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Abstract

We study partial differential equations by using invariance under transforma-
tions groups due to Sophus Lie. This method, so called the classical Lie method
of infinitesimal transformations or symmetry groups theory, has been applied
last years to important PDEs arising from mathematics and physics. Based on
the finding of a symmetry group associated to the studied PDEs system, we
can find a lot of properties related on solutions. A modern presentation of this
theory using the jet functions theory is given by Olver in his book [37].

The aim of this paper is to point out the ideas of the Ph.D.Thesis [2],
which contains recent results obtained by application of the Lie’s method for
certain PDEs systems which arises from differential geometry, especially from
Ţiţeica (Tzitzeica) surfaces theory, and from physics. The paper is split into four
parts:the symmetry group history, symmetry groups in differential geometry, the
thesis ideas and original results of thesis.

Mathematics Subject Classification 2000: 58J70, 35A30
Key words: symmetry group, criterion of infinitesimal invariance, group-invariant

solutions, conservation laws

1 The Symmetry group history

The groups theory has an important role in a lot of domains of the science: math-
ematics, physics, classical mechanics, electromagnetism, relativity theory, quantum
mechanics. This theory was introduced for the necessity to find a mathematical ap-
paratus to study the properties of mathematical or physical objects. After the in-
finitesimal calculus invention, the concept of group is considered the most important
discovery in mathematics.

The idea due to Sophus Lie, namely, to study the differential equations systems
and the partial differential equations systems by using the transformations groups
implied a new theory: the symmetry groups theory, known also as the classical Lie
method of infinitesimal transformations.
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The symmetry group of a PDEs system is the largest (connected) local Lie group of
transformations acting on the space of the independent and dependent variables of the
system, with the property that it conserves the set of solutions. In the Lie’s theory
this group consists in geometric transformations which act on the set of solutions
by transforming their graphs. The infinitesimal generator is a vector field associated
with a local one-parameter group of transformations, and from this it follows that the
symmetry group is described by the composition of the basic one-parameter groups.

The method of finding the symmetry group associated to a PDEs system is based
on the infinitesimal criterion of invariance, and in this case the prolongation of the
infinitesimal generator to the derivatives space of the dependent variables of the sys-
tem is very important. Lie made the remark that, for a given PDEs system, the
complicated nonlinear conditions of invariance can be replaced by equivalent linear
conditions: an overdetermined linear PDEs system, so-called the defining equations
for the symmetry group.

The knowledge of the symmetry group implies a lot of properties both of the
system and of their solutions: the determining of the group-invariant solutions, the
construction of new solutions of the system from known ones, the classification of
the group-invariant solutions - two solutions are equivalent if one can be transformed
into the other by some element group - using the associated adjoint representation.
Moreover, we can find a PDEs class which is invariant under a given group of trans-
formations. In his papers, Lie found the symmetry group associated with several
ordinary differential equations and respectively first and second order PDEs. He was
the first which made the remark that one can determine invariant solutions under
a one-parameter group of transformations. Lie introduced the concept of variational
symmetry group and he got the infinitesimal variational criterion too. Cartan [16]
studied the equivalence between a given set of PDEs and a set of differential forms.
The Noether’s theorem implied the development of this research field since 1918. Thus
a lot of mathematicians and physicians became interested to study this new theory:
Jacobi studied the connection of variational symmetries with the conservation laws,
continued later by Shutz and Engel; Birkhoff - applied the groups theory in the study
of certain PDEs which arise from hydrodinamics; Ovsiannikov and the Russian school
[41] - from 1950 to 1960 - proposed an important systematic programme to apply this
method in the case of the most important PDEs which arise from physics, and in
that time they introduced the algorithm of classification of solutions with the ad-
joint representation. Bluman and Cole [13] - found again the symmetry group of the
heat equation given by Lie, determined group-invariant solutions for this PDE and
group-invariant PDEs invariant under this symmetry group also. Miller [30]- applied
the symmetry group theory in the finding of the solutions of the second order linear
PDEs by using the separable variables method. Weisner - studied the connection of
certain symmetry groups with some functions. Moreover Harrison şi Estabrook de-
veloped a similar theory but using differential forms [21], and this point of view was
continued by Edelen. A modern exposition of the Lie method was given by Olver in
his book [37], using the jet functions theory. In [39] Olver and Rosenau defined again
the symmetry group like a strong symmetry group and they introduced the concept
of weak symmetry group of a PDEs system. On the other hand, the algorithm to find
the symmetry group of a PDEs system is a computational method. This allowed to
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appear a lot of symbolic programs to eliminate the difficult calculus in the case of
particular forms of PDEs [22], [37].

