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Abstract

The aim of this paper is to create a large geometrical background which to
allow the including of famous equations of mathematical physics (Maxwell or
Einstein equations) as particular cases. The geometrical construction is realized
on the 1-jet fibre bundle J*(T, M) — T x M, using only a Kronecker h-regular
quadratic Lagrangian function

L = hap (09" (t,2)zaah + UQ) (t 2)at + F(t,2).

Section 1 exposes the main reasons that determined our study. Also, it con-
tains certain physical and geometrical aspects of the already classical Lagrangian
geometry of physical fields from [12], whose ideas represent the start point in our
generalized metrical multi-time Lagrangian approach of the theory of physical
fields. Section 2 introduces the M Lj spaces that represent the natural houses
for our generalized field theory. A characterization theorem for these spaces is
given. At the same time, the main local features of geometrical objects produced
on a ML) space are described. We reffer to the canonical nonlinear connection
I, the generalized Cartan I'-linear connection CT', together with its torsion and
curvature d-tensors. Section 3 presents the metrical multi-time Lagrange theory
of electromagnetism and describes its generalized Maxwell equations. Section
4 presents the generalized Einstein equations which govern the metrical multi-
time Lagrange theory of gravitational field. The generalized conservation laws
of the gravitational field are derived.
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1 Geometrical and physical aspects

On the one hand, it is well known that the 1-jet fibre bundle J*(T, M) — T x M
is a basic object in the study of classical and quantum field theories [21]. On the
other hand, the construction of a new field theory, described in multi-time terms on
JY(T, M), was imposed of certain relativistic invariant equations involving many time
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variables (chiral fields, sine-Gordon etc.), and of KP-hierarchy of integrable systems,
in which the arbitrary variables t* and t° are quite equal in rights and there is no
reason to prefer one to another by choosing it as time [3].

Using the covariant Hamiltonian multisymplectic or polisymplectic formalism,
many researchers were studied in this direction [5], [6]. Therefore, we consider that a
contravariant Lagrangian development of a field theory on J*(T', M), created by Rie-
mannian geometrical methodes, promises unpublished new points of view in this topic.
Moreover, we believe that a contravariant generalized multi-time Riemann-Lagrange
formalism may have interesting conections with covariant Hamiltonian multisymplec-
tic or polysymplectic formalism of great interest in relativity, numerical theory and
geometrical integrators theory [2], [23], [28].

We should like to point out that the construction of a generalized multi-time
Riemann-Lagrange field theory was begun in [13]. In order to have a good distinction
between the theory from paper [13] and the Riemann-Lagrange theory developed
in this paper, let us try to emphasize the main differences and similitudes of these
multi-time field theories.

Firstly, the geometrical construction exposed in [13] is realized on the configuration
bundle ®?_, TM — M, where the coordinates of a-th copy of TM are denoted
(x%,z¢). The geometrical invariance group of this vector bundle stands out by the
ignoring of multi-time reparametrizations:

=3 (ad)
7l = -7 .

This fact emphasizes the absolute character of the multi-time coordinates involved
in theory, which are regarded as fixed coordinates on IRP. Comparatively, our ge-
ometrical construction is realized yet on the more suitable physical configuration
bundle J*(T, M) — T x M, whose local coordinates are (t*, z%, z’)). The geometrical
invariance group of the jet fibre bundle of order one J!(T, M), induced by the trans-
formation group of T' x M, stands out by the relativistic character of the multi-time
coordinates t%:

= t(t7)

(1.2) #=&)
oo
o oxJ atNOz B

where the meaning of x?, is that of partial velocities or, alternatively, of partial direc-
tions.

Secondly, the geometrical development from [13] is realized by a given semi-
Riemannian metric hqos on IR?, together with an ”a priori” fixed nonlinear connection

N = (N(((i))j) and a given ”Lagrangian” L : &% _, TM — RR.

Remark 1.1 In order to have a clearer understanding of geometrical concepts used
in [13], comparatively with the concepts from this paper, we point out that in the
paper [13] a Lagrangian is viewed as a real smooth function on E = @2_, TM. In
contrast, we use the following distinct notions on E = JY(T, M):

i) multi-time dependent Lagrangian function — A smooth map L : J*(T, M) — IR.
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ii) multi-time Lagrangian (Olver’s terminology) — A local function £ on J'(T', M)
which transform by the rule £ = £|det J|, where J is the Jacobian matrix of coordi-
nate transformations ¢t = t®(¢%). If L is a Lagrangian function on 1-jet fibre bundle,
then £ = L./|h| represent a Lagrangian on J' (T, M).

