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Abstract

In this paper, first we extend the known definition of cross-ratio of collinear
points to whole Moufang plane. Later we introduce the cross-ratios for lines and
the known results about the cross-ratios of points which are adapted to cross-
ratios of lines without using the principle of duality. Finally, we give a theorem
which describes the relation between the cross-ratios of points and lines.
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1 Introduction

Let M be a projective plane coordinated by an alternative field A, charA ̸= 2. If A
is associative, then M is Desarguesian and if A is non-associative then A is Cayley
division algebra over its center Z and M is a Moufang plane (see [4]). Then, A is
equipped with the involution γ : x → x̄, the norm form n : x → xx̄ and the

trace form t : x → 1

2
(x+ x̄) (see [1]). In this case, the ranges of the norm and

trace forms are Z, but the range of the γ is A. Also norm form is multiplicative and
trace form is both symmetric and associative (i.e. n(xy) = n(x)n(y), t(xy) = t(yx),
t(x(yz)) = t((xy)z) ).

There is an equivalence relation ≡ on A which is defined by “a ≡ b ⇔ ∃c ∈
A\{0}, a = c−1bc” and this equivalence relation is called conjugate. For any element
x of A, the equivalence class of x is called the conjugacy class of x and it is denoted
by [x]. It was shown in [5] and [3] that

“n(x) = n(y), t(x) = t(y)”⇔ “[x] = [y]”(1)

and this property will be used frequently in this paper.
A ∪ {∞} is denoted by Â, ∞ /∈ A and the transformations tu(x) = x + u,

ru(x) = xu, lu(x) = ux, i(x) = x−1,∞ ←→ 0, which are defined on Â, are called
translation with u (translation), right multiplication with u (right multiplication), left
multiplication with u (left multiplication), and inverse transformation respectively.
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2 Definition and properties of the cross-ratio
of points

Let M be a Moufang plane which is coordinated with an alternative field A such
that char A ̸= 2. Any point of l = [0, 0] which is different from (0) is denoted
by X = (x, 0) = x and (0) := ∞, x, 0 ∈ A, ∞ /∈ A. Let A = (a, 0), B = (b, 0),
C = (c, 0), D = (d, 0) be four arbitrary affine points of l. The cross-ratio (A,B : C,D)
of A,B,C,D is defined by

(A,B : C,D) =
[(
(a− d)−1 (b− d)

) (
(b− c)

−1
(a− c)

)]
= (a, b : c, d)

and [x] denotes the conjugacy class { y−1xy | y ∈ A} of x. If one of the A,B,C,D is
∞, then omit the factors containing it.

The proofs of Theorem 2.1 and Theorem 2.2 can be found in [3] with some calcu-
lating errors.
Theorem 2.1. If a, b, c, d are distinct elements of A, then

(a, b : c, d) =

[(
(a− b)

−1 − (a− d)
−1

)(
(a− b)

−1 − (a− c)
−1

)−1
]
.

Proof. Since n(x) is multiplicative and t(x) is associative

u′ =
(
(a− d)

−1
(b− d)

)(
(b− c)

−1
(a− c)

)
is conjugate to

u =
((

(a− d)
−1

(b− d)
)
(b− c)

−1
)
(a− c) .

Thus (a− d)
−1

(b− d) =
(
u (a− c)

−1
)
(b− c) so(

(a− d)
−1

(b− d)
)
(a− b)

−1
=

((
u (a− c)

−1
)
(b− c)

)
(a− b)

−1
(2)

The left hand side of this equation can be viewed as(
(a− d)

−1
(b− d)

)
(a− b)

−1
=

(
(a− d)

−1
((a− d)− (a− b))

)
(a− b)

−1

=
(
1− (a− d)

−1
(a− b)

)
(a− b)

−1

= (a− b)
−1 −

(
(a− d)

−1
(a− b)

)
(a− b)

−1

= (a− b)
−1 − (a− d)

−1

substituting this into (2), we have

(a− b)
−1 − (a− d)

−1
=

((
u (a− c)

−1
)
(b− c)

)
(a− b)

−1

⇒
(((

(a− b)
−1 − (a− d)

−1
)
(a− b)