There are a lot of papers and books which study this subject. So we have just
presented only some of the important stages of the development of this theory: [13],
[21], [22], [25], [30], [37]-[40], [41], [45], [60]. In the references [14], [17], [23], [26], [27],
[31], [35]-[36], [46], [47], [63] appear similar problems connected with our research
work interest.

2 Symmetry groups in differential geometry

We make the remark that PDEs and the PDEs systems which arise from differential
geometry were not systematically studied by using the symmetry group theory. That
is our motivation to apply the modern symmetry groups theory in the case of certain
PDEs connected with differential geometry. This survey is based on our recent papers
in which we find the differentiable distributions for which the integral varieties are
graphs of the invariant solutions of certain equations and on variational conservation
laws too.

We studied Monge-Ampère PDEs, Monge-Ampère-Ţiţeica PDEs respectively, the
basic results beeing published in the paper [57]. The study of Ţiţeica surfaces PDEs
implied the finding of some infinitesimal symmetries, Lagrangians and conservation
laws associated with these equations [11], [59]. All these results show that the theory
of Ţiţeica surfaces becomes a theory of variational calculus.

In the chapter 4 we include the papers [10] and [9], which consider the Camassa-
Holm PDE from fluid mechanics and Blair PDEs system from solar physics and con-
tact geometry. The papers [6] and [3] contain applications of the symmetry groups
theory in the study of the PDE of surfaces with constant Gaussian curvature and
the minimal surfaces PDE. In [4] and [5] are shown special classes of ODEs invariant
under groups of transformations.

The problem to associate connections, and metrics generated by found symmetry
groups is part of our recent work.

Opposite to our published papers, the thesis [2] contains also the original results
found by using the Lie Program for analysis of partial differential equations on IBM
type PCs [22]. We want to make the remark that in the case of the Monge-Ampère-
Ţiţeica PDEs (2.1.1) and (2.1.2) respectively, the symbolic programs cannot be ap-
plied in the n-dimensional case. Their using for the PDEs systems (3.1.6), (3.1.8) and
(3.1.10), which define the Ţiţeica surfaces, is very difficult also.

3 The Thesis ideas [2]

The theory presented by Olver in his book [37], which is very known and appreciated
in the mathematical literature, represents the basis of our ideas.

The first chapter of the thesis contains a short presentation of the basic results of
the symmetry groups theory for the PDEs systems and variational symmetry groups
theory. Also, we give the explicit formulas for the finding of the symmetry group of
certain PDEs studied in the second and in the fourth chapter.

The second chapter studies the symmeries of the Monge-Ampère PDE
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det(uij) = f(x, u),

and especially in the cases f = 1 and n = 2 respectively. The second order PDE

uxxuyy − u2
xy = H(x, y, u, ux, uy)

is called the Monge-Ampère-Ţiţeica PDE. One proves that

uxxuyy − u2
xy = 1,

is the only second order Monge-Ampère-Ţiţeica PDE invariant under the symmetry
group associated to it. One finds the group-invariant solutions and one proves that
Pogorelov’s solution [42] and Jörgens’s solution [24] are group-invariant solutions.
Moreover, one generalises the Calabi’s result about the invariance of the Monge-
Ampère equation, in the case f = 1, under the special linear group, so that this group
is a subgroup of the symmetry group associated to the equation.