For that reason, we used the quotation marks for the above notion of Lagrangian.

The geometrical objects taken in study in the the paper [13] allow the construction

of the Sasakian-like metric on & _; TM, whose physical meaning is that of multi-time
gravitational potential, namely

(1.3) G = gijdr’ @ dv? + G(a) 53:2 ® &vg,
where ' ' ' .
oxl, = dai, + N dad,

1 9°L
GIB) gk phy = ~ _
(e 2) 2 9,0z

g (@, 78) = hap G (a*, k).

Now, it is important to note that, after the local description of the generalized Cartan
connection induced by G, together with its local d-torsions and d-curvatures, the
geometrical theory developed in [13] is stoped. Consequently, the generalized multi-
time field theory, in the sense of generalized Maxwell and Einstein equations, is not
described in [13]. We believe that the theory from [13] was stoped because of the
very complicated computations that were involved in the local description of the
Bianchi identities attached to the generalized Cartan connection. In our opinion the
description of these local Bianchi identities should be decisive to create the subsequent
generalized field theory because the multi-time geometrical approach from [13] try to
extend the geometrical ideas from [12].

In this paper, using as a pattern the geometrical ideas from [12], we try to construct
a generalized Riemann-Lagrange geometry of physical fields, but on the 1-jet fibre
bundle J(T,M). On this bundle of configurations, our generalized field theory is
geometrical created by a given vertical fundamental metrical d-tensor of particular
form

G\ = WP (1) gij (£, "),
where h = (hop) is temporal semi-Riemannian metric, which is produced by a Kro-
necker h-regular quadratic Lagrangian function L : J*(T, M) — IR, that is,

0’L

1
"z SAiad =
or 81‘5

vy

G, (@, ah) = = B0 )gig (87, 2*).

Using this geometrical object, we derive a nonlinear connection I' = (M (((?) ,B’N(((i))j)
and then we construct the Sasakian-like metric G on J*(T', M),

(1.4) G = hagdt® © di° + gijda’ © da? + G5\ oxl, © oal,

where 02!, = dzi + M (o) Bdtﬁ +N ((l)) dz? . The physical meaning of G is that of a multi-
time gravitational h-potential. In this geometrical context, the canonical generalized
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Cartan connection CT produced by G, together with its thirty Bianchi identities,
extremely used in the development of the generalized multi-time field theory, can be
locally described [15]. Therefore, it naturally follows the geometrical construction of
our generalized multi-time theory for electromagnetic and gravitational fields.

Remark 1.2 In our opinion, from a physical point of view, our generalized multi-
time theory of physical fields appears as a generalized unified field theory because
the multi-time electromagnetic field F', that we will take in our study, will be directly
derived from G. As a consequence, our generalized multi-time field theory can be in-
cluded in the set of "metrical” field theories. At the same time, taking into account the
form of the geometrical invariance group (1.2) of this theory, we appreciate that the
metrical multi-time Riemann-Lagrange theory developed by us, can be also included
in the set of “parametrized” field theories. For more details upon the clasification of
field theories, see [6].

Remark 1.3 We consider that the key of succes in our generalized multi-time field

theory, comparatively with the theory developed in [13], is provided by the Kro-

necker h-regularity of G Ef;)((jﬁ ), which allows the description of the geometrical objects

or identities on J'(T, M) by a reduced number of local adapted components. Al-
tough the Kronecker h-regularity condition imposed to G Ef;)((f; )
a too restrictive one, we appreciate that this fact is not true. In this direction, let

us analyse the form of vertical metrical d-tensors GE;);)((J? = %afiiaLxg produced by

several Lagrangian functions which govern various famous physical domains (bosonic
string theory, electrodynamics, elasticity, Kaluza-Klein dynamics of ideal fluids with-
out viscosity, hydrodinamics etc.) studied in [6], [7], [16] and [22]. The Kronecker de-
composition of the vertical metrical d-tensors derived from these important physical
Lagrangian functions show the naturalness of the Kronecker h-regularity condition.

