direct sum),

(4.2) M(2) = B(2) N B3 (2).

The T-tensor is written as LT = Lamunaiji ([1], [9]). Hence, if we consider the
set B.(2) of conformally closed Berwald spaces of dimension two, any F? € B.(2) has
I, = 0 and belongs to B;(2) N By(2).

We have to pay attention to the second condition (3.7). As has been shown in [14],
if I, = 0 holds, then we have

LQC,%ijk = 36]2mhijk, LThijkl = (6]3 — 2€I)mhijkl.

As a consequence it is observed that (3.7) holds automatically and we obtain
Theorem 3. A Berwald space of dimension two is conformally closed, if and only if
it has the constant main scalar, that is,

(4.3) B.(2) = B1(2) N B»(2).

Remark 1. The main scalar I is conformally invariant. This will suggest Theorem 3.
Remark 2. The condition (3.7) does not give any restriction on the assumption ”T-
tensor = 0” for the two-dimensional case, as it has been shown above. This remarkable
fact is also verified from the ”Reduction theorem of certain Landsberg spaces to
Berwald spaces” ([2], [12]): If F? is a Landsberg space with vanishing T-tensor, then
F? is a Berwald space. Thus we get B.(2) = L.(2).

5 Conformally closed spaces with cubic metric

We are concerned with the conformal closedness of Finsler spaces with cubic metric
L:I[? = Apij (z)y"yly?, where an;j are components of a covariant symmetric 3-tensor.
As in Example 2, we put

Qhi = ahij(ﬁf)yj/L; Qh = Qhij (l“)yiyj/L2-
Then we get [17]

li = a;, hij = Q(Gij — aia]-), LChij = Qpij — (ahiai +® ) + 2ahaia]-.
Throughout the theory of m-th root metrics ([17], [22]) the regularity of the metric,
det(a;;) # 0, is assumed. By the inverse (a%/) of the matrix (a;;) we define a’ = a'"a,
and a”;; = a"a,;;. Then o' =1* and

2LCZI; = ahij — (5’;@1 — 6’;@1 + ah(2aiaj — aij).
The C?-tensor, defined in (3.5) is written in the form
2L2C2hijk = (Ghirarjk — apiajr + @ )

(5.1)
— 3(apaijr + @ ) +4(apaiar + ® ) — 12apa;a;a4.



124 M.Matsumoto

~ As has been shown in [17], the characteristic property of the cubic metric is
0r0;0;0rL* = 0, from which we obtain the theorem: A Finsler space is equipped
with cubic metric, if and only if its T-tensor has the form

2LThije = —2L°C? 50 — (hnihjr + ® ).

Therefore Theorem H leads to the theorem: A Landsberg space with cubic metric is
conformally closed, if and only if

(5.2) 2L°C% ik + (hnihjr + ® ) =0.
In the case of the cubic metric we have
huihjr + @ = 4(aniajr + @ ) — 4(ana;ajr + ® ) + 12apa;a;a;.
This together with (5.1) leads (5.2) to the concrete form
(5.2") (anira” jj, + 3aniajr + @ ) — 3(anaijr + @ ) = 0.

However the Reduction theorem has been shown in [13]: If F'” with cubic metric
is a Landsberg space, then it is a Berwald space. Therefore we have finally
Theorem 4. A Berwald space with cubic metric is conformally closed, if and only if
its T-tensor = 0, that is, (5.2) or (5.2") holds identically.

Remark. If the T-tensor = 0, then from (5.2) we get the following form of Tp;jks,
defined by (3.6):

2Thijrr = —(hniCir + @ ).
Then it is easy to show that the condition (3.7) holds automatically.
Example 1. We consider the Minkowski spaces, treated in Example 1 again.