Studying the tetrahedral surfaces, in 1907, Ţiţeica introduced a new class of sur-
faces [48], with the property that

K

d4
= constant,

where K is the Gauss curvature and d the distance from origin to tangent plane of the
surface. Ţiţeica called them S-surfaces, and showed that these are invariant under the
centroaffine transformations. Now the surfaces S are called Ţiţeica-surfaces. Ţiţeica
was the first who discovered centroaffine properties, so he is considered one of the
founders of the affine geometry which was developed later as independent domain
and for which the S-surfaces were affine spheres. The results due to Mayer, Myller,
Vrânceanu, Gheorghiu, etc developed the centroaffine geometry [19], [20], [28], [29],
[61], [62].

The study of the Ţiţeica surfaces PDE

uxxuyy − u2
xy = α(xux + yuy − u)4, α ∈ R∗,

is contained in the second chapter and it is based on the paper [59]. One shows that
the symmetry group associated with this PDE is the unimodular subgroup of the
centroaffine group.

One proves that the only Monge-Ampère-Ţiţeica PDE invariant under the uni-
modular group is the Ţiţeica surfaces PDE. Also one finds group-invariant solutions
and weak symmetry groups [39] associated to this PDE. By studying the inverse prob-
lem [37], [40], one shows that the Ţiţeica surfaces PDE is an Euler-Lagrange equation
and one determines an associated second order Lagrangian. One considers variational
problem and one gets the variational symmetry group and respectively conservations
laws. In this way the Ţiţeica theory becomes related to variational calculus on dif-
ferential manifolds. Also one shows that the Ţiţeica surfaces PDE can be included in
the following class of Euler-Lagrange equations

uxxuyy − u2
xy

(xux + yuy − u)m = α,

where m 6= 0, 2, 3 and α 6= 0.
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The third chapter of the thesis analyses infinitesimal symmetries associated to
the completely integrable system





ruu = aru + brv

ruv = hr
rvv = a′′ru + b′′rv,

which define the Ţiţeica surfaces [49], where the functions a, b, h, a′′, b′′ satisfy the
conditions of integrability

ah = hu, av = ba′′ + h, bv + bb′′ = 0,

hv = b′′h, a′′u + aa′′ = 0, h = b′′u + a′′b.

One considers the associated scalar system




θuu = aθu + bθv

θuv = hθ
θvv = a′′θu + b′′θv,

and one finds associated infinitesimal symmetries. Ţiţeica proved that three indepen-
dent solutions x, y, z of this second order completely integrable PDEs system define
an S-surface, where u, v are the coordinates of the asymptotic lines of the surface [49].
Thus, one determines the following subgroups of the symmetry groups of these sys-
tems: the subgroups which act on the space of the independent variables and on the
space of the dependent variables respectively associated with the system. One proves
that the symmetry subgroup which acts on the space of the dependent variables, is
the unimodular subgroup of the centroaffine group, and one finds again the above
result.

Gheorghiu proved the existence of a space A2 with affine connection associated
to the scalar system which defines the Ţiţeica surfaces, and he introduced [19] a new
class of affine spaces A0

2. New examples of these spaces were given by Udrişte [52].
The problem to associate our results with the Ţiţeica connection [61] and the result
due to Gheorghiu is still open [64].

