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Abstract

We give an example for the manifold of all Euclidean inner products on var-
ious tangent spaces of a manifold, building the manifold S(Sn) of all Euclidean
inner products for the sphere Sn. We obtain a representation of points of this
manifold by matrices classes.
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1 Introduction

Let S(M) be the manifold of all Euclidean inner products given on various tan-
gent spaces of a n−dimensional real smooth manifold M [5 ]. This is the n + n(n +
1)/2−dimensional real smooth manifold S(M) = L(M) ×GL(n;R) S(Rn) -the total
space of the fibre bundle over the base M , with standard fibre the homogeneous
space S(Rn) = GL(n; R)/O(n) which is associated with the principal bundle L(M)
of linear frames of M. The homogeneous space S(Rn) is exactly the manifold of all
Euclidean inner products on Rn. The manifold S(M) is different from the manifold
M(M) of all Riemannian metrics of M which is an infinite smooth manifold [2], but
M(M) is exactly the manifold of all global sections of the fibre bundle S(M).

We denote by π : S(M) → M the canonical projection. The fibre π−1(x) over
x ∈ M may be considered as S(TxM)- the space of Euclidean inner products on
the tangent space TxM. If {x1, ..., xn} are local coordinates in a neighborhood U

of the point x ∈ M , let {θ1, ..., θn} be the canonical frame, θi =
∂

∂xi
, i = 1, ..., n.

The vertical space in the point g ∈ S(M), π(g) = x is the space of all symmetric
endomorphisms of TxM related with g. If we denote by VgS(M) the vertical space at
the point g ∈ S(M),then, locally,

VgS(M) = {Â(g) | A ∈ gl(n; R), Â(g) = Ag + gtA}, π(g) = x ∈ U,

where gl(n;R) is the Lie algebra of endomorphisms of Rn and tA is the transposition
of A ∈ gl(n;R) related with the standard inner product e on Rn.
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If ∇ is a linear connection on M, the horizontal space Hg at the point g ∈ S(M) is
locally spanned by {θ̂1, ..., θ̂n}, where for i = 1, ..., n, θ̂i is the horizontal lift of θi and
is given by θ̂i = θi + Γ̂i(x)(g), Γi = (Γk

ij)jk ∈ gl(n;R), with ∇θi
θj = Γk

ijθk, (∀) i, j =
1, ..., n..., n.

2 The principal bundle of linear frames of the sphere

Let M be a manifold of dimension n. A linear frame at a point x ∈ M is an ordered
basis (X1, ..., Xn) of a tangent space TxM. We denote by L(M) the set of all linear
frames u at all points of M and let π′ be the mapping of L(M) onto M witch maps
a linear frame u at x into x.The general linear group GL(n; R) acts on L(M) on the
right as follows. If a = (aij)ij ∈ GL(n; R) and u = (X1, ..., Xn) is a linear frame of
TxM, x ∈ M,then ua is, by definition, the linear frame (Y1, ...., Yn) of TxM defined by
Yi =

∑
j aj

iXj . In order to introduce a differentiable structure in L(M), let (x1, ..., xn)
be a local coordinate neighborhood U in M . Every frame u at TxM, x ∈ M, can be
expressed uniquely in the form u = (X1, ..., Xn), with Xi =

∑
k Xk

i ∂/∂xk, i = 1, ..., k
. Then, (x1, ..., xn, Xk

i )ik is a local coordinate system in π′−1(U). It is easy to verify
that L(M) is the total space of a principal fibre bundle over the base M with structure
group GL(n;R), denoted by L(M) to [1].

Let (Rn+1, <,>) be the standard Euclidean n + 1−dimensional space and let
Sn = {x ∈ Rn+1 |< x, x >= 1} be the n−dimensional sphere. A frame at the
point x ∈ Sn is given by n independents vectors of Rn+1, orthogonals on the
vector x.If u = (X1, X2, ..., Xn) is a frame in x ∈ Sn, x = (x1, ..., xn+1),where
Xi = (x1i, ..., xn+1i), i = 1, ..., n, then we consider the matrix

(1) X =




x11 . . . x1n x1

x21 . . . x2n x2

. . . . . .

. . . . . .

. . . . . .
xn+11 . . . xn+1n xn+1



∈ GL(n + 1; R).

We observe initially that tXX ∈ ˜GL(n;R), where ˜GL(n; R) is the Lie subgroup of
the Lie group GL(n + 1; R) with the elements the non–degenerated matrices

(2) M̃ =
(

M 0
0 1

)
, M ∈ GL(n; R)

and tX is the transposed of the matrix X.
It is easy to check that the manifold of linear frames of the n-dimensional sphere

L(Sn), is just: L(Sn) = {X ∈ GL(n+1; R) |t XX ∈ ˜GL(n;R)}, and, so, we give a rep-
resentation of L(Sn) as matrices. The Lie group GL(n; R), identified with ˜GL(n; R),
acts naturally, freely, on the manifold L(Sn) through matriceal multiplication. Let
π′ : L(Sn) → Sn be the projection π′(X) = x, x = (x1, ...., xn+1) ∈ Sn where
X ∈ L(Sn) is give by (1). We observe that for every M̃ ∈ ˜GL(n; R), we have
π′(XM̃) = π′(X) and, moreover, for all X,Y ∈ L(Sn) we have π′(X) = π′(Y ) if
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and only if there is a matrix M̃ ∈ GL(n;R) so that Y = XM̃. Consequently, L(Sn)
is the total space of the fibre bundle of linear frames of Sn.

