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Abstract

The paper studies some new variational problems, extending certain appli-
cations of optimal approximations by piecewise smooth functions in computer
vision.

For this aim, we introduce families of functionals as generalizations of those
considered by D.Mumford and I.Shah [1], via the idea of p-energy [4]-[7]. Among
these functionals, one is of the Finslerian type.
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Sonar, radar or laser "range” data, involve a function ¢(z,y) of two variables
that represents the distance from a fixed point P in direction (z,y) to the nearest
solid object. Another example using a function ¢(z,y) of two variables is the one of
a lens at P focussing the light on a planar domain R of Cartesian coordinates z,y,
where o(z,y) is the intensity of the light signal striking R at the point (z,y). The
function ¢(z,y) defined on the planar domain R is called an image. In [1], authors
study the problem of appropriately decomposing the planar domain R. In this scope,
the authors introduced certain variational problems. Obviously, in this context, the
image ¢(z,y) presents discontinuities caused by the location of the bodies.

Taking into account that in practice R is not always a planar domain (it might
be a lens, a sphere, a parabolic surface and so on) and on the other side that the
image may be reconverted by a regular transformation, we consider R as a two-
dimensional Riemannian space endowed with the Riemannian metric g(x,y). The set
R is a bounded and the function ¢(x,y) is modeled by a set of smooth functions ¥;
respectively defined on disjoint connected open subsets R; of the domain R, each one
with a piecewise smooth boundary.

Let I" be the union of the parts of the boundaries of R; inside R. The decomposition
R=RiUR>U...UR,UT must be such that ¢ varies smoothly and slowly within
each R; and varies discontinuously across most of the set I'. We look for an optimal
approximation of p(z,y) by piecewise smooth functions ¥(z,y) such that ¥; = ¥,
be differentiable. For this aim, we generalize the functional E from [1],

Balkan Journal of Geometry and Its Applications, Vol.4, No.l, 1999, pp. 135-144
©Balkan Society of Geometers, Geometry Balkan Press



136 M.Toda and C.Udrigte

E(U,T) :u// (\Il—ga)zda:dy—k// llgrad ¥||*dzdy + v|T|,
R R-T

of a planar domain, by introducing the functional

W B = [ [e-eprios [ [ lloradwipeds + ),
R R-T

where U is assumed to be differentiable on UR; (but can be discontinuous on I'), p a
real positive number, do = \/det gdx' A dz? is the element of area, u, v are positive
real numbers,

(7)) = /01 Iy dt = /01 { gij(l'l,1'2)i'ii‘j:|pdt

is the p-energy of any parametrized trajectory y(t), and I,(I') is the total p-energy of
the arcs making up I'. The case p = 1 was studied in [1].

The best approximation ¥ of ¢ is the one which minimizes E,,.
Remarks. a) the first term of E, requires that ¥ approximates .

b) the second term of E, requires that ¥ (and hence ¢) does not vary strongly in
the sets R;.

c) the third term of Ej, requires that the curve I' that accomplish these conditions
be as short as possible.

First, we shall analyse the first variation for E, with respect to I', considering
just the case of a simple point P € T', near which I' moves. Such a point P lies on
exactly one curve v; C I of class C! which in a small neighbourhood U of P can be
considered as a plane curve of type y = h(x), or © = h(y). Moreover, we consider the
set U to be planar. We can deform +; to the curve

Yi(t) : y = h(z) + toh(x),

where dh is zero outside a small neighbourhood of P.
If ¢ is small, the new curve v;(¢) meets no curve v, j # i except at its endpoints,

and
I =wtulJy
i
is a deformation of I'. We can no longer speak of leaving ¥ fized while I' moves, since
U is of class C' on R — T but ¥ is usually discontinuous across I'. Instead of this, we
set
Ut =U|ge, UY={(z,y)ly > h(x)}nU
U =Vg-, U™ ={(z,yly <h(@)}nU.
We choose some C' extensions of ¥t from UT to U, and of ¥~ from U~ to U.
This is possible, since ¥ € C' on both sides of " at all the simple points of T
Now let
U (P) if P¢U
Ul(p) = { extension of ¥t if P € U, P above v;(t)
extension of ¥~ if P €U, P below v;(¢).
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Consequently,