(1) (R®, L), (L1)® = (y")® + (*)° + (4°)® — 3y'y?y°.
We have

(L1)2al11 = (91)2 - 43/23/3: (L1)2al12 = {311313 + 2(3/2)2}/2,
(L1)20122 = —{ylyZ + 2(93)2}a (L1)2a123 = _{(yl)z - 42/23/3}/2-
Consequently (52’) giVGS T1111 = T1112 = T1122 = T1123 = 0, that iS, Thijk =
0, h,i,j,k=1,2,3.

(2) (R®,Ly), (L2)® =y'y?y°.
We have

0111 = a%z =0, (L2)20112 = yly3/27 (L2)2“123 = _(91)2/2-
Similarly to (1), we get Thijx = 0.
The space (R?, L) has C; = C;". = 0 ([9], Proposition 24.2). Similarly (R* L;)
has C; = 0.
The necessary and sufficient condition for a Finsler space with cubic metric to be

a Berwald space has been discussed in §2 of [13], but it is a difficult problem to write
the condition in terms of the coefficients a;jx(z). Here we write the equation

LahrGiTjk + (ahirGka +® ) = {Z]k, h}

where G, is the hv-curvature tensor of the Berwald connection and {ijk,h} are
generalized Christoffel symbols, defined first in [18].
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6 Conformal closedness of Berwald spaces with
(e, B)-metric

We consider a generalized Randers space F™ [20], which is a Finsler space with («, 3)-
metric L(a, 8) ([1], [9]). If we deal with a conformal change of metric (1.1), then we
have

L =e‘L(a,B) = L(e“a,eB),

because L(a, ) is assumed to be positively homogeneous in («,3) of degree one.
Consequently we get L = L(a,f3), (a,3) = (e‘a,e’B) [6], and hence the changed
space F™ is still a generalized Randers space. Therefore, similarly to the case of the
1-form metric, we have

Proposition 4. The notion of the generalized Randers space is conformally closed.

We now consider a Randers space F™ with L = a4 /3. Theorem 4 of the paper [8]
states that if F™ has the T-tensor = 0, then S should vanish, that is, F™ is reduced
to a Riemannian space with the Riemannian metric a. Therefore Theorem 2 leads to
Theorem 5. If a Randers space is conformally closed Berwald space, then it is a
Riemannian space.

Here we shall show a direct proof of this theorem. A Randers space F™ with
L=a+p8, o®=a;x)y'y’, B=0bi(x)y’, is a Berwald space ([7], [8]), if and only if
bi,; = 0 in the Levi-Civita connection {7J’k(a:)} of the associated Riemannian space
with a. The conformally changed space F™ of F™ has a;; = e“a;; and b; = eb;. From
ﬁjik = 7jik + (Vjck + 5ikc]- - ciajk, cr = Ope, ¢t =a'"c, we have

(61) bi;j = e“(bi;j — Cibj + brcraij).

If both F™ and F™ are Berwald spaces, then (6.1) gives ¢, (b"a;; — 8%b;) = 0. If
this is satisfied for any c(z), then we have b"a;; = d%b;, which implies b; = 0. Thus
we proved Theorem 5.

Secondly we consider a Kropina space F" with L = «?/8. Theorem 2 of C.
Shibata’s paper [21] states that the T-tensor of F™ never vanishes. Therefore we
have
Proposition 5. A Kropina space is not a conformally closed Berwald space.

We shall treat a conformal change of a Kropina space of Berwald type in detail.
A Kropina space F™ is a Berwald space ([7], [10], [21]) if and only if we have function
fi(x) satisfying

(6.2) bi;j = frb"aij + bifj - bjfi, b" = aribi.
The conformally changed Kropina space F™ is also assumed to be a Berwald space:
bij = frb"ai; +bifj — b fi = e (frb ay; + bif; — b; fi).

We have (6.1) and (6.2), and hence the above gives

(fr = fr —co)bag; = (fi — fi — ci)bj — (f5 — f1)bi.

