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Abstract

We introduce the concept of monotone point-to-set field in Riemannian man-
ifold and give a characterization, that make clear in this definition the occult
geometric meaning. We will show that the sub-differential operator of a Rieman-
nian convex function is a monotone point-to-set field. The concept of directional
derivative, which appears already in other publications, plays an important role
in the proof of the result above. We study some of its properties, in particular,
we obtain the chain rule, which is fundamental in our work. Some topological
consequences of the existence of strictly monotone point-to-set fields are pre-
sented.
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1 Introduction

A large class of non-convex constrained minimization problems can be seen as convex
minimization problems in Riemannian manifolds. The study of the extension of known
optimization methods to solve minimization problems over Riemannian manifolds was
the subject of various works-see [2], [8], [13] and their references.

A generalization of convex minimization problem is the variational inequality prob-
lem. In the study of variational inequality problems and convergence properties of it-
erative methods to solve them, several classes of monotone operator were introduced.

The concepts of monotonicity and strict monotonicity of fields defined on a Rie-
mannian manifold were introduced in [6]. The concept of strong monotonicity of such
fields was introduced in [3]. We introduce the concept of point-to-set monotone vector
field and will show that the subdifferential operator of a Riemannian convex function
is a monotone point-to-set field.

In Section 3, we study some properties of the directional derivative, in particu-
lar, we obtain the chain rule. The concept of Riemannian directional derivative was
introduced by C.Udriste in [12].
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In section 4, it is defined the concept of monotone point-to-set vector field, and it
is given a characterization of these vector fields. It will show that the subdifferential
operator of a convex function is monotone.

In Section 5, we study some topological consequences of the existence of strictly
monotone fields. If there exists a strictly monotone field, then there is no closed
geodesic in the manifold. If, moreover, the manifold is non compact and has nonneg-
ative sectional curvature, then its soul has dimension 0 and therefore the manifold is
diffeomorphic to Rn.

2 Basics concepts

In this section are announced some frequent used notations, basic definitions and im-
portant properties of Riemannian manifolds . They can be found in any introductory
book on Riemannian Geometry, for example [1] and [9]. Throughout this paper, all
manifolds are smooth and connected and all functions and vector fields are smooth.

Given a manifold M , denote by TpM the tangent space of M at p. Let M be
endowed with a Riemannian metric 〈, 〉, with corresponding norm denoted by ‖ ‖, so
that M is now a Riemannian manifold. Recall that the metric can be used to define
the length of piecewise C1 curve c : [a, b] → M joining p to q, p, q ∈ M , i.e., such

that c(a) = p and c(b) = q, by l(c) =
∫ b

a

‖c′(t)‖dt. Minimizing this length functional

over the set of all such curves we obtain a distance d(p, q) which induces the original
topology on M . Let ∇ be the Levi-Civita connection associated to (M, 〈, 〉). If c is a
curve joining points p and q in M , then, for each t ∈ [a, b], ∇ induces an isometry,
relative to 〈, 〉, P (c)a

t : Tc(a)M → Tc(t)M , the so-called parallel transport along c from
c(a) to c(t). The inverse map of P (c)a

t is denoted by P (c−1)a
t := Tc(t)M → Tc(a)M . A

vector field V along c is said to be parallel if∇c′V = 0. If c′ itself is parallel we say that
c is a geodesic. The geodesic equation ∇ γ′γ

′ = 0 is a second order nonlinear ordinary
differential equation, and consequently γ is determined by a point and the velocity
at this point. It is easy to check that ‖γ′‖ is constant. We say that γ is normalized if
‖γ′‖ = 1. The restriction of a geodesic to a closed bounded interval is called a geodesic
segment. A geodesic segment joining p to q in M is said to be minimal if its length
equals d(p, q).

A Riemannian manifold is complete if geodesics are defined for any values of t.
Hopf-Rinow’s theorem asserts that if this is the case, then any pair of points, say p
and q, in M can be joined by a (not necessarily unique) minimal geodesic segment.
Moreover, (M,d) is a complete metric space and bounded and closed subsets are
compact. In this paper, all manifolds are assumed to be complete. The exponential map
expp : TpM → M is defined by exppv = γv(1, p), where γ(·) = γv(·, p) is the geodesic
defined by its position p and velocity v at p. We can prove that, expptv = γv(t, p) for
any values of t.