One finds the symmetry groups associated with Liouville-Ţiţeica PDE

(lnh)uv = h,

and Ţiţeica PDE

(ln h)uv = h− 1
h2

,

respectively, the equations which defines the conditions of completely integrability
of the systems which define the Ţiţeica ruled surfaces and Ţiţeica surfaces which
are not ruled. One proves that these equations are Euler-Lagrange PDEs and by
studying the associated variational problems, one finds variational symmetry groups
and conservation laws. Our results are different from those presented in Bobenko
[14] and Wolf [63]. By using the CRACK Program, in the paper [63], Wolf finds
conservation laws by solving the conservation law condition directly (it is not assumed
that any Lie-symmetries are known, nor that the equations are equivalent to the Euler-
Lagrange equations of a variational problems).
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The fourth chapter contains the study of the symmetry group associated with
the third order PDE

uuxxx + uxxy + 2uxuxx − 3uux − uy = 0,

so-called Camassa-Holm (CH) equation. This PDE was introduced by Fuchssteiner
and Fokas, and Camassa and Holm [15] discovered again that it is the model of the
shallow wave equation. Holm, Marsden and Ratiu [23] showed that the n-dimensional
CH equation describes geodesic motion on the diffeomorphism group Diff(Rn), Mi-
siolek [31] has shown that the CH equation represents a geodesic flow on the Bott-
Virasoro group Diff(S1), and Kourbaeva [26] has shown that this equation is a
geodesic spray of the weak Riemannian metric on the diffeomorphism group Diff(R)
or on Diff(S1).

For a certain class of third order PDEs, namely

uy − εuxxy + 2kux = uuxxx + αuux + βuxuxx

which includes the CH PDE, Clarkson, Mansfield and Priestley applied the nonclas-
sical symmetries method [18].

In 4.1 one gets again the associated Lie group to CH PDE and moreover one
finds a class of third order PDEs invariant under this group [10], which included the
Rosenau-Hyman PDE

uuxxx + uux + 3uxuxx − uy = 0

also. In the class of second order PDEs invariant under the symmetry group associated
with CH PDE can be included: the nonlinear wave PDE

uy = uux,

the Liouville-Ţiţeica PDE
uuxy − uxuy = u3,

and respectively the particular Monge-Ampère-Ţiţeica PDEs

uxxuyy − u2
xy = u4f

(ux

u
,
uy

u2

)
.

In the paper [12], Blair studied the vector equation

rot B = |B| ·B.

A solution of it gives a conformally flat contact metric structure on R3. Moreover if
the vector field B satisfies the equation

div B = 0,

then the solutions of the system represent ”force-free” models of solar physics. The
system of these two equations is called Blair PDEs system. Blair found a solution of
it by using the method of succesive aproximations. The vector fields

B1 = sin z
∂

∂x
+ cos z

∂

∂y
,
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and

B2 =
8(xz − y)

(1 + x2 + y2 + z2)2
∂

∂x
+

8(x + yz)
(1 + x2 + y2 + z2)2

∂

∂y
+

4(1 + z2 − x2 − y2)
(1 + x2 + y2 + z2)2

∂

∂z
,

satisfy the vector equation, but only the first is a solenoidal vector field. The finding
of the solutions of this PDEs system is still an open problem.

In 4.2 are studied the PDEs

rot B = f ·B,

which arise from solar physics, in the case f = f(u, v, w) and f = |B| respectively.
One finds the determining equations of the symmetry groups. One finds again the
symmetry group associated with the Blair PDEs system [12] and one shows that
the known solutions are group-invariant solutions, so using these we can find new
solutions.

The annex of the thesis presentes some symbolic programs for determining the
symmetry group of certain PDEs systems. Also it contains the results produced by
the LIE51 and BIGLIE Programs, author Head [22], in the case of some PDEs and
PDEs systems studied in the thesis.

