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Abstract

In §1 the authors mention some open problems and define the notion of
harmonic map between two generalized Lagrange spaces. In §2 one proves that
for certain systems of differential or partial differential equations, the solutions
belong to a class of harmonic maps between two generalized Lagrange spaces.
§3 describes the main properties of the generalized Lagrange spaces constructed
in §2. These spaces, being convenient relativistic models, allow us to write the
Maxwell and Einstein equations.
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1 Introduction

Looking for solving a generalized Poincaré problem, Sasaki tried to find a Riemannian
metric on a manifold M such that the orbits of an arbitrary vector field X should be
geodesics. This attempt was a failure, but Sasaki discovered the well known almost
contact metric structures on a manifold of odd dimension [8]. After the introduction of
generalized Lagrange structures [4], the problem of Poincaré-Sasaki was reconsidered
by the first author [9, 10, 11] using a suitable prolongation of the flow to a second-
order conservative dynamical system. He succeded to discover a Lagrange structure
on M, depending of the given vector field X, a (1, 1)-tensor field built using X, using
a metric g, and the covariant derivative induced by g, such that the C? orbits belong
to a class of pregeodesics. Moreover, replacing the system of ODEs of the orbits of
X by a system of PDEs and the notion of geodesic by the notion of harmonic map,
same open general problems appear [12], namely

1) There exist Lagrange type structures such that the solutions of certain PDEs
should be harmonic maps?

2) What is a harmonic map between two generalized Lagrange spaces?

3) What Lagrange structure solve the inverse problem in the variational calculus
associated to an even-order prolongation obtained by differentiations and mathemat-
ical artifice from a given PDE system?
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Using the notion of direction dependent harmonic map between a Riemannian
manifold and a generalized Lagrange space, a partial answer to the Udriste questions
was offered by the second author [6].

In this paper we will attempt to carry on the development of certain ideas that
realize a closely linked between PDEs, Differential Geometry, and Variational Calcu-
lus.

Let us introduce, in a natural way, the notion of harmonic map between two La-
grange spaces (M, gag(a,b)) and (N, hij(x,y)), where M (resp. N) has the dimen-
sions m (resp. n) and (a,b) = (a*,b*) (resp. (z,y) = (z*,y*)) are local coordinates
on TM (resp. TN).

Definition. On M x N, a tensor field P of type (1,2) with all components null
excepting Pfi(a,:r) and P! (a,z), where o, 8 = T,m, i,j = 1,n, is called tensor of
connection.

Assume that the manifold M is connected, compact, orientable and endowed also
with a Riemannian metric ¢,5. This fact ensures the existence of a volume element

on M. In these conditions, we can define the < g f; A ) -energy functional,

E"® EP, : C®(M,N) - R,
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Definition. A map f € C’OO(M, N) is called ( g -harmonic if f is a critical

h
point (extremal) for the functional EP

1
Let L(a®, fi, f1) = w(a , 0" Y hy (2P, yP )f’”fl The ( g i h >—harmonic maps
are described by Euler- Lagrange PDEs

oL
(H) \/(’Eafi 8a°‘<\/_8f’>_0 Vi=1,n.

The naturalness of the preceding definitions comes from the following particular
cases:

i) If gog(a,b) = pap(a) and h;j(z,y) = hij(z) are Riemannian metrics, then it
recovers the classical definition of a harmonic map between two Riemannian manifolds
[2, 3]. In this case, the definition of harmonic maps is independent of the connection
tensor field P.

i) If M = [a,b] C R, o117 = gn = 1 and P = (PL,6%), then we find

C*(M,N) = {c : [a,b] = N| ¢ — C>=differentiable} not Q45(N) and the energy
functional is
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1 h det dcl
BA@) = 5 [ hislelt),e0) 5 G, Ve € Qun(N),

P
1 1 h
generalized Lagrange space (N, hi;j(z,y)) [4].

iii) If we take N =R, hy; =1 and P = (6g,P51), we obtain C*(M,N) = F(M)
and the energy functional becomes

In other words, the < -harmonic curves are exactly the geodesics of the

1

BLaf) =3 [ % @.gradof)fafo/Rde, VF € FOOD).

The extremals are harmonic maps between the Lagrange space (M, go3(a,b)) and
the classical Riemannian space (R, 1).
iv) In the particular cases when the metric tensors are of the form g,5(a,b) =
e 20(ebp 5(a) and hij(z,y) = > @V (x), where 0 : TN — R, 7: TN — R are
smooth functions and 1);; is a pseudo- Rlemanman metric on N, we have
a—L. 8P;pﬁ + apg.pa—r. mamkml + —g uOhia k l
ox' oxt obv ~ Oxt Oyl v 9T i
oL 20427 v 90 i O ko k
8—% —e QP P, B + Pgia_yj o7, + ¢7a¢ikxw .

