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Abstract

We extend the steepest descent method to solve optimization problems in
Riemannian manifolds. Same proof’s techniques used in R™ can be modified to
prove the existence of cluster points, that such cluster points are critical points
and that if the manifold has non-negative sectional curvature and the function
is convex then the generated sequence is convergent.
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1 Introduction

The steepest descent method is one of the oldest and simplest procedures for mini-
mization of a real function defined on R™. It is also the departure point for many other
more sophisticated optimization algorithms. Despite its simplicity and notoriety was
only in 1995 that its convergence theory was completed - see [8] and [2] -. In [8] the
stepsize tj is calculated by means the addition of a term of proximal regularization
at the one-dimensional search. In [2] other two different way for the calculus of the
stepsize were introduced. For the first one it is necessary that Lipschitz constant for
the gradient of the objective function be known, which may possible to take t; from a
given sequence satisfying some related constraints. The second way is an Armijo-type
search. With respect to minimize a convex function over a convex subset of R™ it is
known the so called projected subgradient method. Its completed analysis of conver-
gence can be found in [1]. Actually, in [1], the authors proved the convergence of the
generated sequence to a solution point for problems in Hilbert spaces.

From another point of view, an extended class of non- convex constrained mini-
mization problems can be seen as minimization problems in Riemannian manifolds.
The study of the extension of known optimization methods to solve minimization
problems over Riemannian manifolds was the subject of various works -see [4], [5], [7],
[10], [11] and their references.

The gradient method as defined in [2] was modified in [4], [5] and [10] in order to
use it in the solution of optimization problems in Riemannian manifolds. By means

Balkan Journal of Geometry and Its Applications, Vol.4, No.2, 1999, pp. 1-8
©Balkan Society of Geometers, Geometry Balkan Press



2 J.X. da Cruz Neto, O.P. Ferreira and L.R.Lucambio Perez

of these modifications, the authors of [4], [5] and [10] obtained the same convergence
results as in [2] when the sectional curvature of the Riemannian manifold is non-
negative.

The extension of the subgradient method to solve optimization problems in Rie-
mannian manifolds is studied in [7]. The authors obtain the same convergence results
as in [3] when the Riemannian manifolds is complete and with non-negative sectional
curvature.

In this paper we modify the gradient method with proximal regularization in the
one-dimensional search of the stepsize, i.e., as defined in [8], aiming its use in the
solution of optimization problems in Riemannian manifolds. We will obtain the same
results of convergence, namely, if the problem has solution, the objective function is
convex and sectional curvature is non-negative, then the sequence generated by our
method converges to a solution.

2 Basic concepts

In this section, we introduce some fundamental properties and notations of Rieman-
nian manifolds. Throughout this paper, all manifolds are smooth and connected. All
functions and vector fields are also assumed to be smooth. These basic facts can be
find in any introductory book on Riemannian Geometry for example [6] and [9].
Given a manifold M, denote by X (M) the space of vector fields over M and by
T, M the tangent space of M at = and by F(M) the ring of functions over M. Let
M be endowed with a Riemannian metric (,}, with corresponding norm denoted by
| |, so that M is now a Riemannian manifold. Recall that the metric can be used to
define the length of piecewise smooth curves v : [a,b] = M joining points z and y in
b

M, i.e., such that y(a) = z and v(b) = y, by I(v) = / |7 (t)|dt, and, moreover, by

minimizing this length functional over the set of all such curves we obtain a distance
d(p,q) which induces the original topology on M. Also, the metric induces a map
f e F(M)w— grad f € X(M) which associates to each f its gradient via the rule
(grad f,X) = df(X), X € X(M). The chain rule generalizes to this setting in the
usual way: (f o) (t) = (grad f(y(¢)),7'(t)) . In particular, if f assumes either a
maximum or a minimum value at a point © € M, then grad f(z) = 0. More generally,
points where grad f vanishes are called critical points of f.

Let V be the Levi-Civita connection associated to (M, (,)). If v is a curve joining
points z and y in M, then, for each ¢ € [a, ], V induces an isometry (relative to (,))
Py(t) : Ty M — T, 4) M, the so-called parallel transport along v from z to v(t). When
the reference to a curve joining « and y is not necessary, we use the notation Py,. A
vector field V' along v is said to be parallel if V.,V = 0. If +/ itself is parallel we say
that v is a geodesic. The geodesic equation V v = 0 is a second order nonlinear
ordinary differential equation, hence 7 is determined by its position and velocity at
one point as far as it is defined. It is easy to check that |'| is constant. We say that
7 is normalized if |y'| = 1. The restriction of a geodesic to a closed bounded interval
is called a goedesic segment. A geodesic segment joining p and ¢ in M is said to be
minimal if its length equals d(p, q).