4 Original results of thesis

In this last part we shall present several original results found by using the symmetry
group theory, as follows:
Theorem 2.1.1. The Lie algebra of the infinitesimal symmetries associated to the
Monge-Ampère PDE

(2.1.1) det(uij) = f(x, u),

is described by the vector field

X =
n∑

i=1

ζi(x)
∂

∂xi
+ φ(x, u)

∂

∂u
,

with the property that the components

ζi(x) = xi
n∑

j=1

ajx
j +

n∑

j=1

bi
jx

j + ci, i = 1, ..., n,

and

φ(x, u) = u




n∑

j=1

ajx
j + b


 +

n∑

j=1

cjx
j + c,

where aj , bi
j , b, cj , ci, c ∈R, are the solutions of the first order PDE

−
n∑

i=1

ζifxi − φfu + nf

(
φu − 2

n

n∑

i=1

ζi
xi

)
= 0.
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Theorem 2.1.2 The Lie algebra of the infinitesimal symmetries associated to the
Monge-Ampère PDE

(2.1.2) det(uij) = 1

is described by the vector fields

(2.1.3) Xij = xi ∂

∂xj
+ δi

j

2u

n

∂

∂u
, 1 ≤ i, j ≤ n,

Yi = xi ∂

∂u
, 1 ≤ i ≤ n, Zi =

∂

∂xi
, 1 ≤ i ≤ n, V =

∂

∂u
.

In the case n = 2, the PDE (2.1.2) turns in

(2.1.4) uxxuyy − u2
xy = 1.

This PDE is contained in the class,

uxxuyy − u2
xy = H(x, y, u, ux, uy),

so-called Monge-Ampère-Ţiţeica PDEs.
The Theorem 2.1.2 implies that the Lie algebra of the infinitesimal symmetries

associated to the PDE (2.1.4) is spaned by following vector fields

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂u
, X4 = y

∂

∂x
, X5 = x

∂

∂y
,

(2.1.5) X6 = x
∂

∂u
, X7 = y

∂

∂u
, X8 = x

∂

∂x
+ u

∂

∂u
,

X9 = y
∂

∂y
+ u

∂

∂u
,

where we denote x1 = x, x2 = y, respectively Z1 = X1, Z2 = X2, V = X3, X21 =
X4, X12 = X5, Y1 = X6, Y2 = X7, X11 = X8 and X22 = X9.
Theorem 2.1.3. The second order PDE

uxx = H(x, y, u, ux, uy, uxy, uyy),

invariant under the Lie group G with the infinitesimal generators given by the relation
(2.1.5), is reduced to the Monge-Ampère PDE (2.1.4).
Theorem 2.2.1. The vector fields

(2.2.5) X1 = x
∂

∂x
− u

∂

∂u
, X2 = y

∂

∂y
− u

∂

∂u
, X3 = y

∂

∂x
, X4 = u

∂

∂x

X5 = x
∂

∂y
, X6 = u

∂

∂y
, X7 = x

∂

∂u
, X8 = y

∂

∂u

describe the Lie algebra of the infinitesimal symmetries associated to the Ţiţeica sur-
face PDE
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(2.2.4) uxxuyy − u2
xy = α(xux + yuy − u)4.

Theorem 2.2.2. The second order Monge-Ampère-Ţiţeica PDE of maximal rank,

(2.2.3) uxxuyy − u2
xy = H(x, y, u, ux, uy),

which admits the group G′ (with X1, X2, X3, X7 as infinitesimal generators) as sym-
metry group, is the Ţiţeica surfaces PDE.
Theorem 2.3.1. The operator T associated to the Ţiţeica surfaces PDE is equivalent
to an Euler-Lagrange operator.
Theorem 2.3.2. A second order Lagrangian associated to the Ţiţeica surfaces PDE
(2.2.4) is

(2.3.1) L(x, y, u(2)) =
u(u2

xy − uxxuyy)
(xux + yuy − u)4

− αu.

Theorem 2.3.3. The class of second order PDEs

(2.3.2) uxxuyy − u2
xy = α(xux + yuy − u)m

,

with m 6= 0, 2, 3 and α 6= 0, is equivalent to a class of Euler-Lagrange PDEs.
Theorem 2.3.4. A second order Lagrangian associated to the PDE (2.3.2) is

(2.3.3) Lm(x, y, u(2)) =
u(u2

xy − uxxuyy)
(xux + yuy − u)m

− α(m− 3)u.