2 2 J
= 7T gy

These expressions can be simplified if we consider the following more particular
cases:
1) o = o(a) and P = (Pg;, Ag(a )5 ), where {Ag} are the components of a covector
A on M. In this situation, we obtain
oL O okl

Ozt 29 Ozt Y9 Tu

(%)
aL s T g a «
—amg — 2012 {gowcp Vi As 8 : v al, +(p’Y T/Jzkiﬁ }

2) 7 =7(z) and P = (0§&i(x), P§;), where {{;} are the components of an 1-form
¢ on N. Now, we find

0L 0&, 0o . Oh

% 20'+27'(p%u (581/% 65 6[)5 x»]ixit + §g o kll k l
() oL

w = €2J+2T {‘Pwﬂpasdjkl obs Elx’}’xu + (pryad}lkx }

2 Geometrical interpretation

By the preceding ideas, we shall offer some beautiful geometrical interpretations for
the C? solutions of certain PDEs of order one.
We start with a smooth map f € C*°(M,N). This map induces the tensor field

§f B9 rigee g 91 ¢ I(T*M ® f~'(TN)). On M x N, let T be a tensor field of

Y | pa)
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type (1,1) with all components null excepting (%) . These geometrical objects

i
a 1

HE

determine the system of PDEs,

afi

(E) 5 =T, o

— Ti(a, f).

If (M,pqp) and (V,1);;) are Riemannian manifolds, then we can build a scalar

0
product on N(T*M®f~1(T'N)), namely < T, S >= @*¢p;; T} S ,where T' =T

oy’

and S = Sgdaﬁ ® % Obviously, the Cauchy-Schwartz inequality
Y

<T,8 >< [ISIPITIP, VS, T € D(T*M x f~'(TN)),

is an equality iff there exists K € F(M) such that T = KS.

In these conditions, we prove the following
Theorem. If (M,p),(N,v) are Riemannian manifolds and the map
f € C®(M,N) is solution of the PDE system (E), then f is an extremal of the
functional

Lr:C®°(M,N)\{Ja € M such that <df,T > (a) =0} = Ry,
18 £ 1P| / T as, i g
ET(f)_Q/ <6f,T>2\/_ y <Of,T>27 Vijfalsv/pda.

Proof. Let f be an arbitrary map from the definition domain of L. Applying the
preceding Cauchy-Schwarz inequality, we obtain

Lr(f) =+ / @;Lﬁ)”T” Veda _2/ Veda = Vol( ).

1
Obviously, if f is solution of the system (FE), it follows Lr(f) = §Volg,(M), that is,

f is a global minimum point of the functional L£p. In conclusion, the map f verifies
the Euler-Lagrange equations of Lr O

Generally, the global minimum points of the functional L7 are solutions of the
PDE system §f = KT, where K € F(M). They are not necessarily solutions of the
initial PDE system (E).

Now, we remark that, in certain particular cases, the functional L7 becomes

exactly a functional of type ( g f; L )—energy and, consequently, the Euler-

Lagrange equations are equations of harmonic maps. This idea can be applied to
the following important cases:

1. Orbits

Taking M = ([a,b],1) and T = £ € I'(¢c™'(T'N)), the PDE system (E) reduces to
the differential system of orbits

d—c—f’(()),c:[a,b]%N,
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and the functional £¢ comes to

b 2 i J
Le(c) = 1/ Iy, dede

o [EP@QP T dt dt

where ¢b = &da! = 1;;¢7dr'. Hence the functional L¢ is a ( 1 T L )—energy,

where the Lagrange metric tensor

€117, 1€l
hij(z,y) = =i (x) = ;5 (x) exp {2111 }
1) = ) = Vi) €]
is defined on TN\{y|¢"(y) = 0}. This case was studied, in other way, by Udriste

[9]-[12].
Replacing 0 = 0, 7(z,y) = W(|¢lls/IE"W)]), w1 = 1 and Ay = 1 in the
OL _ 1hu . oL

or
. . 2 kel .k
equations (x), we obtain 50 = 2900 ¢ and 5 = € T {I/sz@c ¢+ Pic }, and
oL d 0L -
et + P 0, Vi = 1,n, are the equations of these harmonic curves.
c ¢

2. Pfaff systems
If we put N = (R,1) and T = A € AY(T*M), then the PDE system (E) becomes
the Pfaff system
df = A, f € F(M)

and the functional L7 is

1 A2
La(f) = 3 /M %#ﬂﬁfﬁﬁ@da.

Consequently, the functional £4 is a < g )—energy, where the components

9o : TM\{b|A(D) = 0} = R are defined by

B [A(b)]2 _ |A(b)|
gaﬁ(a,b) = W‘Puﬁ(a) = @aﬁ(a) exp |:21n ||A||<p :| '

p 1

In this case, replacing 7 = 0, o(a,b) = In(||A||l,/]AD)|), Y11 =hi1 =land & =1
in (xx), we find the form of harmonic maps equations. These are the equations (H) of
harmonic maps corresponding to n = 1, where