)
(b− c)

−1
)
(a− c) = u

⇒ [u] =
[(((

(a− b)
−1 − (a− d)

−1
)
(a− b)

)
(b− c)

−1
)
(a− c)

]
.
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And from (1),

[u] =
[(

(a− b)
−1 − (a− d)

−1
)(

(a− b)
(
(b− c)

−1
(a− c)

))]
=

[(
(a− b)

−1 − (a− d)
−1

)((
(a− c)

−1
(b− c)

)
(a− b)

−1
)−1

]
=

[(
(a− b)

−1 − (a− d)
−1

)((
(a− c)

−1
((a− c)− (a− b))

)
(a− b)

−1
)−1

]
=

[(
(a− b)

−1 − (a− d)
−1

)((
1− (a− c)

−1
(a− b)

)
(a− b)

−1
)−1

]
=

[(
(a− b)

−1 − (a− d)
−1

)(
(a− b)

−1 −
(
(a− c)

−1
(a− b)

)
(a− b)

−1
)−1

]
,

so

[u] = [u′] =

[(
(a− b)

−1 − (a− d)
−1

)(
(a− b)

−1 − (a− c)
−1

)−1
]

is obtained. 2

If [x]
−1

and 1− [x] are defined to be
[
x−1

]
and [1− x] , respectively, the following

statements are valid and cross-ratio is invariant under the identical permutation and
(12)(34), (13)(24), (14)(23). Let a, b, c, d distinct elements of Â and w ∈ (a, b : c, d) .
Then

(a, b : c, d) = (b, a : c, d)−1, 1− (a, b : c, d) = (a, c : b, d)

(a, b : c, d) = [w] , (b, a : c, d) = [w]
−1

, (a, c : b, d) = 1− [w]

(b, c : a, d) = 1− [w]
−1

, (c, a : b, d) = [1− w]
−1

, (c, b : a, d) =
[
1− w−1

]−1
.

Theorem 2.2. Let r ∈ A, r ̸= 0, r ̸= 1. If a, b, c ∈ Â are distinct. Then there exists
d ∈ Â such that (a, b : c, d) = [r]. If r is in the center Z of A, then d is unique.

Proof. Suppose first that a, b, c ∈ A. Then we must determine d ∈ A such that

(a, b : c, d) =
[(

(a− d)
−1

(b− d)
)(

(b− c)
−1

(a− c)
)]

= [r] .

Let u = (b− c)
−1

(a− c). For any s ∈ [r], s ̸= u, d =
(
a
(
su−1

)
− b

) (
u (s− u)

−1
)
, if

s = u = (b− c)
−1

(a− c), then d =∞ is the desired element of A.
If s ∈ [r] and c =∞, since s ̸= 1, d = (as− b) (s− 1)

−1
satisfies (a, b : c, d) = [r].

The remaining cases b =∞, a =∞ are reduced to the case c =∞.

If r ∈ Z, so [r] = {r} , s = r and the solution d ∈ Â is unique. 2

Now we give a theorem related to the transformations preserving cross-ratio

Theorem 2.3. If σ = tu, ru, i or γ, then (a, b : c, d) = (σ (a) , σ (b) : σ (c) , σ (d)) for
all a, b, c, d ∈ Â (see [3]).
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Fig. 1

A quadruple a, b, c, d of elements of Â is said to be harmonic if (a, b : c, d) = [−1]
and we let h(a, b, c, d) represents the statement: a, b, c, d are harmonic.

It is trivial from Theorem 2.2 that if a, b, c are different elements of Â, there is a
unique element d ∈ Â such that h(a, b, c, d) and the relation h(a, b, c, d) is invariant
under the elements of group which is generated by the permutations (12), (13), (24).
Also when σ = tu, ru, i or γ and h(a, b, c, d) then by Theorem 2.3 it is easy to see that
h (σ (a) , σ(b), σ (c) , σ (d)). And since lu = iru−1i, the transformation lu also preserves
harmonicity.