A Riemannian manifold is complete if geodesics are defined for any values of t.
Hopf-Rinow’s theorem asserts that if this is the case then any pair of points, say x
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and y, in M can be joined by a (not necessarily unique) minimal geodesic segment.
Moreover, (M,d) is a complete metric space, and bounded and closed subsets are
compact. In this paper, all manifolds are assumed to be complete. The exponential
map expy : TpM — M is defined by exp,v = v,(1,x), where v(.) = 7,(.,z) is the
geodesic by it position z and velocity v at one point as far as it is defined. In this
case, we can prove that, exp,tv = +,(t,z) for any values of ¢.

One of the fundamental objects of Riemannian manifolds is the curvature tensor
R defined for X,Y,Z € X(M) by

R(X,Y)Z =VxVyZ -VyVxZ —Vxv|Z,

where [, ] is the Lie bracket. Clearly, R is a tensor of type (3,1). Given € M and a
plane o C T, M, the quantity

K (u,v) = (R(u,v)v,u) /(|[ul |[o]|* = (u,v )?)

does not depend on the basis {u,v} C 0. Hence, K (u,v) = K( o) depends only on o
and is called the sectional curvature of ¢ at x. In the section 4.2 of this paper, we will
be mainly interested in Riemannian manifolds for which K (o) > 0 for any o. Such
manifolds are referred to as manifolds with nonnegative curvature. A fundamental
geometric property of this class of manifolds is that the distance between geodesics
issuing from one point is, at least locally, bounded from above by the distance between
the corresponding rays in the tangent space. A global formulation of this general
principle is the law of cosines that we now pass to describe.

A geodesic hinge in M is a pair of normalized geodesics segment ~; and 7, such
that 71 (0) = v2(0) and at least one of them, say -1, is minimal. From now onl; = I(v1),

Iy = 1(72), Is = d(71(l), 72(l2)) and o =(71(0),75(0)).

Theorem 2.1 (Law of cosines) In a complete Riemannian manifold with nonnegative
curvature, with the notation introduced above, we have

(1) 17 <12 +13 — 20115 cosa.

Proof. see [4] and [5]. O
We say that f: M — R is convex if, for each geodesic v: R — M, foy: R — R
is convex as a real function, namely,

FO (T =XNa+ b)) < (1 =N f(v(a) + Af(v(b)),

for any A € [0, 1]. We state now a necessary and sufficient conditions for convexity.

Theorem 2.2 A function f: M — R is convex if and only if, for any p € M and
any geodesic vy : [0,+00) = R such that v(0) = p, we have

(2) f(y()) = f(p) > t{grad f(p),~'(0)).

Proof. See, for example, [5] and [11] .
O

Perhaps the most important consequence of this theorem is the following.

Corollary 1 If f : M — R is convex then all its critical points are global minimum
points.

Proof. Immediately.
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3 The Proximal regularization

Let M be a complete Riemannian manifold. We will consider the optimization problem

(3) min f(z),
where f: M — R is a continuously differentiable function. The steepest descent
method for the problem (3) is given bellow.
Algorithm 1 (Classical steepest descent Method).
Take zg € M.
For k =0,1,... define

ty = argminggf(exps, (—tgrad f(zr))),
Trer = expy, (—trgrad f(zr)).

Therefore t;, is a minimizer of the restriction of the f on the geodesic starting at
xp with tangent vector —grad f(zy) - By introduction of a prozimal reqularization in
the search of the stepsize t;, we modify the steepest descent method and replace it by
the following algorithm:

Algorithm 2 (Regularized steepest descent Method).

Our Algorithm 2 requires an exogenous sequence, { A}, of real numbers, such that,
forall k, \ <A, <\, where 0 < A < X",

Initialization Step. Take z¢o € M.
Iterative Step. For k =0, 1,... define

(4) er(t) = flexps, (—tgrad f(zx))) + t*Ax|lgrad f (2],
calculate

(5) ty = argmin,sq (1)

and set,

(6) Tpt1 = €xpy, (—trgrad f(zr))-

We assume that problem (3) has solutions. Set f* = Hélj\l/l[ f(x).
T

Proposition 1. Let {z} given by the Algorithm 2. The sequence {z}} is well defined
and, for all k

(7) (grad f(zr41); Poyarsagrad f(ar)) = 2Xx tellgrad f(ap)|f?,

where P,, .., is the parallel transport along exp,, (—tgrad f(zy)) from zy to xgq1.
Proof. By induction, suppose that z; is known. We have two cases. In the first case
grad f(z;) = 0. In this case ¢ (t) = f(z), for all ¢, and therefore any ¢ > 0 is solution
of (5) and by (6) holds z;4+1 = z1. In second case grad f(zx) # 0. In this case

(8) o(t) > f*+t*Aellgrad f(zx)|]”

for all ¢ > 0. Taking limit in (8) we get tli)m w(t) = oo, then (5) has solution and
o0

Zp+1 is defined. Since ¢} (tx) = 0, from chain rule and (6), the equality (7) holds. O
From now on {z} and {t;} refers to the sequences generated by Algorithm 2.
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4 Convergence analysis

With our results, which we present next, we show that the techniques to solve opti-
mization problems in R™ from [8] can be extended to solve problems in Riemannian
manifolds.