Let M be the set of all matrices X ∈ GL(n + 1, R) with the property tXX =
λIn+1 , λ ∈ R, In+1 being the identity matrix. Then, M is a Lie subgroup of GL(n+
1; R) if and only if λ = 1, and so M = O(n + 1)− the group of orthogonal matrices
of order n + 1.

3 Construction of the manifold of Euclidean inner
products on the sphere

According with general theory [1], the fibre bundle over the base Sn, with stan-
dard fibre S(Rn) and structure group GL(n; R) which is associated with the prin-
cipal bundle L(Sn) is obtained as follows. On the product manifold L(Sn)XS(Rn),
GL(n; R) ' ˜GL(n; R) acts on the right as follows: an element M̃ ∈ ˜GL(n; R) maps
(X, g) ∈ L(Sn)XS(Rn) into (X, g)M̃ = (XM̃, M̃−1g̃M̃−1) ∈ L(Sn)XS(Rn), with

g̃ = ( g 0
0 1 ), where we are denoted by g the associated matrix with the inner prod-

uct g on Rn related to the canonical frame of Rn. The quotient space of L(Sn)XS(Rn)
by this group action is the set S(Sn) of all Euclidean inner products on the sphere
Sn.The mapping L(Sn)XS(Rn) → Sn which maps (X, g) in π′(X) induces a map-
ping π, called the projection, of S(Sn) onto Sn. We can introduce a differentiable
structure in S(Sn) by the requirement that for every coordinates neighborhood U of
the manifold Sn, the set π−1(U) is diffeomorphic with UXS(Rn). The projection π
is then a differentiable mapping of S(Sn) onto Sn.

We observe now that every element X ∈ L(Sn) is given by the conditions (1), (2)
and therefore give rise at an inner product on the tangent space TxSn.Indeed, this
inner product have his associated matrix M related to the frame (X1, X2, ..., Xn) of
TxSn , the matrix:

(3) M =




< X1, X1 > < X1, X2 > . . . < X1, Xn >
< X2, X1 > < X2, X2 > . . . < X2, Xn >

. . . . . .

. . . . . .

. . . . . .
< Xn, X1 > < Xn, X2 > . . . < Xn, Xn >




.

We have immediately that

(3′) tXX =
(

M 0
0 1

)
,

with the matrix M given by (3). Moreover, if we have X,Y ∈ L(Sn) with the same
last columns x = (x1, ..., xn+1), then tXX =t Y Y if and only if there is an element
O ∈ Õ(n) so that B = OA where Õ(n) = O(n+1)∩ ˜GL(n;R).Therefore, the matrices
X and Y of L(Sn), with the same last columns x, give rise at the same inner product
of TxSn if and only if Y = XO with O ∈ Õ(n) . Following [5], we may conclude that
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S(Sn) = {At ˜S(Rn)A | A ∈ GL(n + 1; R),t AA ∈ ˜GL(n; R)} =
= {AtA | A ∈ GL(n + 1; R), AtA ∈ ˜GL(n;R)}.

This last remark shows that the vertical space Vg of the fibre bundle S(Sn), in
the point g =t AA ∈ S(Sn), which is the tangent space at the fibre through g at g, is

Vg = {M̂(g) | M̂(g) = M̃AtA + AtAt̃M, M̃ ∈ ˜GL(n;R)}.
In order to obtain in every point g of the manifold S(Sn) an horizontal space

Hg , we introduce on the sphere Sn a linear connexion ∇. Then, the tangent space
TgS(Sn) at the point g ∈ S(Sn) splits, and we have TgS(Sn) = Vg ⊕ Hg. We take
now in consideration the property of Sn to be a Riemannian manifold and therefore
the existence of an atlas of Sn with her Jacobi’s matrices orthogonals. Then, the
manifold of Euclidean inner product S(Sn) may be endowed in a natural way with a
Riemannian metric G so that the horizontal and vertical spaces at every point g are
orthogonal spaces and

(4) G(M̂(g), N̂(g)) =
1
2
TrM̂(g)N̂(g)

(4′) G(X̂g, Ŷg) = g(X,Y ),

where M̂(g), N̂(g) ∈ Vg, X̂g, Ŷg ∈ Hg and, for every horizontal vector X̂g, we have
denoted by X his projection on Sn.
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