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Abstract

A class of 2D systems is considered, which is the continuous-discrete analogue
of Attasi’s 2D discret model, generalized to the time-variable framework. The
input-output map of these systems is established and main properties like con-
trollability and observability are examined in detail. The weighting pattern is
defined and the connection of the minimality of a realization and its controlla-
bility and observability is emphasized.

Mathematics Subject Classification: 93C35, 93C30, 93B05, 93B07
Key words: controllability, observability, weighting patterns, continuous-discrete lin-
ear systems

1 Introduction

In [1] Attasi introduced a class of 2D discrete-time time-invariant models which is the
closest to the usual 1D systems. The continuous-discrete counterpart of this class was
studied in [6]. Other such time-invariant 2D models were examined by Kaczorek [4].
The continuous-discrete models appear in many problems like the iterative learning
control synthesis [5] or repetitive processes [3].

The aim of this paper is the study of time-variable 2D continuous-discrete lin-
ear systems. By using the (continuous and discrete) fundamental matrices of the
drift matrices the form of the input-output map of such systems is established. The
concepts of controllability and observability are defined and the characterization of
completely controllable and completely observable systems is performed by means of
some extensions of the usual controllability and observability Gramians.

A weighting pattern is associated to this class of systems and its realizability is
discussed. It is shown that a system is a minimal realization of a weighting pattern
iff it is both completely controllable and completely observable on some interval.
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2 State space representation
A 2D continuous-discrete linear system is a quintuplet
Y= (Al (t)) AQ(k)7 B(tv k)) C(t) k): D(tv k));

where t € Ry is the continuous time, k € Z is the discrete time, A (t) and Ax(k)
are commutative n X n real matrices for any ¢ and k, B(t, k), C(t,k), D(t,k) are
respectively n x m, p x n and p X m real matrices. The following equalities represent
the state and the output equation of the system X::

1) it k+1) = AWzt k+1)+ As(k)z(t, k)—
2.1
- Al (t)AZ(k)x(t) k) + B(t) k)u(tv k)
(2.2) y(t, k) = C(t, k)x(t, k) + D(t, k)u(t, k),
where z(t, k) € R", u(t,k) € R™ and y(t,k) € RP are respectively the state, the
input and the output of ¥ at the moment (¢,k) € Ry x Zy and (¢, k) = %(t,k);

the number n is said to be the dimension of ¥ and it is denoted dim X.
We denote by ®(t,tp) the fundamental matrix of A;(t), i.e., the unique matrix
solution of the system

i) %(t,to) = A, (t)®(t, o),

i) ®(to, to) = 1.
It is well known that ®(¢,%9) has the following properties:

iil) ®(t,t1)P(t1,t0) = P(¢,t0) (the semigroup property);

iV) ¢ t) 0)_1
b

t ®(to,t) and v) the solution of the initial value problem z(t) =
Ay () (t) +

(t), x(to) = wo is given by the variation-of-parameters formula

t
x(t) = ®(t, to)xo +/ O (t,s)b(s)ds.
to
Let us define the discrete-time fundamental matriz of As(k) by
As(k —1)As(k —2)... Al + DA(1) if k>1
23) Fki)={ ’ ’ ’
I if k=1.

Under the hypothesis (H): ” All matrices Ay(k), k € Z, , are nonsingular”, we
can define F'(k,l) for k <1 as

(2.4) Fk,1) = [Ay(I — 1)As(1 — 2) ... As(k + 1) Ax (k)" if k<L

The discrete-time fundamental matrix has the following properties:
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) F(k+1,1) = Ay (k)F(k,1);
i) F(i,1) = I

iii") F(k,k1)F(ki,ko) = F(k, ko) for any k > ki1 > ko > 0 (and for any k, ki, ko € Z
under the hypothesis (H);

iv’) under the hypothesis (H) F(I,k) = F(k,1)"*, Vk,l € Z;
v’) the solution of the initial value problem x(k + 1) = Ay (k)z (k) + b(k), x(ko) = o
is given by the discrete-time variation-of-parameters formula

k—1
(k) = F(k,ko)zo + > F(k, 1+ 1)b(l).
I=ko

Since A1 (t)A2(k) = Az(k)A1(t) for any t € Ry and k € Z, by using Peano-Baker
formula for ®(t,tp) and the definition (2.3) of F(k, ko) we can prove that

®(t,to) F'(k, ko) = F'(k,ko)®(t,t0), Vt,to € Ry, k,ko € Zy;

the commutativity of the fundamental matrices will be very useful in some of the
calculi below.
Definition 2.1. If the state = of X verifies the boundary conditions

m(t,ko) = (I)(t,to)af() Vi, to € Ry,,t>1

2.5
( ) 1‘(t0,k‘) = F(k,ko)l’g Vk,ko S Z+,, k Z k?()

for some o € R", then zy is called the initial state of ¥ at the moment (to, ko).