By(¥.3(0) = By (W) = [ [ {10 =020 = [(9 = 0]} dody+

+// ||grad\Ift||2pda:dy—// ||grad ¥||*Pdzdy+
U-T(t) U-T

h(z)+toh(z)
0l 0u0) = L)) = o ( / {lw -0 - [ -0’} dy> o+

I (z)

h(z)+téh(z)
+/ / [||g7"ad \If_||2p — ||grad \Il+||2p] dy | dz+
I h(z)

+V/I [+ (4 9m)))% = (14 1) ] d,

where the symbol ' indicates differentiation with respect to x. The calculation above
implies

0By _ . Ep(¥ (1) — Bp(¥,7) _

oy t—0 t

_ - 21P + 27P T
_ /1 {l@m —or)" — [t —o)"}| _, oo+

Z dnF tn
IZ o (0) - —da

+/ [|lgrad ¥~||*P — ||grad ¥ ||*"] Shdz + v lim —2=1 ,
I y=h(z) t—0 t
where
F(z,t) = (1+ ((h+toh)")*)%.
Using integration by parts, the third term in the above sum, i.e.,
V/2h’(6h)’§(1 + 1) ldy
I
becomes
—l/p/ B'(1+ h'?)226h(1 + (p — 1)h"?)dz,
I
and then
0By _ U~ _ 2P d U 12P]].. — [u|®t — 2P
Pl {lul ol + [lgrad O[]}y, — [ul o+
4 i
+ |lgrad O*||??]|,, — vph" (1 + (p— 1)A'?)(1 + h’2)§*2}67hds
g Yi p p \/W Y
. . oh
where ds = v/1 + h'2dz is the arc element of ~y;. The coefficient \/ﬁ represents

the displacement of the deformed I' along the normal lines to the initial T.
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At an extremum of E, we have
[ ¥F =@+ flgrad UH[[PP] = [u[¥™ — @|*" + [lgrad 7 |[P]+
T ouphl(p— DI+ 1)(1+ h2)E-2 =0

The terms in the first two square brackets can be interpreted as the p-energy
density corresponding to the functional E,, above and below the curbe, respectively.
The term

curvy (i) = ph"[(p — 1)h'? + 1](1 + h'?) 22
shall be called the p-curvature of the curve ;. We notice that for p = 1, this term
becomes
hll (.’If)
[1+ h2(z)]3/2’
i.e., the usual curvature of the plane curve y = h(z), which exists and is bounded
almost everywhere. Denoting

ep(Us2,y) = p|¥ — ¢|*? + ||grad ¥ (z, y)||*",

k=

(2) may be rewritten as
(ep(TF) —ep(T7) + v - curvy(vi)) |w =0.

Second, we study the first variation of E, with respect to ¥. In (1), let R be
relative compact with piecewise smooth boundary, ¢ a continuous function on R, u, v
positive constants, ¥|g_r € C! with continuous derivatives up to all boundary point
and T’ made up of a finite set of C* curves. Let us now fix I and ¢ and let vary ¥ in
the conditions 6¥ € C!, ¥ € C? on R —I'. Then we find

By(¥+60.0) = By(0.0) = [ [ {[(0+05%—02P ~ (¥~ 0P} o+

+

// [llgrad © + t grad 5\I!||2p — |lgrad \I—'||2p]da =
R-T
=[S0 s [[ >0
- l’t R dtn n' 7 R—T dtn n' ;
n=1 n=1
where

F(t) =T +t0T — |7,
G(t) = |lgrad ¥ +t grad 6%||** = (||grad ¥||? + 2t < grad ¥, grad 6¥ > +
+  ?llgrad 6¥|1?)?,
5E, B, (U +160,T) - E,(
—— lim
o t—0 t

+ 2p // < grad ¥, grad 6 > ||grad ¥||**Vdo =
R-T

= o [ [ swiw - 02w - o

Qp{u//Ré\I!sgn(\Il—go)hIl—<p|2p—1da+

+

// < ||grad \Il||2(p*1)grad ¥, grad 6% > da} .
R-T



Optimal Approximations on Riemannian Manifolds 139

We obtain

16Ep B 2p—1
it = / /R B usgn(¥ )| ]