may be interpreted as

In the sequel, we try to expose the main geometrical and physical aspects of
the Lagrangian theory of physical fields from [11], [12]. From our point of view, all
these aspects may be easily extended to our multi-time geometrical and physical
backgrounds. In this sense, we recall that a Lagrange space L™ = (M, L(z,y)) ( this
concept represents the geometrical background in [11] and [12]) is defined as a pair
which consists of a real, smooth, n-dimensional manifold M, whose coordinates are
(x%) i—Tm» and a regular ” Lagrangian” L : TM — IR, not necessarily homogenous with

respect to the direction (y*),_1=. Let us consider

1 0°L

(1.5) gij(l“k;yk) = §W,
the fundamental metrical d-tensor attached to the ”Lagrangian” L. From physical
point of view, this d-tensor has the physical meaning of an ”unified” gravitational field
on TM , which consists of one "external” (z)-gravitational field spanned by points {z},
and the other ”internal” (y)-gravitational field spanned by directions {y}. It should
be emphasized that y is endowed with some microscopic character of the space-time
structure. Moreover, since y is a vertical vector field on TM, the y-dependence has
combined with the concept of anisotropy.

The field theory developed on a Lagrange space L™ relies on a nonlinear connection
r=(N j’ (z,y)) attached naturally to the given ”Lagrangian” L. This plays the role
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of mapping operator of internal (y)-field on the external (z)-field, and prescribes
the ”interaction” between (z)- and (y)- fields. From geometrical point of view, the
nonlinear connection allows the construction of the adapted bases

Szt Ox U Qyi’ dyi
{da', 6y = dy’ + Njdx?} C X*(TM).

L {5 0 0 a.}CX(TM),

Concerning the "unified” field g;;(z,y) of L™, the authors construct a Sasakian-like
metric on TM,
(1.7) G = gijdx’ @ da’ + gi;0y" @ oy’

As to the spatial structure, the most important thing is to determine the Cartan
canonical connection CT = (L;-k, ]’k) with respect to g;;, which comes from the
metrical conditions

0gij

Gijlk = ﬁ Liggmj — Likgmi = 0
(1.8) o
2,

gl]|k = 8y] Czk:gmj C‘;ﬁgmt = 07

where 7" and ”|” are the local h- and v- covariant derivatives of CT'. The importance
to the Cartan canonical connection comes from its main role played in the Lagrangian
theory of physical fields.

In this context, the Finstein-Miron-Anastasiei equations of the gravitational po-
tentials g;;(x,y) of a Lagrange space L™, n > 2, are postulated as being the abstract
geometrical Einstein equations attached to CT and G, namely [12]

1
R;; — iRgij = Kﬁf, 'Pij = KT,
(1.9) {
Sij — 5591 = KTy, "Py=-KT3
where Rl] = R“m, Sij = Sty 'Pij = Pl "Pij = P[{fw are the Ricci d-tensors of CT,

R=g¢YR;;,S=yg JS” are the scalar curvatures, 75, TV, 7;}, T;; are the components
of the stress-energy tensor 7 (equal to 0 for vacuum) and K is the Einstein constant.

Moreover, the stress-energy d-tensors 7;51 and 7;;/ satisfy the conservation laws

1 m S m
(1.10) KTH M = —E(P;; R;,, +2R;, P™), KT' T =0,
where all notations are described in [12].
The Lagrangian theory of electromagnetism relies on the canonical Liouville vector
field C=y*(0/0y*) and the Cartan canonical connection CT of the Lagrange space L™.

In this context, the authors introduce the electromagnetic 2-form on TM,
(1.11) F = F;;6y" Ndz? + fi;6y" A dy?,

where
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Fiy = 5[(gmy™); ~ (9imy™)d
(1.12) .
fii = l(gimy™)i = (gimy™ )il

Using certain geometrical identities, they deduce that the vertical electromagnetic
components f;; vanish always. At the same time, using the Bianchi identities attached
to the Cartan canonical connection CT, they conclude that the horizontal electro-
magnetic components Fj; are governed by the following Mazwell-Miron-Anastasiei
equations: ,

(1.13) {EM+E“+HW:‘Zwm@mem

Fij|k +ij|i +Fki|j =0.

Finally, we point out that physical aspects of the Lagrangian electromagnetism
are studied by Ikeda in [8].

2 The geometry of ML spaces

Let us consider T' (resp. M) a “temporal” (resp. ”spatial”) manifold of dimension
p (resp. n), whose coordinates are (t*),_1 (resp. (z'),_15)- Let
E=JYT,M) =T x M

be the jet fibre bundle of order one associated to these manifolds. We recall that the
bundle of configuration J* (T, M) has the local coordinates (t*, z¢, %)), where a = 1,p
and ¢ = 1,n. We underline that, throughout this paper, the indices «, 3,7,... run
from 1 to p, and the indices i, j, k, ... run from 1 to n.