Now, if ¢ is the initial state of ¥ at (¢, ko), the state equation (2.1) splits in two
state equations, one continuous and one discrete, by introducing a vector #(t, k) € R",
t e R+, k? S Z+C

(2.6) Z(t, k) = z(t, k+ 1) — Aa(k)z(t, k).
From (2.5) we get, for any k > ko
(2.7) F(to, k) = 0.
Indeed, (2.5), (2.6) and i’) imply
Z(to, k) = x(to, k + 1) — Ax(k)xz(to, k) = F(k + 1,ko)xo — As(k)F (k, ko)zo = 0.
By replacing Z(¢, k) in (2.1), this equation becomes the state equation of the 1D
continuous system

%(t’ k) = Ay (1) (t, k) + B(t, k)u(t, k)

and, taking into account the initial condition (2.7), the variation-of-parameters for-
mula gives the solution
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(2.8) j(t,k):/ ®(t,s)B(s, k)u(s, k)ds.

to

We can write (2.6) as the state equation of the 1D discrete linear system
xz(t,k+1) = A2(t)x(t, k) + (¢, k)
and by using the discrete-time variation-of parametrs formula we get the solution

k—1
w(t, k) = F(k,ko)x(t, ko) + > F(k,1+ 1)i(t,1);
I=ko

hence, by replacing Z(¢,1) and z(t, ko) given respectively by (2.8) and (2.5) we obtain
the formula of the state of the 2D system ¥ at the moment (t,k) € Ry X Z; :

t k—1
(2.9) x(t, k) = ®(t,t0)F (k, ko)wo + Z ®(t,s)F(k,l + 1)B(s,lu(s,l)ds.
to =k,

The input-output map of the system ¥ results by replacing (2.9) into the output
equation (2.2):

y(ta k) = C(t) k)(}(tv tO)F(kv kO)m0+
t k—1
(2.10) +/ S Ot k)®(t, 5)F(k, 1+ 1)B(s,lu(s, )ds + D(t, k)u(t, k)
to j=f,

3 Controllability

In this section we need only the state equation (2.1) of the system X, such that we
shall consider 2D systems of the form ¥ = (A; (¢), A2(¢), B(t,k)).

The triplet (¢,k,z) € Ry x Z; x R" is called a phase of ¥ if z(t, k) =z, i.e. if &
is in the state x at time (¢, k).

Definition 3.1. A phase (t,k,z) of ¥ is said to be controllable (or controllable on
[t,t1] % [k, k1]) if there exist some moments ¢; > t, k1 > k and some control u which
transfers the phase (¢, k,x) to (t1, k1,0).

A phase (t,k,z) of ¥ is said to be reachable (or reachable on [to,t] x [ko, k]) if
there exist some moments ty < t, kg < k and some control u which transfers the
phase (to, ko,0) to (¢, k, ).

If, for some fixed to,t € R4 , ko, k € Z, any phase is controllable (reachable) on
[to,t] X [ko, k], the system X is said to be completely controllable (completely reachable)
on [to,t] X [k?(),k‘]

Let us replace in the state equation (2.9) z(t, k) = Z and xo = 0. It results that the
phase (t,k, Z) is reachable on [to, t] x [ko, k] C R4 x Z iff there exists some control
u(+,-) defined on this interval such that

t k—1
(3.1) i :/ > @(t,s) F(k,1+1) B(s,1) u(s, 1) ds.
to j=k,
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Similarly, for z(¢,k) = 0 in (2.6), it results that the phase (to, ko, zo) is controllable
on [to,t] X [ko, k] C Ry x Z 4 iff there exists some control u( - , - ) defined on this
interval such that

t k—1

(32) (L to)F(k, ko) = —/ " bt 5)F(k, 1+ 1)B(s, Du(s, 1)ds.
to |=f,

We associate to ¥ the first controllability Gramian

t k 1
Ci(to, £ ko, ) / (1o, 5)F (k. 1+ 1)B(s,) B(s, )T F(k, 1 + 1)7 (1o, s) ds.
to I=ko

It can be proved that C; = Cj (to, t; ko, k) is a symmetrical non-negative n X n matrix.
Theorem 3.2. it It is possible to transfer the phase (o, ko, o) to the phase (¢, k, z)
iff

(33) @(to,t)l’ — F(k,k‘o)l’o S Imcl(to,t;k(),k').