Denote by K the sectional curvature of M . Some interesting results are obtained
when the sign of curvature is constant. If K ≤ 0, then the manifold is refereed as
manifold with nonpositive curvature, in the other case, the manifold is refereed as
manifold with nonnegative curvature. When the sectional curvature is nonnegative at
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each point of M , then the two next important results are valid. The following Theorem
is due to J. Cheeger and D. Gromoll.

Theorem 2.1 Let M be a complete noncompact Riemannian manifold of nonnegative
curvature. Then M contains a compact totally geodesic submanifold S with dimS <
dimM , which is totally convex. Furthermore, M is diffeomorphic to the normal bundle
of S.

Proof. See [9], Theorem 3.4, page 215. Beginning at any point of M a such S, called
soul of M, can be built. G. Perelman [6] proved the following result.

Theorem 2.2 Let M be a complete non compact Riemannian manifold of nonnega-
tive sectional curvature. If there exists a point of M at which the sectional curvature
is positive, then the soul S of M consists of one point, which is called a simple point,
and M is diffeomorphic to Rn.

Proof. See [7].
Let M be a Riemannian manifold. A function f : M → R is said to be convex

(respectively, strictly convex) if the composition f ◦γ : R → R is convex (respectively,
strictly convex) for any geodesic γ of M . This definition implies that all convex func-
tions are continuous. A vector s ∈ TpM is said to be a subgradient of f at p if for any
geodesic γ of M with γ(0) = p,

(f ◦ γ)(t) ≥ f(x) + t〈s, γ′(0)〉

for any t ≥ 0. The set of all subgradients of f at p, denoted by ∂f(p), is called the
subdifferential of f at p - see [12], [13].

3 Directional derivatives

C.Udriste introduced the concept of Riemannian directional derivatives in [12]. In
this section we will study some of its properties. In particular, we will show that the
directional derivative depends only of the direction and not of the curve. An important
property, which we will show, is the chain rule. Another reference about directional
derivative in Riemannian manifold is [13]. Several result, related with directional
derivative in Riemannian manifold, are similar to results in Rn. We use [4] and [14]
as references of convex analysis in Rn.

Let M be a complete Riemannian manifold and f : M → R a convex function.
Take p ∈ M and v ∈ TpM and let c : (−ε, ε) −→ M be a C1 curve such that c(0) = p
and c′(0) = v. Consider the quotient

qc(t) =
f(c(t))− f(p)

t
.(1)

If γv : R → M is a geodesic such that γv(0) = p, then f ◦ γ : R → R is a real
convex function. Therefore qγv : R → R is nondecreasing, and since that f is locally
Lipschitzian, it follows that qγv is bounded near zero. Then the following definition
makes sense.
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Definition 3.1 (see [12]) Let M be a complete Riemannian manifold and let f : M →
R be a convex function. Then the directional derivative of f at p in the direction of
v ∈ TpM is defined by

f ′(p, v) = lim
t→0+

qγv (t) = inf
t>0

qγv (t),

where γv : R → M is the geodesic such that γv(0) = p and γ′v(0) = v.

Next we show that the directional derivative of f at p in direction v ∈ TpM ,
depends only of the direction and not of the curve, i.e., in the Definition 3.1 we can
take any curve c, non necessary the geodesic, such that c(0) = p and c′(0) = v, and
still obtain that lim

t→0+
qc(t) = f ′(p, v). We need some auxiliary results.