Remark 2.1 In the particular case T = IR (i. e., the temporal manifold T is the
usual time axis represented by the set of real numbers), the coordinates (¢!, %, z})
of the 1-jet space J!(IR, M) = IR x TM are denoted (¢, z?,y%). Note that the spaces
JY(IR, M) and IR x TM identify only punctually, the geometrical invariance groups of
these spaces being different. Thus, the geometrical transformation group of J* (IR, M)
is given by

t =1(t)
(2.1) & =)
i 0F'dt
OxJ dt

(2.2)
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We start our study considering a smooth multi-time dependent Lagrangian func-
tion L : E — IR, which is locally expressed by

E> (t* 2 2)) — L(t*, 2%, 2') € R.
Definition 2.1 The distinguished tensor field on J! (T, M),

()3 _ 1 0°L
(2.3) Glou = 20 0r),

is called the vertical fundamental metrical d-tensor attached to L.

Now, let h = (hap(tY)) be a fixed semi-Riemannian metric on the temporal man-
ifold T" and g;; (t”,mk,x’;) be a ”spatial” metrical d-tensor on E, symmetric, of rank
n, and having a constant signature.

Definition 2.2 A multi-time dependent Lagrangian function L : E — IR, whose
vertical fundamental metrical d-tensor (2.3) is of the form

(2.4) G, o, ahy = o (1) gy (17, a*, k),
is called a Kronecker h-reqular multi-time dependent Lagrangian function with respect
to the temporal semi-Riemannian metric h = (hqg).

In this context, we can introduce the following

Definition 2.3 A pair ML} = (J'(T, M), L), where p = dimT and n = dim M,
which consists of the 1-jet fibre bundle and a Kronecker h-regular multi-time depen-
dent Lagrangian function L : JY(T, M) — IR is called a metrical multi-time Lagrange
space or a MLy space.

Remarks 2.2 i) In the particular case (T,h) = (IR,J), a metrical multi-time
Lagrange space is called a relativistic rheonomic Lagrange space and is denoted
RRL™ = (J*(IR,M), L). The Riemann-Lagrange geometry of RRL" spaces is now
completely developed in [17]. From our point of view, the geometrical framework
exposed in [17] establishes a generalized geometric foundation for relativistic time-
dependent Lagrangian mechanics of first order variational problems because the geo-
metrical invariance group is given by (2.1). This transformation group emphasizes the
relativistic character of the time ¢. We invite the reader to compare the geometrization
from [17] with that realized in [12]. The geometrical background constructed in [12]
is created in order to geometrize the absolute time-dependent Lagrangian mechanics.
The absolute character of the time ¢ involved in study comes from the form (2.2) of
the geometrical invariance group that governs the theory from [12].

ii) If the temporal manifold 7' is 1-dimensional, then, via a temporal reparametriza-
tion, we have J* (T, M) = J' (IR, M). In other words, a metrical multi-time Lagrangian
space having dim7 = 1 can be regarded as a reparametrized relativistic rheonomic
Lagrange space.

Example 2.1 Suppose that the spatial manifold M is also endowed with a semi-
Riemannian metric g = (g;;(x)). Then, the multi-time dependent Lagrangian function
representing a basic object in the physical theory of bosonic strings,
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(2.5) Ly : JHT, M) = R, Ly = h*?(t)gi;(x)z}a?,

is a Kronecker h-regular multi-time dependent Lagrangian function. Consequently,
the pair
BSML; = (JYT, M), L;)

is a M L} space that is called the metrical multi-time Lagrange space of bosonic strings.

We underline that the multi-time Lagrangian £1 = Lq+/|h| is exactly the energy
multi-time Lagrangian whose extremals are the harmonic maps between the semi-
Riemannian manifolds (T, h) and (M, g). For more details, see [4].