Theorem 2.4.1. The Lie algebra of the variational symmetry group for the functional
(2.4.1) is described by the vectors fields

(2.4.2) Y1 = x
∂

∂x
− u

∂

∂u
, Y2 = y

∂

∂y
− u

∂

∂u
,

Y3 = y
∂

∂x
, Y4 = x

∂

∂y
.

Theorem 3.1.3. The Lie algebra g1 of the Lie symmetry group G1, which acts on
the space of the dependent variables of the PDEs system

(3.1.11)





xuu = axu + bxv

xuv = hx
xvv = a′′xu + b′′xv

yuu = ayu + byv

yuv = hy
yvv = a′′yu + b′′yv

zuu = azu + bzv

zuv = hz
zvv = a′′zu + b′′zv,

(3.1.12) (yuzv − zuyv)x− (xuzv − xvzu)y + (xuyv − xvyu)z = f,
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where the functions a, b, h, a′′, b′′ satisfy the relations

(3.1.5) ah = hu, av = ba′′ + h, bv + bb′′ = 0,

hv = b′′h, a′′u + aa′′ = 0, h = b′′u + a′′b,

and f = f(u, v) is a nonidentically zero function, is described by the vector fields

(3.1.13) X1 = x
∂

∂x
− z

∂

∂z
, X2 = y

∂

∂y
− z

∂

∂z
, X3 = y

∂

∂x
, X4 = z

∂

∂x

X5 = x
∂

∂y
, X6 = z

∂

∂y
, X7 = x

∂

∂z
, X8 = y

∂

∂z
.

The Lie symmetry group G1 is the unimodular subgroup of the centroaffine group.
Theorem 3.1.4. The general vector field of the Lie algebra of infinitesimals symetries
of the group G2 associated with the second order PDEs system (3.1.11)+(3.1.12), is

Z = ζ(u)
∂

∂u
+ η(v)

∂

∂v
,

where the components ζ and η satisfy the following PDEs

(3.1.14)





ζau + ηav + aζu + ζuu = 0
ζbu + ηbv − bηv + 2bζu = 0
ζhu + ηhv + h(ζu + ηv) = 0
ζa′′u + ηa′′v − a′′ζu + 2a′′ηv = 0
ζb′′u + ηb′′v + b′′ηv + ηvv = 0.

Proposition 3.1.3. The function

(3.1.16) h(u, v) =
3

2sh2 (u+v)
√

3
2

+ 1

gives a Ţiţeica revolution surface. Moreover, there is a Ţiţeica ruled surface associated
to it.
Proposition 3.1.4. The Ţiţeica’s solution marked in [2] by (3.1.17) is invariant
under the subgroup G2, for which

Z = C1
∂

∂u
+ C2

∂

∂v
,

is an infinitesimal generator, in the case of Ţiţeica surfaces which are not ruled.
Theorem 3.2.2. The general vector field which describes the algebra of infinitesimal
symmetries associated to Liouville-Ţiţeica equation

(3.2.1) ωuv = eω,

is

(3.2.5) W = f
∂

∂u
+ g

∂

∂v
− (f ′ + g′)

∂

∂ω
,
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where f = f(u) and g = g(v).
Theorem 3.2.3. The vector fields which describe the Lie algebra of infinitesimal
symmetries associated to Ţiţeica surfaces PDE

(3.2.2) ωuv = eω − e−2ω,

are the following

(3.2.6) U1 = u
∂

∂u
− v

∂

∂v
, U2 =

∂

∂u
, U3 =

∂

∂v
.

Theorem 3.2.4. A second order PDE invariant under the symmetry group associated
to Ţiţeica PDE (3.2.2) takes the form

(3.2.7) H(ω, ωuωv, ωuv, ωuuωvv) = 0.

In particular, if the PDE is a Monge-Ampère-Ţiţeica PDE (2.2.3), then one finds the
PDE

(3.2.8) ωuuωvv − ω2
uv = f(ω, ωuωv).