We begin with some preliminaries. Take p ∈ M , let c1 and c2 two C1 curves in M ,
such that c1(0) = c2(0) = p and c′1(0) = v, c′2(0) = w. Consider α : [0, 1]×(−ε, ε) → M
a variation of geodesics given by

α(t, s) = expc1(s)(t exp−1
c1(s)

c2(s)),(2)

where ε > 0 such that Bε(p) is a totally normal neighborhood.
Note that α(0, s) = c1(s), α(1, s) = c2(s) and that for each fixed s ∈ (−ε, ε), the

curve αs : [0, 1] → M given by αs(t) = α(t, s) is geodesic. In particular, when s = 0,
it is the constant geodesic α0(t) = α(t, 0) = p. Now, consider the fields

T (·, s) =
∂α

∂t
(·, s),(3)

and

J(·, s) =
∂α

∂s
(·, s).(4)

The vector field T (·, s) is tangent to the geodesic αs. The vector field J(·, s) is
called Jacobi vector field through αs and it satisfies the differential equation

D2J

∂t2
(t, s) + R(J(t, s), T (t, s))T (t, s) = 0,(5)

where R is the curvature tensor field.

Lemma 3.1 Let c1 and c2 be C1 curves in M , such that c1(0) = c2(0) = p, c′1(0) = v
and c′2(0) = w. If T (·, s) is defined by (3) and J(·, s) is defined by (4), then

i) J(t, 0) = v + t(w − v) is the Jacobi vector field along the constant geodesic
α0(t) = α(t, 0) = p.

Moreover, by symmetry,

ii)
DT

∂s
(t, 0) =

DJ

∂t
(t, 0) = w − v.
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Proof. Consider α the variation of a geodesic defined by (2). Making s = 0 in (5) we
have

D2J

∂t2
(t, 0) = 0,

because α0(s) = p′ and T (t, 0) = 0. The boundary value problem

D2

dt2
J(t, 0) = 0, J(0, 0) = v, J(1, 0) = w,

implies that J(t, 0) = v + t(w− v) what proves (i). By Symmetry’s Lemma - see [1] -
it is valid that

DT

∂s
(t, 0) =

D

∂s

∂

∂t
α(t, 0) =

D

∂t

∂

∂s
α(t, 0) =

D

∂t
J(t, 0) = w − v.

The proof of the Lemma is completed.

Lemma 3.2 Let c1 and c2 be C2 curves in M , such that c1(0) = c2(0) = p, c′1(0) = v
and c′2(0) = w. If ψ(s) = d(c1(s), c2(s)), then

i)
d

ds
(ψ2(s))|s=0 = 0;

ii)
d2

ds2
(ψ2(s))|s=0 = 2‖w − v‖2.

Furthermore, the Taylor’s Formula for ψ2 in some neighborhood of s = 0 is given
by

ψ2(s) = ‖w − v‖2s2 +O(s2),(6)

where lim
s→0+

O(s2)
s2

= 0.

For item (i) consider α the variation of a geodesic defined by (2). Then ψ(s) =
‖α′s(t)‖2 = ‖T (t, s)‖2. Since T (t, 0) = 0, we have

d

ds
(ψ2(s))|s=0 = 2〈DT

∂s
(t, 0), T (t, 0)〉0.

For item (ii), observe that

d2

ds2
(ψ2(s))|s=0 = 2

(
〈D

2J

∂s2
(t, 0), T (t, 0)〉+ 〈DT

∂s
(t, 0),

DT

∂s
(t, 0)〉

)
.

Then, the statement of the item (ii) follows from the fact that T (t, 0) = 0 and from
Lemma 3.1, item ii).

Corollary 3.1 Let c1 and c2 be a C1 curves in M , such that c1(0) = c2(0) = p,
c′1(0) = v and c′2(0) = w. Then

lim
s→0+

d(c1(s), c2(s))
s

= ‖w − v‖,

where d is the Riemannian distance.
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Immediately from (6).

Theorem 3.1 Let M be a complete Riemannian manifold and f : M → R a convex
function. If c : (−ε, ε) → M is C1 curve such that c(0) = p, c′(0) = v, then

f ′(p, v) = lim
s→0+

qc(s),

where qc is defined as in (1).

Let γv be geodesic with γv(0) = p and γ′v(0) = v. By definition, f ′(p, v) =
lim

s→0+
qγv (s). Since f is locally Lipschitzian, then there exists L(p) ≥ 0 such that

|f ′(p, v)− lim
s→0+

qc(s)| = lim
s→0+

|qγv (s)− qc(s)| =

= lim
s→0+

|f(γv(s))− f(c(s))|
s

≤

≤ L(p) lim
s→0+

d(γv(s), c(s))
s

.