[e3

Example 2.2 In above notations, taking U((i))(t,x) as a d-tensor field on F and
F:T x M — IR asmooth map, the more general multi-time dependent Lagrangian
function

(2.6) Ly:E— R, Ly =h(t)gy(2)alaly + UG (t,2)al, + F(t,)

is also a Kronecker h-regular multi-time dependent Lagrangian function. The metrical
multi-time Lagrange space

EDML} = (J(T, M), L)

is called the autonomous metrical multi-time Lagrange space of electrodynamics be-
cause, in the particular case (T, h) = (IR,0), we discover a natural relativistic gener-
alization of the classical absolute rheonomic Lagrangian space of electrodynamics [12]
which governs the movement law of a particle placed concomitantly into a gravita-
tional field and an electromagnetic one. For that reason, from physical point of view,
the semi-Riemannian metric hog(t) (resp. g;;(x)) represents the gravitational poten-
tials of the space T' (resp. M), the d-tensor U((g) (t,z) stands for the electromagnetic
potentials and F' is a function which is called potential function. The non-dynamical
character of spatial gravitational potentials g;;(z) motivates us to use the terminol-
ogy “autonomous”. We point out that the main geometrical and physical aspects of
EDML spaces are deeply studied [16]. The Riemann-Lagrange geometry of these
spaces stands out by the multi-time and partial directions dependence of geometrical
or physical objects that involves.

Example 2.3 More general, if we consider g;;(t,2) a d-tensor field on E, symmetric,
of rank n and having constant signature on E, we can define the Kronecker h-regular
multi-time dependent Lagrangian function
(27)  Ls:E— R, Ls=h"?(t)gy(t,x)zlal + U (t,2)al, + F(t,2).
In this context, the pair

NEDML} = (J'(T, M), Ls)

is a metrical multi-time Lagrange space which is called the non-autonomous metrical
multi-time Lagrange space of electrodynamics. Physically, we remark that the gravi-
tational potentials g;;(t, z) of the spatial manifold M are dependent of the temporal
coordinates t7, emphasizing their dynamic character.



Riemann-Lagrange Geometrical Background for Multi-Time Physical Fields 57

An important role and, at the same time, an obstruction in the subsequent devel-
opment of the metrical multi-time Lagrangian geometry, is played by the following
theorem proved in [19]:

Theorem 2.1 (characterization of metrical multi-time Lagrange spaces)
If we have p=dimT > 2, then the following statements are equivalent:
i) L is a Kronecker h-regular multi-time dependent Lagrangian function on J*(T, M).

ii) The multi-time dependent Lagrangian function L reduces to a non-autonomous
electrodynamics multi-time dependent Lagrangian function, that is,

L = 1o (t)gy; (t, x)al, @l + U (t, @)l, + F(t, ).
In other words, in the case p > 2, any MLy space is equivalent with a NEDMLy
space.

A direct consequence of the previous characterization theorem is

Corollary 2.2 The fundamental vertical metrical d-tensor of an M L} space has the
Kronecker form

(@@ _ 1
2. =_
(2.8) el -

2L B (t)gi;(t, 2%, y%), p=1
(1)(5) -

0z, 0zl | heB(17)gi (17, 2%), p>2.

Remarks 2.3 i) It is obvious that the Theorem 2.1 is an obstruction in the develop-
ment of a fertile geometrical theory for M L} spaces. This obstruction will be removed
in a subsequent paper by the introduction of a more general notion, that of gener-
alized metrical multi-time Lagrange space [14]. The generalized metrical multi-time
Lagrange geometry and its derived theory of physical fields are constructed in [14]
using a given h-regular fundamental vertical metrical d-tensor GES)((J[;) on the 1-jet
space J'(T, M), which can be not provided by a multi-time dependent Lagrangian
function, together with an ”a priori” fixed nonlinear connection I' = (M ((;)) 5 N((;)) j).
ii) In the case p = dim T > 2, the Theorem 2.1 obliges us to continue the study of
the metrical multi-time Lagrangian space theory, channeling our attention upon the
non-autonomous metrical multi-time Lagrange spaces of electrodynamics.

Following the Riemann-Lagrange geometrical development from the paper [19], the
fundamental vertical metrical d-tensor GEZ)((ﬁ ) of the metrical multi-time Lagrange
space MLy = (JH(T, M), L) naturally induces a canonical nonlinear connection, de-

fined by the local components I' = (M((;))B’ N((;))j) on JY(T, M).
Theorem 2.3 The canonical nonlinear connection I' of the metrical multi-time La-
grange space ML} = (JYT, M), L) is defined by the temporal adapted components

—Hly', p=1

(1 _



58 M. Neagu

and the spatial adapted components

aG!
hll(‘)—yj’ p=1
(2.10) N = " N
; 9" Ogjk 9" 8
F;kxlé + 5 atj‘l + ThaBU((k))ja P22,
where

ik 2 5
i g 0°L . OL 0°L oL
s <3wj5y’“yj ~ o0k T ooy T 5y Hi + 20 Hyguy' ),
HPY = ﬂ ahno‘ 8h775 _ ahozﬁ
otB ot ot )’

aB T 2
@1 gim <89mj Ogmr agjk)