Theorem 3.3.1. The operators

T1(ω) = ωuv − eω,

and respectively
T2(ω) = ωuv − eω − e−2ω,

associated to the PDEs (3.2.1) and (3.2.2) respectively, are identically with the Euler-
Lagrange operators, for which the associated Lagrangians are

(3.3.1) L1(u, v, ω(1)) = −1
2
ωuωv − eω,

and respectively

(3.3.2) L2(u, v, ω(1)) = −1
2
ωuωv − eω − 1

2
e−2ω.

Theorem 3.3.2. The Lie algebras of the variational symmetry groups for the func-
tionals

Li[ω] =
∫ ∫

D

Li(u, v, ω(1))dudv, i = 1, 2,

where L1 and L2 are given by (3.3.1) and (3.3.2) respectively are generated by the
vector fields

(3.3.5) W1 = u
∂

∂u
− ∂

∂ω
, W2 = v

∂

∂v
− ∂

∂ω
, W3 =

∂

∂u
, W4 =

∂

∂v
,

respectively

(3.3.6) U1 = u
∂

∂u
− v

∂

∂v
, U2 =

∂

∂u
, U3 =

∂

∂v
.



50 N. B̂ılă

Proposition 3.3.1. The fluxes P 1 and respectively the conserved densities P 2 associ-
ated to the conservation laws for Liouville-Ţiţeica PDE (3.2.1), are contained in the
following table

−Wi P 1 P 2

−W1
1
2ωv − ueω 1

2ωu(1 + uωu)
−W2

1
2ωv(1 + vωv) 1

2ωu − veω

−W3 −eω 1
2ω2

u

−W4
1
2ω2

v −eω

Proposition 3.3.2. The flux P 1 and respectively the conserved density P 2 associated
to the conservation laws for Ţiţeica PDE (3.2.2), are contained in the following table

−Ui P 1 P 2

−U1 − 1
2ue−2ω − 1

2vω2
v − ueω 1

2uω2
u + veω + 1

2ve−2ω

−U2 −eω − 1
2e−2ω 1

2ω2
u

−U3
1
2ω2

v −eω − 1
2e−2ω

Theorem 4.1.1. The Lie algebra g of the infinitesimal symmetries associated to
Camassa-Holm PDE

(4.1.1) uuxxx + uxxy + 2uxuxx − 3uux − uy = 0

is generated by the vector fields

(4.1.2) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂y
− u

∂

∂u
.

Theorem 4.1.2. A third order PDE

H(x, y, u(3)) = 0

for which the Lie algebra of associated infinitesimal symmetries is described by the
vector fields (4.1.2) can be written in the following form

(4.1.3) h
(ux

u
,
uy

u2
,
uxx

u
,
uxy

u2
,
uyy

u3
,
uxxx

u
,
uxxy

u2
,
uxyy

u3
,
uyyy

u3

)
= 0.

Theorem 4.2.1. The Lie algebra of infinitesimal symmetries associated to PDEs
system (4.2.4) is described by the vector field

X = ζ
∂

∂x
+ η

∂

∂y
+ θ

∂

∂z
+ φ

∂

∂u
+ λ

∂

∂v
+ ψ

∂

∂w
,

for which the components ζ, η, θ, φ, λ, ψ, functions of x, y, z, u, v, w, are the solutions
of the folllowing PDEs system

ψy − λz − φ(ufu + f)− uλfv − uψfw − vfλu + wfζz+

+uf(ψw − ηy) + vwf2ζu − u2f2ηw = 0
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φz − ψx − vfuφ− (vfv + f)λ− vfwψ + vf(φu − θz)−
−wfψv + ufηx − v2f2θu + uwf2ηv = 0

λx − φy − wφfu − wλfv − (wfw + f)ψ + vfθy + wf(λv − ζx)−
−ufφw − w2f2ζv + uvf2θw = 0

φv = −ηx + f(vηw − wηv)

(4.2.7) φw = −θx + f(vθw − wθv)

λu = −ζy + f(wζu − uζw)

λw = −θy + f(wθu − uθw)

ψu = −ζz + f(uζv − vζu)

ψv = −ηz + f(uηv − vηu)

φu − ψw = −ζx + θz + f(2vθu − wζv − uηw)

ψw − λv = −θz + ηy + f(2uηw − vθu − wζv)

ηu = ζv θv = ηw ζw = θu.