From Corollary 3.1 we have lim
s→0+

d(γv(s), c(s))
s

= 0. Then the preceding inequality

implies f ′(p, v) = lim
s→0+

qc(s). This fact completes the proof.

Theorem 3.2 Let M be a complete Riemannian manifold and let f : M → R be a
convex function. Then, for each fixed p ∈ M , the directional derivative map

f ′(p, ·) : TpM → R

is convex. Furthermore,

i) f ′(p, λv) = λf ′(p, v) for all λ > 0 and v ∈ TpM , i.e., f ′(p, ·) is positive homo-
geneous;

ii) −f ′(p,−v) ≤ f ′(p, v) for all v ∈ TpM ;

See [12].

Remark 3.1 First part of Theorem 3.2 and item i) imply that the directional deriva-
tive map f ′(p, .) : TpM → R is a sublinear map.

Proposition 3.1 Let M be a complete Riemannian manifold and let f : M → R a
convex function. Then, for each fixed p ∈ M , |f ′(p, v)| ≤ L(p)‖v‖ for all v ∈ TpM ,
where L(p) ≥ 0 is the Lipschitz constant of f in p.

This fact is proved in the same way that its similar in Rn, see [4].

Theorem 3.3 Let M be complete Riemannian manifold and let f : M → R be a
convex function. Then, for each fixed p ∈ M , the subdifferential ∂f(p) is non-empty,
convex and compact.
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See [12] or [13].

Remark 3.2 The proof of ∂f(p) ⊂ B(0, L), where L = L(p) is the Lipschitz constant
of f at p, is similar as the one in Rn.

Proposition 3.2 Let M be complete Riemannian manifold and let f : M → R a
convex function. Then, for each fixed p ∈ M , is true that

i) f ′(p, v) = max
s∈∂f(p)

〈s, v〉, for all v ∈ TpM ;

ii) ∂f(p) = {s ∈ TpM : f ′(p, v) ≥ 〈s, v〉, v ∈ TpM}.

For item i), take v ∈ TpM , a γv geodesic such that γv(0) = p. The definition of
subgradient implies that

f(γv(t))− f(p)
t

≥ 〈s, v〉(7)

for all t > 0 and all s ∈ ∂f(p). Taking limit in (7) we obtain that f ′(p, v) ≥
max

s∈∂f(p)
〈s, v〉. We derive a contradiction on assuming that there exists v1 ∈ TpM

such that f ′(p, v1) > max
s∈∂f(p)

〈s, v1〉. Since f ′(v, ·) is a sublinear map, by Hahn-Banach

Theorem in TpM – see [5], it follows that, for all v ∈ TpM , there exits s̄ ∈ TpM
satisfying

f ′(p, v) ≥ 〈s̄, v〉 and f ′(p, v1) = 〈s̄, v1〉.(8)

Definition 3.1 implies that, for all v ∈ TpM and t ≥ 0, we have f(γv(t))− f(p) ≥
tf ′(p, v) ≥ t〈s̄, v〉, from which one obtains s̄ ∈ ∂f(p). Therefore, by (8)

f ′(p, v1) > max
s∈∂f(p)

〈s, v1〉 ≥ 〈s̄, v1〉 = f ′(p, v1).

This is our final contradiction and the proof of the item i) is complete.
For item ii). Define Γ = {s ∈ TpM : f ′(p, v) ≥ 〈s, v〉, v ∈ TpM} and take s ∈ Γ.

Fix v ∈ TpM and t > 0, set γv as the geodesic with γv(0) = p and γ′v = (0) = v. From
item i) and convexity of f it follows that

t〈s, v〉 ≤ f ′(p, tv) = lim
λ→0+

f(γtv(λ))− f(p)
λ

≤

≤ lim
λ→0+

(1− λ)f(γtv(0)) + λf(γtv(1))− f(p)
λ

=

lim
λ→0+

(1− λ)f(p) + λf(γv(t))− f(p)
λ

= f(γv(t))− f(p).