This yields (_Qﬁ —2fi —ci)bj = (2f; — 2f; — ¢;)bi, so that we have a function x(z)
satisfying 2f; — 2f; — ¢; = 2kb;. Hence (¢, — 2kb,)b"a;; = bicj + bjc;, and n = 2 is
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necessary, provided (¢, — 2kb,.)b" # 0. In the case of n > 2 we have ¢; = 0. Therefore
we have

Theorem 6. Let a Kropina space F™, n > 2, be a Berwald space. The confor-
mally changed Kropina space F™ is still a Berwald space, if and only if the change is
homothetic.

7 Conformal change of Douglas spaces

A Finsler space is by definition a Douglas space ([3], [4]), if D¥ = G'y) — G'y* are
homogeneous polynomials in (y¢) of degree three.
Definition. A Douglas space is called conformally closed, if it remains to be a Douglas
space by any conformal change of metric.

For a conformal change (1.1) we have (1.3). Thus, for D% we get DY = D% —
Di"e,., where D¥" = Bi"yJ — Bi"yt, From (1.2) we have

(7.1) DT =F(¢"y —g'"y"), F=1L"/2.

Therefore we have
Theorem 7. A Douglas space is conformally closed, if and only if D" of (7.1) are
homogeneous polynomials in (y*) of degree three.

It is shown [3] that a Finsler space is a Douglas space, if and only if the projective
invariants Q' = G* — G".y*/(n + 1) are homogeneous polynomials in (y?) of degree
two. (1.3) and (1.4) show

Qi — Qz _ {Bir _ Brssyi/(n + 1)}07“

Consequently we have
Proposition 6. A Douglas space is conformally closed, if and only if BY — BI" y'/(n+
1) are homogeneous polynomials in (y¢) of degree two.
We treat a Kropina space with L = o/ again. Since a two-dimensional Kropina
space is Douglas space without any restriction [3], we have immediately
Theorem 8. A two-dimensional Kropina space is a conformally closed Douglas space.
For a Kropina space of arbitrary dimension we have ([9], [21])

2(a/B)?g"7 = a” — bV [V + (2B/07a®) (VY + bTy") + (2/0%at) (bPa® — 287)y'y .
Hence we have
2Dk = {a%a™* /2 — (2 /20*)bIDF + (B/b%)biy*}yT — i, 4],

where [i, j] denotes the interchange of ¢, j. Thus Theorem 7 yields
Theorem 9. If a Kropina space F™, n > 2, is Douglas space, then it is a conformally
closed Douglas space.
If we consider a conformal change of an («, 3)-metric, then we get L = e“L(a, 8) =
L(a, 3), where
a=cexa (ai]' = ecaij); B =ep (l_)l = ecbi).
For Sij = (8]bl — 8lb])/2 we get

(72) Sij = ec{sij + (biCj — bJCZ)/Q}
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We are concerned with the conformal change of a Randers space F™ with L = a+/5.
F™ is a Douglas space [3], if and only if s;; = 0, that is, there exists locally a function
b(z) such that b; = 0;b. Then (7.2) is reduced to 5;; = e®(b;c; —bjc;)/2. Hence we get
5;; = 0, that is, F™ is still a Douglas space, if and only if bicj —bjc; = 0, that is, ¢; is
proportional to b;. Therefore we have
Theorem 10. Let F™ be a Randers space of Douglas type with L = a + 3, provided

that B8 = (0;b(z))y’ # 0.
(1) The conformally changed F™ is not of Douglas type in general.

(2) F™ is also of Douglas type, if and only if the conformal factor c(z) is such that
0;c is proportional to 0b;.

From (7.2) it is follows that if we put s; = b"s,;, then we get
S; = 8; + (bQCi — brcrbi)/Q, b = b"b,,

Sij — (I_)igj — l_)jgi)/l_)2 = ec{sij — (bZS] — bJSl)/bQ}
Consequently, if F™ has s;; — (bis; — b;s;)/b? = 0, so is the conformally changed F™.
The condition s;; — (b;s; —b;s;)/b® = 0 is necessary and sufficient for a Kropina space
F", n > 2, to be a Douglas space [16]. Therefore we could obtain another proof of
Theorem 9 not due to Theorem 7.
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