Proof. Sufficiency. From (3.3) it results that there exists some v € R" such that

D(tg, t)x — F(k,ko)xo = Ci(to,t; ko, k)v. By premultiplying this equality by ®(t,%o)
and by considering the control

(3.4) u(s,1) = B(s, )T F(k,1 + 1)1 ®(ty,5) v

we obtain
t k: 1

(3.5) x = ®(t,t0)F(k, ko)xo +/ (t,8)F(k,l+ 1)B(s,l)u(s,l)ds
to 1=k

hence by (2.9) we have z(t, k) = z, i.e. u(s,l) realizes the desired transfer.

Necessity. Let us denote x; = ®(tg,t)z — F(k, ko)xo and let us assume that a
control u; realizes the transfer, hence (3.5) holds with u; instead of w. Then, by
premultiplying this equality by ®(to,t) we obtain

t k—1

(3.6) x1 = Z D (tg,s)F(k, Il + 1)B(s,)ui(s,l)ds.
to |=f,

Since the controllability Gramian is a symmetrical matrix, the state space R"
splits in the direct-sum decomposition R" = ImC; & KerC,, hence 3lzs,z3 with
xo € ImCy, z3 € KerCy and 1 = 2 + 3. Since 2 € ImCy, as in the sufficieny
part we obtain a control us of the form (3.4) such that

t k—1

(3.7) To = Z D (tg,s)F(k, I + 1)B(s,)uz(s,l)ds.

o |—f,

Then, the difference between equations (3.6) and (3.7) gives, for uz = u; — us
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t k—1

(3.8) Ty =T] — Ty = / Z O(to, s)F(k,l + 1)B(s,l)us(s,l)ds.
to 1=k,

Now, since 3 € Ker Cy, we have 21 C;x3 = 0, relation which can be written as

t k—1

/ S ||B(s, )T F(k, 1+ 1) (to, 5) a5 |* ds = 0.
to |— ko

The integrand and each term of the sum being non-negative, we get
(3.9)  B(s,)TF(k,1 +1)T®(ty,s) x5 = 0 a.e. on [tg,t] x [ko, k] C Ry x Z .
From (3.8) and (3.9) we obtain

t k—1

ool = ez = [ 3 (s, B DT F (kL + )T (00, ) s = 0
to |=f,
hence 3 = 0 and 2, = 22 € ImC;. O

Under the hypothesis (H): ” All matrices Ay(I), I € Z; are non-singular” we can

define the second controllability Gramian

tk 1
Calto, t: ko, ) / B(to, 5)F (o, 1 + 1)B(s, 1) B(s, )T F (ko1 + 1)7®(to, 5)"ds

to 1=,

and we can prove

Theorem 3.3. Under the hypothesis (H), it is possible to transfer the phase (to, ko, zo)

to (t,k,x) iff

(310) ‘P(to,t)F(ko,k)Z’—l’o S ImCQ(to,t; ko,k).
Proof. Since F(ko, k) is well defined for ko < k (as F(k, ko) '), premultiplication of
(3.3) by F(ko, k) shows the equivalence of (3.3) and (3.10). i

From (3.10) with z = 0 it results that the phase (to, ko, o) is controllable on
[to,t] X [ko, k] C Ry x Z4, iff 29 € ImCs(to,t; ko, k), hence we have:
Corollary 3.4. Under the hypothesis (H), the set of all controllable states on [to,t] X
[ko, k] is the space X. = Im Cs(to,t; ko, k).
Since ¥ is completely controllable iff X, = R", we obtain
Theorem 3.5. Under the hypothesis (H), X is completely controllable on [to, t] X [ko, k]
iff rank Ca(to,t; ko, k) = n.
In a similar way we can introduce the reachability Gramian of the system X
t k—1
R(to,t; ko, k) = / > @(t,s)F(k, L+ 1)B(s,)B(s,[) ' F(k,l + 1) ®(t,5)"ds
to 1=kq
and we can prove
Theorem 3.6. X is completely reachable on [to,t] x [ko, k] iff

rank R(to,t; ko, k) = n.
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4 Observability

Since the concept of observability involves only the drift and the output matrices, in
this paragraph a system will be a triplet ¥ = (A;(¢), A2(k), C(k,1)).