Theorem 4.2.2. A Lie subalgebra of the Lie algebra of infinitesimal symmetries
associated to the PDEs system (4.2.5) is described by the following vector fields:

X1 = −y
∂

∂x
+ x

∂

∂y
− v

∂

∂u
+ u

∂

∂v
, X2 = −z

∂

∂y
+ y

∂

∂z
− w

∂

∂v
+ v

∂

∂w
,

X3 = −z
∂

∂x
+ x

∂

∂z
− w

∂

∂u
+ u

∂

∂w
, X4 =

∂

∂x
, X5 =

∂

∂y
, X6 =

∂

∂z
.

(4.2.8) X7 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− u

∂

∂u
− v

∂

∂v
− w

∂

∂w
,

X8 = 2xz
∂

∂x
+ 2yz

∂

∂y
+ (z2 − x2 − y2)

∂

∂z
+ 2(xw − zu)

∂

∂u
+

+2(yw − zv)
∂

∂v
− 2(xu + yv + zw)

∂

∂w
,

X9 = xy
∂

∂x
+

1
2
(y2 − x2 − z2)

∂

∂y
+ yz

∂

∂z
+ +(xv − yu)

∂

∂u
−

−(xu + yv + zw)
∂

∂v
+ (zv − yw)

∂

∂w
,

X10 =
1
2
(x2 − y2 − z2)

∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z
− (xu + yv + zw)

∂

∂u
+

+(yu− xv)
∂

∂v
+ (zu− xw)

∂

∂w
.

Theorem 4.2.3. The following vector fields
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(4.2.9) X1 = −y
∂

∂x
+ x

∂

∂y
− v

∂

∂u
+ u

∂

∂v
, X2 = −z

∂

∂y
+ y

∂

∂z
− w

∂

∂v
+ v

∂

∂w
,

X3 = −z
∂

∂x
+ x

∂

∂z
− w

∂

∂u
+ u

∂

∂w
, X4 =

∂

∂x
, X5 =

∂

∂y
,

X6 =
∂

∂z
, X7 = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− u

∂

∂u
− v

∂

∂v
− w

∂

∂w
,

described the Lie algebra g of infinitesimal symmetries associated to Blair PDEs sys-
tem

(4.2.6)





wy − vz = u
√

u2 + v2 + w2

uz − wx = v
√

u2 + v2 + w2

vx − uy = w
√

u2 + v2 + w2

ux + vy + wx = 0.

Theorem 4.2.4. Let f = f(u, v, w). The only first order PDEs system

(4.2.14)





wy − vz = uf
uz − wx = vf
vx − uy = wf

ux + vy + wx = 0,

invariant under the symmetry group G associated to the Blair PDEs system (4.2.6),
is the Blair PDEs system.
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nal of Geometry and Its Applications, 4, 2(1999), 123-140, presented at
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Roumaine de Math. Pures et Appl., 24, 6(1979), 983-988.

[63] T.Wolf -A comparison of four approaches to the calculation of conservation laws,
1999, preprint.

[64] K.Yano -Generalization of the connection of Tzitzeica, Kodai, Math. Sem. Rep.,
21(1969).

[65] S.T.Yau -Survey on partial differential equations in differential geometry, Sem-
inar on Differential Geometry, Annals of Mathematics Studies, 102(1982),
Princeton University Press, 3-72.

University Politehnica of Bucharest, Department of Mathematics I
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