If A,B and C are distinct points of the line l = [0, 0] and D is constructed from
A,B,C, P1 and P2 via Fig. 1, then the point D is uniquely determined by A,B,C
(i.e. independent of the choice of P1 and P2). The points A,B,C,D of l are called in
harmonic position if they can be embedded as in Fig. 1. The distinct points a, b, c, d
( possibly ∞ ) are in harmonic position if and only if h(a, b, c, d) (see [3]).

In this paper we denote by Gi(l) the group of all projectivities of l and by T (l)
the group which is generated by tu, ru and i. Since the transformation φ : l→ l given
by

φ =


r(b−a)−1t−a if c =∞

r(b−1−a−1)−1t−a−1i if c = 0

r((b−c)−1−(a−c)−1)
−1t−(a−c)−1it−c otherwise

transforms the points a, b, c to 0, 1,∞, respectively, T (l ) is transitive on ordered
triples of distinct points of l.

In [3] Theorem 7, Ferrar shows that Gi(l ) = T (l ).
The cross-ratio definition of different points of l is extended to whole Moufang

plane in [2].

3 The Cross-ratio of concurrent lines

Let L(0,0) denote the set of lines which are passing through the point (0, 0) in Moufang
planeM which is coordinated by an alternative field A with charA ̸= 2. In this case,

L(0,0) = {m := [m, 0] | m ∈ A} ∪ {∞̃ := [0]} .

If p, q, r, s are distinct elements of L(0,0), different from ∞̃, we denote the cross-ratio
⟨p, q : r, s⟩ as a conjugacy class as follows:

⟨p, q : r, s⟩ =
[(

(p− s)
−1

(q − s)
)(

(q − r)
−1

(p− r)
)]

.
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If one of the lines p, q, r, s is ∞̃, then omit the factors containing it.
After this definition every result about the cross-ratio of points on l = [0, 0] can

be adapted to the cross-ratio of lines of L(0,0) easily. For instance, if p, q, r, s ∈ L(0,0)

are different lines and ⟨p, q : r, s⟩ = [u] then the following equalities are valid:

⟨p, q : r, s⟩ =
[(

(p− q)
−1 − (p− s)

−1
)(

(p− q)
−1 − (p− r)

−1
)−1

]
⟨p, q : r, s⟩ = ⟨q, p : r, s⟩−1

, 1− ⟨p, q : r, s⟩ = ⟨p, r : q, s⟩ ,

⟨p, q : s, r⟩ = [u]
−1

, ⟨p, r : q, s⟩ = [1− u] , ⟨p, r : s, q⟩ =
[
(1− u)

−1
]
,

⟨p, s : r, q⟩ =
[
−u (1− u)

−1
]
, ⟨p, s : q, r⟩ =

[
1− u−1

]
and elements of the group which is generated by the identic permutation and (12)(34),
(13)(24), (14)(23) preserve the cross-ratio of lines.
Theorem 3.1. Let u ∈ A, u ̸= 0, u ̸= 1. If p, q, r, s ∈ L(0,0) are different elements,
then there exist an s ∈ L(0,0) such that ⟨p, q : r, s⟩ = [u] and if u is an element of
center Z of A, then s is unique.

The proof of this theorem can be done by means of the process in the proof of
Theorem 2.2.
Definition 3.1. A quadruple p, q, r, s of elements of L(0,0) is said to be harmonic if
⟨p, q : r, s⟩ = [−1] and we let H (p, q, r, s) for ”the lines p, q, r, s are called harmonic”.
The distinct lines p, q, r, s are called to be in harmonic position if any quadrilateral
l1, l2, l3, l4 exists as in Fig. 2.

Fig. 2

The transformations

tu : [x, 0]→ [x+ u, 0] , ∞̃ → ∞̃

lu : [x, 0]→ [ux, 0] , ∞̃ → ∞̃

ru : [x, 0]→ [xu, 0] , ∞̃ → ∞̃

and
i : [x, 0]→

[
x−1, 0

]
, [0, 0]→ ∞̃

which are defined on L(0,0) are called translation (by u), left multiplication (by u),
right multiplication (by u) and inverse transformations respectively.