Definition 4.1. The phase (o, ko, ) € Ry xZ x(R™\{0}) is said to be unobservable
(unobservable on [to, t] x [ko, k]), if for any control u it provides the same output y(s,1),
s> to, I > ko ((s,1) € [to,t] X [ko, k]) as the phase (to, ko, 0).

The system X is said to be completely observable at time (to, ko) if there is no
unobservable phase (tg, ko, ). ¥ is said to be completely observable on [ty,t] X [ko, k]
if there is no phase (o, ko, ) unobservable on [to,t] % [ko, k].

A characterization of the unobservable states us given by
Proposition 4.2. The phase (to, ko, ) is unobservable (unobservable on [tg,t] x
o, k) ifE

(4.1) C(s,1)®(s, to) F (I, ko) = 0

for any time (s,l) > (to, ko) (for any (s,l) € [to,t] X [ko, k]).

Proof. By replacing in the expression of the input-output map (2.10) zo succesively
by x and 0, we get that the initial states = and 0 provide the same output for some
control u iff

t k—1
C(t, k)P(t,t0)F(k, ko)x +/ Z C(t, k)®(t,s)F(k,l + 1)B(s,u(s,l)ds+
to j=k,

t k—1
+D(t, k)u(t, k) = / Z C(t, k)®(t,s)F(k,l + 1)B(s,l)u(s,l)ds + D(t, k)u(t, k)
to |=f,

and obviously this equality is equivalent to (4.1). a

Similarly with controllability, a completely observable system can be fully charac-
terized by using a suitable Gramian.
By definition, the observability Gramian of ¥ is the matrix

t k—1
O(t07 ta kOa k) = Z F(la kO)Tq)(Sv tO)TC(Sa l)TC(Sa l)q)(S, tO)F(la kO)dS
to =k,

Obviously, O = O(to, t; ko, k) is a symmetrical non-negative n x n matrix.
Theorem 4.3. The phase (to, ko, x) is unobservable iff x € Ker O(to,t; ko, k) for any
(t, k) > (to, ko).
Proof. Necessity. By Proposition 4.2 it results that if (¢o, ko, z) is unobservable then
Oz = 0.

Sufficiency. If x € Ker O, then 27Oz = 0, hence

t k—1
0= / S 2T F(l, ko) T (5, 10)TC (s, )T C5, 1) ®(s, to) F(l, ko)ds =
to =k,
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t k—1
= [ D 1IC(s,)®(s,t0)F (I, ko)z||*ds.

0 |—fq

The integrand being non-negative, it results that the sum (of non-negative terms) is
zero, hence each term is zero, i.e.

C(S,l)q)(s,to)F(l,ko)x = 0, YV Z t(), \/) Z ko.

From Proposition 4.2 we conclude that the phase (to, ko, z) is unobservable. O

A similar proof gives
Corollary 4.4. The set of all states x such that the phase (to, ko, x) is unobsevable
on [to,t] X [ko, k] is the subspace Ker O(to,t;, ko, k).

It results that the system ¥ is completely observable on [tg,t] x [ko, k] iff the
subspace Ker O(to,t; ko, k) of R™ reduces to {0}; therefore we proved
Theorem 4.5. ¥ is completely observable on [to,t] X [ko, k] iff

rank O(to,t; ko, k) = n.

5 Weighting patterns

As it was noticed in [2], in the design of systems for control or communication pur-
poses it is much natural to specify a weighting pattern that it is to specify the com-
plete system . We associate to the system ¥ = (A;(t), A2(k), B(t,k),C(t, k)) (hence
D(t, k) = 0) the p x m matrix W, called the weighting pattern of ¥, defined by

(5.1) W =Wt k,s,1) = Ot k)B(t,s)F(k,l + 1)B(s, 1)

From the input-output map formula (2.10), we obtain for zp = 0 the general
response of X, expressed by the means of the weighting pattern:

t k—1

(5.2) y(t,k):/ S" Wt k5, Duls, ds

0 |=fq

hence, for zero initial condition, the weighting pattern completely determines the
input-output behaviour of the system.