G_L_ 21 ) K ae 00 Yo 6_L_
8fa_e {‘10 "2 8b8fvfu+‘10 fv :af—o-

3. Pseudolinear functions
We suppose that TB’“(a,:r) = ¢k (x)Ap(a), where £F is a vector field on N and Ag
is an 1-form on M. In this case the functional Lp is expressed by

1 211A|12 o
Lr(f)= 5 /M %@“%Mﬂféﬂda =
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1
=5 [ o @by (F@)fifipda

where P(z) = 63&i(x), b = @* fiPL, hij(z) = ||€|[34ij(2) and the Lagrange

2,

metric tensor has the components g : TM\{b|A(b) =0} — R,

EI0) P A)
gaﬁ(a,b) ||A||2 Pap (a') = ‘Paﬁ(a') exp [2 In ||A||W:|

It follows that the functional L1 becomes a < g o h >—energy.

The equations of harmonic maps can be derived, putting
7 =1 |[¢lly, o(a,b) = In(||All,/|AD))), P, = 03¢ (x),

in (xx), where & = 1;;¢7.

In the particular case when we take M = (R",po = d) and N = (R,¢ = 1),
supposing that (grad f)(a) # 0, Ya € M, the solutions of the above PDE system
are the well known pseudolinear functions. These functions have the property that all
hypersurfaces of constant level My, are totally geodesic [7]. Consequently, the pseu-
dolinear functions are examples of harmonic maps between the generalized Lagrange
spaces (M, gop(a,b) = Sap{[A(D)]?/||AlI?}) and (N, h(z) = *(z)). For example, the
function f(a) = e<¥%>*% where v € M, w € R, is solution for the above PDE
system with £(a) = 1 and A(f(a)) = f(a)v.

4. Continuous groups of transformations
The fundamental PDE system of the group having the infinitesimal generators &,
is

ff . .
O S (s, i=Tma=Tm
=1

where {&-},_15 C X(N) are vector fields on N and {A"} _5 C A'(M) is a family of
covector fields on M. The geometrical interpretation of solutions via harmonic maps
theory is still an open problem. It can be attacked in two ways:

- like in the preceding examples,
- using the Lagrangian

L(a®, 11, 12) = 507 (a)haa (@) (4 — ELAT)(f) — €143)

and the prolongation by differentiation [12].

3 Maxwell and Einstein equations

Finally, we remark that, in all above cases, the solutions of the PDE system §f =T
are harmonic maps between generalized Lagrange spaces of type (M™, €27 (%), (x)),
where o : TM\{Hyperplane} — R is a smooth function. These spaces, endowed
with the non-linear connection N; (z,y) = I‘;k(a:)yk, where F;k (z) are the Christoffel
symbols for the Riemannian metric v;;(z), verify a constructive axiomatic formulation
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of General Relativity due to Ehlers, Pirani and Schild [4]. Moreover, such spaces
represent convenient relativistic models because they have the same conformal and
projective properties as the Riemannian space (M, v;;).

Denoting by 7, the curvature tensor field of the metric ;;, by 4/ the inverse
tensor field of v;;, and ri; = rk;,, r = yUr;;, 6/02" = 0/0x'— N} (8/0y?), 0 = 60 /5a",
0; = 0o /0y?, we shall use the following notations

H _ .kl — H = — ~0J
o7 =700, 045 —Ui|j +O’i(fj—’)/ij(f /2,0’—’)/”(fij

0" =7"6460, Gab = Galo + 00 — Yar0" /2, 6 = 76 as,
where |, (resp. [,) represents the h- (resp. v-) covariant derivative induced by the
non-linear connection N;.
Developing the formalism presented in [4, 5], the folllowing Maxwell equations

hold,

Eyjik + Fikji + Fra) = X ijm) giprgjkdhypyq

Fijle + Fjrli + Frilj = —(fijie + Firi + fri))

fijle + fili + fril; =0,

where the electromagnetic tensors Fj; and f;; are
Fij = (9ipoj = 9jpoi)y”, fij = (9ip05 — 9jp0i)y"-
Also, the Einstein equations will take the form
1 H
rij = 5T +tij = KT};
(2 = n)(ap — 07ap) = KT,

where T/ and T); are the h- and v- components of the energy momentum tensor
field, IC is the gravific constant and

tij = (n = 2) (7550 — 0ij) + YijTsey* VP op + iyt — YisY P opriay’

Remark. For the form of generalized Einstein-Yang-Mills equations in the Lagrange
space (M, e27 (@), (x)), see [1, 5].
Open problem. Is it possible to build a unique generalized Lagrange geometry
naturally asociated to a given PDE system, in the large ?
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