Now we can state a theorem which can be proved by using the methods of the
proof of the Theorem 2.6 in [3].
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Theorem 3.2. Distinct lines p, q, r, s are in harmonic position iff H (p, q, r, s).
Proof. Let the lines p, q, r, s be in harmonic position with respect to the quadrilateral
l1, l2, l3, l4 (Fig. 2). In this case without lose of generality, we may assume l1 = [∞]
and l2 = [p, 1] (since, if P is a point and l1 and l2 are lines not incident with P , then
there is an elation fixing all lines passing through P and mapping l1 to l2). So we
obtain

q ∧ l2 = [q, 0] ∧ [p, 1] =
(
(q − p)

−1
, q (q − p)

−1
)
,

r ∧ l1 = [r, 0] ∧ [∞] = (r)

and
l3 = (q ∧ l2) ∨ (r ∧ l1) =

[
r, (q − r) (q − p)

−1
]
.

And since s ∧ l2 =
(
(s− p)

−1
, s (s− p)

−1
)
any line [x, y] passing through s ∧ l2 has

a form

y = (s− x) (s− p)
−1

(3)

Similarly any line [x, y] passing through p ∧ l3 has the form

y = (p− x)
(
(p− r)

−1
(
(q − r) (q − p)

−1
))

(4)

and any line [x, y] passing through q ∧ l1 = (q) has the form

x = q(5)

Since s ∧ l2, p ∧ l3 and q ∧ l1 are collinear, from the equations (3), (4) and (5)

(s− q) (s− p)
−1

= (p− q)
(
(p− r)

−1
(
(q − r) (q − p)

−1
))

is obtained. Then

(p− q)
−1

(
(s− q) (s− p)

−1
)
= (p− r)

−1
(
(q − r) (q − p)

−1
)
,

and substituting s − q = (s− p) + (p− q) and q − r = (q − p) + (p− r) by simple
calculations we arrive at the equality(

(p− q)
−1 − (p− s)

−1
)(

(p− q)
−1 − (p− r)

−1
)−1

= −1,

which is equivalent to H (p, q, r, s).
If s = ∞̃ we utilize the same computations with the exception s ∧ l2 = (0, 1). In

this case any line passing through s ∧ l2 has the form y = 1 and using (4), (5) we
obtain

1 = (p− q)
(
(p− r)

−1
(
(q − r) (q − p)

−1
))

.

So (p− r) (p− q)
−1

= (q − r) (q − p)
−1

and then (q − r)
−1

(p− r) = −1. Therefore
H (p, q, r, s). Other cases (i.e. r = ∞̃ or q = ∞̃ or p = ∞̃) can be shown by similar
calculations, and the proof is complete, the converse following from Theorem 3.1.

2
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Lemma 3.3. The transformations tu lu (u ̸= 0) and i are projectivities of L(0,0).
Proof. By the calculations,

tu = σ (0, [∞] , (1, 0))σ ((1, 0) , ∞̃, (1,−u))σ ((1,−u) , [∞] , 0)

lu = σ (0, [∞] , (1, 1))σ
(
(1, 1) , [0, 0] ,

(
1, u−1

))
σ
((
1, u−1

)
, [∞] , 0

)
i = σ (0, [∞] , (1, 1))σ ((1, 1) , [0, 0] , (1))σ ((1) , [1] , 0)

are obtained and these complete the proof. 2

We denote by T
(
L(0,0)

)
the group of transformations of L(0,0) generated by {tu}∪

{lu} ∪ {i}. Note that since ru = ilu−1i the transformation

ru : [x, 0]→ [xu, 0] , ∞̃ → ∞̃

is a projectivity of L(0,0) and element of T
(
L(0,0)

)
. And we denote by G

(
L(0,0)

)
the

group of all projectivities of L(0,0).

Lemma 3.4. T
(
L(0,0)

)
is a triply transitive subgroup of G

(
L(0,0)

)
.

Proof. By Lemma 3.3, T
(
L(0,0)

)
is subgroup ofG

(
L(0,0)

)
. Therefore it must be shown

that there exists a transformation Ψ in T
(
L(0,0)

)
which transforms the distinct lines

a, b, c ∈ L(0,0) to 0, 1, ∞̃, respectively. We give the proof in three cases:
Case 1: If c = ∞̃, then Ψ = l(b−a)−1t−a since

l(b−a)−1t−a (a) = l(b−a)−1 (a− a) = l(b−a)−1 (0) = 0

l(b−a)−1t−a (b) = l(b−a)−1 (b− a) = (b− a)
−1

(b− a) = 1

l(b−a)−1t−a (c) = l(b−a)−1t−a (∞̃) = l(b−a)−1 (∞̃) = ∞̃.