4.1 Weak convergence

Without hypothesis concerning the curvature of Riemannian manifold M and con-
vexity of f, we will prove that if zo belongs to a bounded level set of f, then {z}
converges weakly, namely, it is bounded, the distance between consecutive iterates
goes to zero and all its cluster points are critical points.

Theorem 4.1 For all k,
(9) f(@re1) < fxr) = Metillgrad f ()],

Furthermore,
i) The sequence {f(xy)} is decreasing and convergent. In particular, if level set M° =
{zx € M; f(z) < f(wo)} is bounded, then the sequence {xy} C M is bounded too.

ii) > 2||grad f(z1)||> < 0o. Moreover, lim d(z,zrt1) = 0.
k=0 k—o00
iii) If T is a cluster point of the sequence {x1}, then grad f(T) = 0.

Proof. Definition of t; at (5) implies (9). Item (i) is an immediate consequence of

(9)-

To prove item (ii) observe that

>_tillgrad fa)lP” < 55 (f(@0) = f(zk11)
k=0
< (o)~ £,

and that d(z, zk+1) < trllgrad f(zg)]]-
Now, let = a cluster point of sequence {zj} and {zy,} the subsequence of {x}}
which converges to z. From item (ii) the sequence {xy, 1} converges also to .
From Proposition 1,

(10) <grad f(xkj“rl)? Pwkj wk]-+1grad f(xkj» = 2>\kj tkj ||grad f(wkj)”Q‘

The Riemannian metric, the parallel transport and gradient field are continuous, and
then

(11) 111?010 (grad f(xkj+1) ) P-Tk]- wk]-+1gra‘d f(mk]) > = ||grad f(.f)”Q
Theorem 4.1 item (ii) implies that lim ¢, ||grad f(x,)|| = 0. Then
j—oo
(12) lim 2\, ty, ||grad f(zx,)|]> = 0
j—o00
because {Ag; } is bounded.

From (10), (11) and (12) it follows that grad f(Z) = 0 and item (iii) is proved.
O
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4.2 Full convergence

To achieve the full convergence of {z;} we need convexity of f and the nonnegativity
of the sectional curvature of M, but we don’t need the existence of bounded level set
of f.

Proposition 2. Let M be a Riemannian manifold with nonnegative curvature. Let
f:M — R be a convex function. Then, for any y € M we have

(13) &*(2rr1,y) < d*(zn,y) + tllgrad f(zi)l* + 2tk (f(y) = flzx))

for all k.
Proof. See, for example, [4], [5], [10].

Lemma 1 Let (M, d) be a complete metric space. If the sequence {yr} C M has a
cluster point § satisfying

(14) @ (Yri1,Y) < (e, Y) + €,

oo
for some sequence {€}, such that €, > 0 and Y €, < oo, then klgI;o Yk =71.
k=0

Proof. See [5].
Consider the set O ={f e M : {(}) < Hinf {(§}. Because we are assuming that
—00

problem (3) has solutions, then O is nonempty and, by item (i) of Theorem 4.1 and
continuity of f any cluster point of {z} is in O.

Theorem 4.2 Let M be a Riemannian manifold with non-negative curvature. Let
fiM — R be a convex function. Then the sequence {x} converges to a minimizer

point of f .
Proof. Take y in O. From Proposition 2 we have
(15) d*(z41, y) < d(zx, y) + tillgrad f(z)]]?

for all k. The least inequality implies

k
(16) &(@pi1, y) < d*(z0, y) + Y tillgrad f(zy)|]

Jj=0

for all k. From Proposition 4.1 item (ii) it follows that the sequence {z}} is bounded.
Take T a cluster point of {zj} and observe that the equation (16) holds for y = Z. By

equation (16) and setting e, = t2||grad f(zx)||? in the Lemma 1 we have klim xp = T.
— 00

Therefore, from Theorem 4.1 item (iii), convexity of function f and Corollary 1 it
follows that T its minimizer.
O
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5 Final remarks

The algorithm proposed in [8] solves unconstrained convex problem in R"™. Our al-
gorithm 2 solves constrained non-convex problem in R™ when the constraint set is
a Riemannian manifold. Then, we can say that algorithm 2 generalizes, in a cer-
tain sense, the algorithm presented in [8], namely, if the Riemannian manifold is the
Euclidean space R™ then both algorithms are the same. The algorithm in [1] solves
constrained convex problems in Hilbert spaces, in particular, in the R™. While the
problems solved by [1] have to be convex , the problems solved by our algorithm are
convex in the Riemannian sense, but they may be non-convex in the usual sense.
We remark that the techniques used in the full convergence proof impose restric-
tions about the manifold, that is, we need non-negative curvature of the Riemannian
manifold. It remains to remove this hypothesis.
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