Then s ∈ ∂f(p) and consequently Γ ⊂ ∂f(p).
Now take s ∈ ∂f(p). Fix v ∈ TpM , set γv as the geodesic such that γv(0) = p;

then

f ′(p, v) = lim
t→0+

f(γv(t))− f(p)
t

≥ lim
t→0+

t〈s, v〉
t

= 〈s, v〉,
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which implies that ∂f(p) ⊂ Γ and the proof of the item ii) is complete. Therefore
Γ = ∂f(p) and the proof of the Proposition is complete.

Let M be a complete Riemannian manifold and f : M → R a convex function.
Given a geodesic γ : R → M , consider the real function ϕ : R → R defined by
ϕ(t) = f(γ(t)).

Now we will calculate ∂ϕ.

Lemma 3.3 (Chain rule). The subdifferential of ϕ is given by

∂ϕ(t) = {〈s, γ′(t)〉|s ∈ ∂ = f(γ(t))} = 〈∂f(γ(t)), γ′(t)〉.

By Definition 3.1,

ϕ′(t, 1) = lim
λ→0+

f(γ(t + λ))− f(γ(t))
λ

= f ′(γ(t), γ′(t))

and

ϕ′(t,−1) = lim
λ→0+

f(γ(t− λ))− f(γ(t))
λ

= f ′(γ(t),−γ′(t)).

Then, ∂ϕ(t) = [−ϕ′(t,−1), ϕ′(t, 1)]. The Proposition 3.2 implies that

f ′(γ(t), γ′(t)) = max
s∈∂f(γ(t))

〈s, γ′(t)〉

and
−f ′(γ(t),−γ′(t)) = min

s∈∂f(γ(t))
〈s, γ′(t)〉.

Therefore, by convexity of ∂f(γ(t)), it follows that

ϕ(t) =
[

min
s∈∂f(γ(t))

〈s, γ′(t)〉, max
s∈∂f(γ(t))

〈s, γ′(t)〉
]

= {〈s, γ′(t)〉|s ∈ ∂f(γ(t))},

the statement of the Lemma.

4 Monotone point-to-set vector field

A point-to-set vector field on M is a mapping X which associates to each p ∈ M a
subset X(p) of TpM . If f : M → R is convex, then the subdifferential map ∂f is a
point-to-set vector field in M .

Definition 4.1 A point-to-set vector field X on M is called monotone, if for all pair
of points p, q ∈ M , p 6= q, and all geodesic γ linking p and q is true that

〈
γ′(t1), P (γ−1)t1

t2v − u
〉 ≥ 0,(9)

whenever t1 < t2, γ(t1) = p, γ(t2) = q, u ∈ X(p) and v ∈ X(q).

Denote by P(R) the set of all subsets of R. Define the point-to-set real function
ϕ : R → P(R) by
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ϕ(X,γ)(t) =
{
〈γ′(t), v〉 : v ∈ X(γ(t))

}
,(10)

where X is a point-to-set vector field on M and γ is a geodesic in M .
We recollect that a point-to-set real function ϕ is monotone iff (t2−t1)(r2−r1) ≥ 0

for all t1 ∈ R, t2 ∈ R, r1 ∈ ϕ(t1) and r2 ∈ ϕ(t2). If α is a reparametrization of γ, then
ϕ(X,γ) is monotone if and only if ϕ(X,α) is monotone.

Proposition 4.1 A point-to-set vector field X on M is monotone if and only if ϕ(X,γ)

is monotone for all geodesic γ in M .

Suppose that X is monotone. Take γ a geodesic in M , t1 6= t2 such that γ(t1) 6=
γ(t2), r1 ∈ ϕX,γ(t1), r2 ∈ ϕX,γ(t2), v1 ∈ X(γ(t1)), v2 ∈ X(γ(t2)), such that r1 =
〈γ′(t1), v1〉 and r2 = 〈γ′(t2), v2〉. Then

(t2 − t1)(r2 − r1) = (t2 − t1)
(
〈γ′(t2), v2〉 − 〈γ′(t1), v1〉

)