Case 2: If c = 0, then applying i we can return to the case 1.
Case 3: If c ̸= ∞̃ and c ̸= 0, then applying t−c we can return to the case2. 2.

Theorem 3.5. G
(
L(0,0)

)
= T

(
L(0,0)

)
Proof. From Lemma 3.4 we must only show that G

(
L(0,0)

)
⊂ T

(
L(0,0)

)
. Let

µ =

n−1∏
i=0

σ (Pi+1, li, Pi) , P0 = Pn = (0, 0) .

There is a line l such that l ̸= li and l/∈ Pi for all i. Then

µ =
n−1∏
i=0

σ ((0, 0) , l, Pi+1)σ (Pi+1, li, Pi)σ (Pi, l, (0, 0))

and for this reason it suffices to show that

σ ((0, 0) , l, Pi+1)σ (Pi+1, li, Pi)σ (Pi, l, (0, 0)) ∈ T
(
L(0,0)

)
.

Thus we thus consider a general element

σ ((0, 0) , l, P ′′)σ (P ′′, d, P ′)σ (P ′, l, (0, 0)) .(6)

There are two cases, d /∈ (0, 0) and d∈ (0, 0).
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Case 1: Let d/∈ (0, 0). Then

σ (P ′′, d, P ′) = σ (P ′′, d, (0, 0))σ ((0, 0) , d, P ′)

and (6) becomes to

σ ((0, 0) , l, P ′′)σ (P ′′, d, (0, 0))σ ((0, 0) , d, P ′)σ (P ′, l, (0, 0))

of which first two and last two factor forms to

η = σ ((0, 0) , l, P ′′)σ (P ′′, d, (0, 0)) .

Thus it suffices to show that η ∈ T
(
L(0,0)

)
. Since T

(
L(0,0)

)
is triply transitive on

L(0,0) there exists a σ ∈ T
(
L(0,0)

)
such that σ (r) = 0, σ (s) = 1 and σ (t) = ∞̃. And

now it suffices to show that ησ ∈ T
(
L(0,0)

)
. Thus we obtain a new mapping defined

by the Fig. 3 where r = 0, s = 1 and t = ∞̃.

Fig. 3

This mapping will not be altered if the entire configuration in Figure 3 is acted
upon by an elation with center (0, 0) mapping l to [∞]. So without lose of generality
we can take l= [∞]. Thus, since l= [∞], s and d are concurrent, d = [1, q], and
since P ′′ ∈ t = [0] = ∞̃, P ′′ = (0, s). Let x = [a, 0]. Then

u = (x ∧ d) ∨ P ′′ = ([a, o] ∧ [1, q]) ∨ (0, s)

=
(
(a− 1)

−1
q, a (a− 1)

−1
q
)
∨ (0, s)

=
[
a− s

(
q−1a

)
+ sq−1, s

]
and

u ∧ l =
[
a− s

(
q−1a

)
+ sq−1, s

]
∧ [∞]

=
(
a− s

(
q−1a

)
+ sq−1

)
.

Finally

η(x) = (0, 0) ∨ (u ∧ l) = (0, 0) ∨
(
a− s

(
q−1a

)
+ sq−1

)
=

[
a− s

(
q−1a

)
+ sq−1, 0

]
.

Consequently, we have

η (x) = tsq−1 lsls−1−q−1 (x) .

which is the desired result.
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Fig. 4

Case 2: Let d ∈ (0, 0). Then we must show that µ ∈ T
(
L(0,0)

)
, where

µ = σ ((0, 0) , l, P ′′)σ (P ′′, d, P ′)σ (P ′, l, (0, 0))

is the mapping defined by the Fig. 4. Because of the same reasons with Case 1,
to take d = 0, s = 1, t = ∞̃ = [0] and l = [∞] is not a lose generality. Since
P ′ ∈ t = [0] , P ′ = (0, s) and since P ′′ ∈ s = 1, P ′′ = (q, q). If x = [a, 0] , e =
P ′ ∨ (x ∧ l) = (0, s) ∨ (a) = [a, s] and

f = P ′′ ∨ (d ∧ e) = (q, q) ∨
(
−a−1s, 0

)
=

[
q
(
q + a−1s

)−1
,
(
q
(
q + a−1s

)−1
) (

a−1s
)]

.