Definition 5.1. A p x m matrix W(-,-,-,-) defined on Ry x Z; x R} X Z is said
to be realizable as a weighting pattern if there exists a 2D system ¥ such that (5.1)
holds. ¥ is called a realization of the weighting pattern W.

If dimY < dim Y for any realization ¥ of W, then ¥ is said to be a minimal
realization of W.

Although some of the following results are true in the general case, in the sequel
we shall consider only realizations fulfilling the hypothesis (H) i.e. realizations ¥
with all matrices A2 (k) nonsingular, k € Z; therefore we can use the discrete-time
fundamental matrix F'(k,[) even for k < [.

Theorem 5.2. A matriz W is realizable as a weighting pattern iff there exist two
matriz functions G and H defined on Ry x Z such that, for any t,s € R, and
k,l € Zy, W has the factorization
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(5.3) Wt k,s,1) = G(t,k)H(s,1).

Proof. Sufficiency. If there exist G and H, let us consider the system ¥° = (0,1, H, G)
(ie. Ay =0,As =1, B=H,C =G@G). Then ®(t,s) = I, F(k,l) = I and the equality
(5.1) follows from (5.3).

Necessity. If £ = (A1(t), Az (k), B(t, k), C(t,k)) is a realization of W then, for fixed
so € Ry and ko € Z, (5.1) can be written as

W(t,k,s,1) = C(t, k)B(t, to) F(k, ko)®(to, s)F(ko, 1 + 1)B(s,1),

hence (5.3) holds with G(t, k) = C(t, k)®(t,t0)F (k, ko) and
(Sal) (tO; )F(k07l+ ]-)B(S:l) O

Definition 5.3. The weighting pattern W factorized as in (5.3) is said to be in
reduced form if the columns of G and the rows of H are both linearly independent
sets of functions on R4 x Z,. Otherwise W is called reducible.

If W is in reduced form, the number of columns of G (equal to the number of rows
of H) is called the order of W.
Proposition 5.4. If W is in reduced form and it has the order n, then n =
rank W (t, k, s,l).
Proof. By Sylvester’s Inequality we get from (5.3):

rank G(t, k) +rank H(s,1) —n < rank W(t, k,s,l) < min(rank G(t, k), rank H(s,l)).

Since rank G(t, k) = rank H(s,l) = n it results n < rank W(t, k,s,l) < n. |

Proposition 5.5. If the weighting pattern W is in reduced form then the dimension
of any minimal realization is the same as the order of W.

Proof. Let n be the order of W and let us assume that W has a realization ¥ with
dim ¥ = 7 < n. Then W has the factorization determined in Theorem 5.2 in which
the number of columns of G(t, k) and the number of rows of H(s,[) is at most 7; this
contradicts the assumption that W has the order n. O

Theorem 5.6. A weighting pattern W always admits a minimal realization.

Proof. Let W = GH be a factorization of W. By elementary row operations we
H,
0
H; are linearly independent and M is a unimodular matrix. Let us partition the
matrix G = GM ! as G = [G1 Gi2] correspondingly. Then we have W = GH =
GH = G1H,. Now G; can be transformed by elementary column operations into a
matrix G, = G4 P = [G2 0] where the columns of G are linearly independent and

H,
. Wi
Hzl} ¢

obtain W = G1H; = G’lﬁl = (3H>, hence W = (G3H, is now in reduced form.
By Theorem 5.2 and Proposition 5.5 it results that W has the minimal realization
0 = (0 I, HQ,G2) O

can transform the matrix H into a matrix H = MH = [ } where the rows of

P is unimodular. Let us partition the matrix H, = P~'H; as H; = {
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The following theorem emphasizes the connection between controllability, observ-
ability and minimality. This result is similar to that concerning 1D systems, see [2,
§15, Theorem 2].

Theorem 5.7. The system X = (A1(t), A2(k), B(t,k),C(t,k)) is a minimal real-
ization of the weighting pattern W (t,k,s,l) iff ¥ is both completely controllable and
completely observable on some interval [to,t1] X [ko, k1] € Ry X Z.