= (t2 − t1)
(
〈P (γ−1)t1

t2γ
′(t2), P (γ−1)t1

t2v2〉 − 〈γ′(t1), v1〉
)

= (t2 − t1)〈γ′(t1), P (γ−1)t1
t2v2 − v1〉 ≥ 0,

because X is monotone. Then ϕ(X,γ) is monotone for all geodesic γ.
Now, suppose that ϕ(X,γ) is monotone. It is to prove that, taking p, q ∈ M ,

u ∈ X(p), v ∈ X(q) and γ geodesic with γ(0) = p and γ(1) = q, it holds that
〈γ′(0), P (γ−1)01v−u〉 ≥ 0. Set r1 = 〈γ′(0), u〉 ∈ ϕ(0) and r2 = 〈γ′(1), v〉 ∈ ϕ(1). Then

〈γ′(0), P (α−1)01v − u〉 = 〈P (α−1)01γ
′(1), P (α−1)01v〉 − 〈γ′(0), u〉 =

= 〈γ′(1), v〉 − 〈γ′(0), u〉 = (1− 0)(r2 − r1) ≥ 0,

because ϕX,γ is monotone. Then 〈γ′(0), P (γ−1)01v − u〉 ≥ 0 which implies that X is
monotone.

Proposition 4.2 If f : M → R is convex, then ∂f is monotone.

By Proposition 4.1, it is sufficient to prove that, for all geodesic γ, the mapping
ϕ(∂f,γ) is monotone. Take γ geodesic. Since f is convex, the real function f ◦ γ is
convex and ∂(f ◦ γ) is monotone. By Lemma 3.3, it follows that

∂(f ◦ γ) = {〈γ′(t), v ∈ ∂f(γ(t))} = ϕ(∂f,γ)(t).

Then ∂f is monotone.

5 Consequences of the existence of monotone point-
to-set vector field

It is well known that the existence of convex function imposes some topological conse-
quences on the Riemannian manifold M - see [10], [13]. The concept of monotonicity
is, in certain sense, a generalization of the concept of convexity. Then it is to expect
that the existence of monotone point-to-set vector field on M imposes topological
consequences also on M .

Next we will prove that existence of strictly monotone point-to-set vector fields
requires some topological properties of the manifold. First, observe that, if γ is closed
geodesic then ϕ(X,γ)(t) is constant.



78 J.X. da Cruz Neto, O.P.Ferreira and L.R. Lucambio Pérez

Proposition 5.1 Let M be a complete Riemannian manifold. If there exists a strictly
monotone point-to-set vector field X in M , then all compact totally geodesic subman-
ifold of M are trivial, i.e., it consist of simple points.

We derive a contradiction on assuming that there exists a nontrivial compact to-
tally geodesic submanifold N of M . By Theorem 3.5 in page 299 of [9] the submanifold
N has a closed geodesic γ. Observe that γ is geodesic in M . Then, by definition of
ϕ(X,γ) follows that ϕ(X,γ)(t) is constant and X can’t be strictly monotone.

Proposition 5.2 Let M be a complete noncompact Riemannian manifold of nonneg-
ative sectional curvature. If there exists a strictly monotone point-to-set vector field
X in M , then the soul S of M consists of one point and M is diffeomorphic to Rn.

Take p ∈ M and build the soul S starting from p.
By Theorem 2.1, the soul S is a compact totally geodesic submanifold of M . Then,

by Proposition 5.1 the submanifold S consists of one point. Again, by Theorem 2.1,
M is diffeomorphic to normal bundle of S. Since that S is a simple point, it follows
that the normal bundle of S is diffeomorphic to Rn. Therefore M is diffeomorphic to
Rn.

Theorem 2.2 says that M , complete non compact Riemannian manifold of nonneg-
ative sectional curvature, is diffeomorphic to Rn when exists a point of M at which
the sectional curvature is positive. Proposition 5.2 says that M , complete non com-
pact Riemannian manifold of nonnegative sectional curvature, is diffeomorphic to Rn

when exists a strictly monotone vector field, i.e., we obtain the same result by mean
of substitution of the existence of a point at which the sectional curvature is positive
by the existence of strictly monotone vector field.
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