So

µ (x) = (f ∧ l) ∨ (0, 0) =
(
q
(
q + a−1s

)−1
)
∨ (0, 0) =

[
q
(
q + a−1s

)−1
, 0
]

and therefore we have the desired result

µ (x) = lqitqrsi (x) .

2

Now we can extend the definition of the cross-ratio of lines which are passing
through (0, 0) to whole Moufang plane as follows:

Let p, q, r, s be distinct lines passing through the point P . There are three cases:

i) If P /∈ [∞], considering the perspectivity σ (0, [∞] , P ), we have

⟨p, q : r, s⟩ = ⟨p′, r′ : s′, q′⟩

where
p′ = σ (p) = (p ∧ [∞]) ∨ 0, q′ = σ (q) = (q ∧ [∞]) ∨ 0,
r′ = σ (r) = (r ∧ [∞]) ∨ 0, s′ = σ (s) = (s ∧ [∞]) ∨ 0.

ii) If P ∈ [∞] , P ̸= (∞), then applying the perspectivity σ (0, [1] , P ), we have

⟨p, q : r, s⟩ = ⟨p′, r′ : s′, q′⟩ ,

where
p′ = σ (p) = (p ∧ [1]) ∨ 0, q′ = σ (q) = (q ∧ [1]) ∨ 0,
r′ = σ (r) = (r ∧ [1]) ∨ 0, s′ = σ (s) = (s ∧ [1]) ∨ 0.
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iii) If P ∈ [∞] , P = (∞), then considering the perspectivity σ (0, [0, 1] , P ), we have

⟨p, q : r, s⟩ = ⟨p′, r′ : s′, q′⟩ ,

where
p′ = σ (p) = (p ∧ [0, 1]) ∨ 0, q′ = σ (q) = (q ∧ [0, 1]) ∨ 0,
r′ = σ (r) = (r ∧ [0, 1]) ∨ 0, s′ = σ (s) = (s ∧ [0, 1]) ∨ 0.

Now we can give the final theorem:
Theorem 3.6. If P,Q,R, S are distinct collinear points and p,q,r,s are distinct con-
current lines such that P ∈ p, Q ∈ q,R ∈ r, S ∈ s, then ⟨p, q : r, s⟩ = (P,Q : R,S).
Proof. We can denote, by a, the line incident with all of P,Q,R, S and, by A, the
point on which all of the lines p, q, r and s pass through. Then there are four cases:

Case 1: If A = (∞) and a = [0, 0], then p, q, r, s are in form p = [p], q = [q],
r = [r], s = [s] and P = (p, 0) , Q = (q, 0) , P = (r, 0) , P = (s, 0). If one of the lines
p, q, r, s is ∞̃ then one of the points P,Q,R, S is (0). Thus

⟨p, q : r, s⟩ =
(
p−1, q−1 : r−1, s−1

)
= (p, q : r, s) = (P,Q : R,S)

Case 2: If A = (∞) and a ̸= [0, 0] the proof follows by case 1, considering the
perspectivity σ ([0, 0] , (∞) , a).

Case 3: If A ̸= (∞) and (∞) /∈ a the proof follows by previous two cases, consid-
ering the perspectivity σ ((∞) , a, A).

Case 4: If A ̸= (∞) and (∞) ∈ A, we can take a line b such that (∞) , A /∈ b.
Considering the perspectivity σ (b, A, a), the proof follows by case 3. 2

As a consequence of the last theorem we can give the following statement:
If P,Q,R and S are distinct collinear points and p, q, r and s are distinct concurrent

lines such that P ∈ p, Q ∈ q,R ∈ r, S ∈ s, then H (p, q, r, s) = h (P,Q,R, S).
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