Proof. Sufficiency. Let us assume that ¥ is not minimal and let

Y= (Al (t)a /12(]6)7 B(tv k): é(tv k))

be a realization of dimension 7 with 7 < n = dim X.. Let us consider four arbitrary

fixed numbers to,t1 € Ry, ko, k1 € Z.. We denote by G(¢,k),G(t, k), H(s,l), H(s,l)
respectively the matrices

G(t, k) = C(t, k)®(t, to)F(k, ko), Gt k) = C(t, k)®(t, to)F(k, ko),
H(s,1) = ®(to,s)F(ko,l + 1)B(s,1), H(s,1) = ®(to,s)F(ko,l + 1)B(s,1),

where ®(ty, s) and F(ko,1 +1) are the (continuous-time and discrete-time) fundamen-
tal matrices of A;(t) and Az(k) respectively. Since

Wt k,s,1) = G(t,k)H(s,1) = G(t,k)H(s, 1),
we have
O(t, k)®(t, to) F(k, ko) ®(to, s)F(ko,l + 1)B(s,1) =
= C(t, k)®(t,to) F(k, ko)®(to, s)F(ko, 1 + 1)B(s,1).

Now let us premultiply and postmultiply this equality by ®(¢,t9)? F(k,ko)? C(t, k)T
and B(s,1)TF(ko,l + 1)T®(ty,s)” respectively, then let us integrate the obtained
equality with respect to t and s over the square [to, t1] X [to, t1] and take the summation
with respect to k and [ over [ko, k1 — 1] x [ko, k1 — 1]. It results

O(t())tl; kOakl) Cl(t()atl;k[))kl) =

t k1—1
= [ > ®(t,to) "F(k, ko) C(t, k)" F(k, ko) ®(t,to)dt x
0 =k,
tki—1
x [ @(to,s)F(ko, 1+ 1)B(s,1)B(s,1)T F(ko, 1 + 1) ®(to, s) " ds.
to =f,

Since the two integrals in the right hand member are constant matrices with 7
columns and 72 rows respectively, it results from Sylvester’s Inequality that the rank
of their product is less than or equal to 7, 7 < n; then at least one of the matrices
O(to,t1; ko, k1) and Cy(to,t1; ko, k1) has the rank less than n. Therefore, by Theo-
rems 3.5 and 4.5 it results that ¥ is not both completely controllable and completely
observable on [tg, t1] X [ko, k1].

Necessity. Assume that for any tg,t1, ko, k1, X is not both completely controllable
and completely observable. By using the notations of the sufficiency part and the
notations O and C for O(to,t1; ko, k1) and Cy(to,t1; ko, k1) respectively, we obtain
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ty k1—1 ty k11
0= > G(s,1)"G(s,1)ds and C = > H(s,1)H(s,1)"ds.
o 1=ko to =kg

Since these matrices are non-negative definite, there exist two nonsingular matrices
U and V and two signature matrices S, Sy with S? = S1, S3 = Ss, at least one of S}
and Sy having the rank less than n, such that US,UT = C, VTS,V = O. Then

t1 ’lel
0 < / S USIU T H (s, 1) — H(s, D][US1U " H (s, 1) — H(s, )] Tds =
to =k,
= USlU_ICU_TslUT — USlU_IC—
— CUiTslUT +C = USlUT — USlUT — USlUT + USlUt =0,

hence US,U~YH (s,l) = H(s,l) a.e. In the same manner we can prove that the equality
G(t,k)V 1S,V = G(t, k) holds a.e. on [tg,t1] X [ko, k1]- Then the weighting pattern
W(t, k,s,l) =G(t k)H(t, k) can be factorized as

(5.4) W(t, k,s,1) =G(t,k)V 'S VUSI U H(s,1).

1y

0
0 O]Whereq<n.1fwe

Let us assume that rank Sy < n, hence S = {

partition the following matrices as

Gt )V = [Gr(t, k) Ga(t, k), VUS,U " H(s,1) = | Th&D |
HZ(S)I)
where G1(t,1) and H;(s,l) have respectively ¢ columns and ¢ rows, then from (5.4)
we obtain the factorization

W(t, k,s,1) = Gi(t,k)Hi(s,1).

It results that the order of W is less than n, hence by Proposition 5.4 ¥ is not minimal.

6 Conclusion

We have presented a class of time-variable continuous-discrete 2D linear sysyem. Its
state space representation allowed the development of a theory which contains the
most important notions and results belonging to system theory, concerning reachabil-
ity and controllability, observability, weighting patterns and minimality. This study
can be continued by including further results referring for instance to stability, feed-
back or optimal control.
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