— div(||grad ®|]*P~D grad ¥)]|do+

+ / < i, 00| |gradip|)*P~V grad¥® > ds,
8(R-T)
using the Gauss-Ostrogradski formula.
Further, denoting B = 8(R — T), we obtain by direct calculation

10E, 2p—1
o Al R T L A

div(||grad ¥|>®=Y grad ¥)|do +

+

/ 5 ||graduy||?P—V 8—‘Ilds.
B on

In the following, we shall apply the fundamental lemma of Variational Calculus
twice. Taking OV to be a test function, which is non-zero near one point of R —I" and
zero elswere, we deduce that ¥ satisfies:

(3) div (||grad ©|?P=V grad ¥) = psgn(¥ — ¢)|¥ — ¢**"* on R-T;

(4) lgrad ¥|[*®

on R and on the two sides i of each ;.
Obviously, grad ¥ may be zero only at the singular points of B. Excepting them,

ov
we get o = 0 on OR and on the two sides 'yii of each v; .

n
Remark. For p = 1, the PDE (3) becomes the Poisson equation A¥ = u(¥ — ) on
R —T', and (4) becomes the boundary condition

(4" g—::o on 6RU (U%t)

So, for p =1, we obtain the Neumann problem (3), (4).
By analogy with [1], it can be shown that the natural limit functional of E, as
u—0is

(5) B0 =Y [ [ o= meanne)" do + i),

because, when I' is fixed and 1 — 0, the function ¥ which minimizes F, tends to the
piecewise constant limit ¥|g, = meang, p.

Using geometric measure theory, it can be shown that the problem of minimizing
Eg is well-posed: for any continuous ¢, there exists a set I' made up of a finite number
of singular points joined by a finite set of Eg—minimizing C?-arcs.
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It is shown that Eg may be viewed as a modification of the usual 2-dimensional
Plateau problem functional, of fixed length T', by an external force term that keeps
the minimal surfaces R; (in the Plateau problem) from collapsing. It is known that
the two-dimensional Plateau problem has only rather uninteresting extrema with I'
as union of line-segments. If we should generalize EJ(I) for dimensions greater than
two, the minimizing problem becomes difficult.

We recall the oriented Plateau problem:

Given an (n-1)-dimensional oriented submanifold A of an m-dimensional Rieman-
nian manifold, find an n-dimensional orientable submanifold C' of least area with
oC = A.

In addition to this problem, our problem of minimizing Eg has ”pressure” terms,
which renders it more difficult.

Let D be the domain of the body in R* endowed with the Riemannian metric g.
Let dw = /det gdx A dy A dz. We divide D by a finite set of smooth surfaces meeting
only at their boundaries and thus we obtain open ”cells” D;, i = 1,n in which we
assume that the density varies smoothly and slowly. Thus,

D:DluDzu...UDnuz.

In this case we can introduce
E) = Z ///D [(p — meanp,p)?]” dw + I/oAp(Z),

where " is the union of the parts of the boundaries of D; inside D, whose p-area is

,4,,:// [VEG =72 do,

and E,F,G are the coefficients of the metric induced on ) by g. By nontrivial
calculations, we can obtain also the natural limit functional E}°, as u — oo.
We are interested here especially in the case p = 1, for which

(6) E=(T) = lim B :/F lyoo - <g—i>2] ds.

In this case, we notice that the integrand is a generalized Finsler metric. Concern-
ing the minimization of E*° over all T, this is not a well-posed problem in most cases.
If ||grad ¢||? < Voo everywhere, then E*° > 0 and the simple choice I' = () minimizes
E®. But if ||grad ¢||? > v on a non-empty open set U, then consider I' made up of
many pieces of level curves of ¢ within U. On such I''s, E* tends to —oco. Minimizing
E* on a suitable restricted class of I' can be a well-posed problem (see [1]).

Now we focus on the geometrical meaning of the functional (6). The integrand is
the generalized Finsler metric

L(z', 2% dzt,dz?) = |[veo— < l,grady >?|ds =

00\ —
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vt

N

where n’ are the direction cosines of the normal to the curve, i.e., n* =
where v? satisfy the condition _
dx?
gileg =0

Hence,
v = —(glzdﬂfl +922d332); v = +(911d3731 + glzdl“Q),

modulo a certain scaling. One can check that
gV vt = (det g) - grada* da’,

and consequently

_ PR
L(z' 22, d2zt,d2®) = |veo — <n’6;fi> ] Vgrdzkdr! =

2
@) I pa—
= Voo — ———— gridrkdal.

(det g) g dx*dz!

Denoting y' = dz!, y? = dx?, we notice that L(x!, 2%, dx!,dz?) can be rewritten as
2

(7) L(Cl,,B) :Vooa_gv

a = a(ml,x2,y1,y2) =V gklykyl)

where

and
B(z,y) = bi(x)y’,
with
by = L (gna—@ _9128_90)
VA Ox? orl )’
by = \/—IZ (gm% —g22%> , A =detg.
We can see that
L(z', 2% ty*, ty?) = |t|L(z", 22, y", y?).
Thus, E*(T) = [ L(, 8). According to [2], we have the following
Definition. Let a(z,y) = \/gi;(z)y’y’ be a Riemannian metric and 8(z,y) = b;(z)y’
a 1-form. Any 1-homogeneous Finsler metric of the form L(a, ) is called an («, 3)-

metric.
Notice. If g is the Euclidean metric in the plane, then

(—dz?, dz") dp dp

(dm1)2+(d1'2)2’ L= 55 b2——@
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o d >
Voo[(dzt)? + (dz?)?] — (a—;d;ﬁ’ - 6—;02(13;1)

(dz)? + (da?)2

Our metric (7) is among the (a, ) — metrics. Though it is neither a Randers
2

metric Lr(a, 8) = a + 3, nor a Kropina metric Lk («, ) = % + 3, we have

L=

L= Voot — L,1;2,

where
Ly, = a’Bl, p+g=1
are extensively studied metrics.
In [2], Matsumoto presented a way of easier calculating the fundamental tensor §

of the Finsler space when the metric L is given. We apply this expression to our L.
Starting from the definition (§ = VOV°(L?/2)) of g, we use the formula

g(u,v) = [L(V°,VOL)](u,v) + (VOL)(u) - (VOL)(v),
gij = L(BZ, 8][4) + 8iL8jL,

where 3i = o= and so we find

dyi
Gij = pgij + Qobibj + q_1(b;Y; + b;Y;) + q_2Y;Y7,
where we used

a=gii(@)y'y’, B=bi(z)y, Y=gy, hij =L(;0;L)

L L L L,
D= aLaa go = LLBB: qg—1 = ELaﬁa qg—2 = @ (Laa - ?) .

The subscripts of gp,g—1,g—2 are used to indicate the respective degrees of homo-
geneity.
By the homogeneity, we obtain two identities

p+q1fB+q20®=0, qB+qg1a’>=0.

We also denote ‘ .
Y; = gijy’ = L(O;L) = pY; + L Lgb;.

From the above relations, the fundamental tensor is
Gij = Pgij + pobibj + p_1(b;Y; + b;Y;) + p_2YiYj,
where the coefficients are: p as above and
po = o+ (Ls)? = L Lgs + (Lp)*,
p-1=¢q-1+ %LB = é(L Log + LoLp),

P2 1 L
P2=¢q-2+ (f) = {L Loo + (La)* — ELQ}.
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For
2

_ B
L(a, B) = Voox — =

we get

4
p= (=) (e ) == (3)
(0% (0% (0%
2 2 2
Po = (Vooa_ %) <_%> +4a£2 = —21/00—{—%,
B2\ 28 B2 268\] _ 4p°
o) m (e ) (R -
2 2 2\ 2 4
[ M e

Hence,

" B\ 62 46° 48"
gij = [Vgo - (a 9ij =\ 7 ~ 2Veo | bib; (b:Y; + b;Y;) + 6 YiYi-

=
L
Il
R~
—~
X
8

ot

By direct calculation we can state when §;; is positive definite.
We remind that in a Finsler space with an (a, §)-metric, we have a linear con-
nection (I'j;(z)) (that is, the Riemannian connection of the Riemannian metric a)

and therefore we obtain a Finsler connection (F;k, N]’f = ykl";k, C;:k), where C;k
are usual quantities [2]. Making use of this Finsler connection, Hashiguchi and Ichijyo
developed in [3] an interesting theory and presented examples of Berwald and Wagner
spaces among Finsler spaces with (a, §)-metric. The study of the Finsler space with

the metric (4) is the subject of a forecoming paper.
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