- ozk ozI ox™m

k™ 9

6  p®
g _ 9% 99
(k)i — i ok

Remarks 2.4 i) Considering the particular case (T, h) = (IR,¢), we emphasize that
the canonical nonlinear connection I' = (O,N((li;j) of the relativistic rheonomic La-
grange space RRL" = (J* (IR, M), L) represents a natural generalization of the canon-
ical nonlinear connection used in the classical Lagrangian geometry from [12].

ii) The canonical nonlinear connection I' = (M, ((2) s N (@

(a)j) of a M L space allows

the construction of adapted bases

) 1) 0
2.12) {ﬁa—a—} C X (E),

{dt®,dz?, 62t} C X*(E),

where
O 0 0 9
St ot “”“axg
(2.13) 9 _90 N0 9

i 7. (&) 18 (2) j
ox!, =dx!, + M gdt7 + N, da?.
The simple tensorial transformation rules of the elements of above adapted bases
determine us to study the geometrical and physical objects on M L) spaces, at level
of local adapted components.

The naturalness of the construction of the nonlinear connection of a metrical multi-
time Lagrange space MLy = (J YT, M), L) comes from the following result, proved
also in [19]:
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Theorem 2.4 The Euler-Lagrange equations of the energy action functional
() :/ (7, 2%, k) /Ihlt,
T

where f = (z%(t7)), are equivalent with the harmonic maps equations attached to
the nonlinear connection I' = (M((a))B,N((Z)) ). In other words, the extremals of £ are
equivalent with the solutions of the harmonic map equations [18]

WP {als + M), + N al} =0,

where mfw represent the second derivatives of x(t7).

The main result of the metrical multi-time Lagrange geometry is the theorem
of existence of the Cartan canonical h-normal T'-linear connection CT which allows
the subsequent development of the metrical multi-time Lagrangian theory of physical

fields.

Theorem 2.5 (of existence and uniqueness of Cartan canonical connection)

On the metrical multi-time Lagrange space MLy = (J'(T, M), L), endowed with its
canonical nonlinear connection ', there is a unique h-normal T-linear connection [15],
defined by adapted components

CT = (H],, G, Ly, C30)),
having the metrical properties:

i) 9|k =0, gz]|(V) =0,

ki
ok 970G k k i(7) _ ily)
i) Gjy = 55 Lis =i Oy = Cry-

Moreover, the components L% i, and C ( of the Cartan canonical connection have

the expressions '
Liy = % (59mj n Ogmk 5gjk> ,

(2.14) oxk oxd dxm
’ oI _ Ogm; . Ogmk  Ogjk
k) 2 ok ozl Oxm |’

Remarks 2.5 i) A proof of the Theorem 2.5 can be found in the paper [14], in the
more general context of generalized metrical multi-time Lagrange spaces.

ii) In the particular case (T, h) = (IR ,6), the Cartan canonical J-normal I'-linear
connection of the relativistic rheonomic Lagrange space RRL™ = (J' (IR, M), L) nat-
urally generalizes the canonical Cartan connection used in the classical rheonomic
Lagrange geometry from [12].

iii) As a rule, the Cartan canonical connection of a metrical multi-time Lagrange
space M Ly verifies also the metrical properties

hagy = hagk = hasliy) = 0, gij/y = 0.
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iv) In the case p = dimT > 2, the components of the Cartan connection of a
metrical multi-time Lagrange space reduce to those of a NEDM Ly space, namely

ki 00 ; .
Y g E _ 9 99 i _ i i(y) _
Gog = Hagy Giy = 5 550 Lik = Uiy Ciay = 0.
The general theorems from [15], which characterize the d-torsion and d-curvature
of a h-normal I'-linear connection, applied to the Cartan connection of a M L} space,
imply the following important results:

Theorem 2.6 The torsion d-tensor T of the Cartan canonical connection of a met-
rical multi-time Lagrange space M Ly is determined by the local adapted components:

hr ha v
p=1|p>2|p=1|p>2| p=1 p>2
hehr |0 0 0 0 0 R
N AR A A
MM (L)ij (1)ij
vhe | 0 | o | o | 0 | ARG | B
vhar | 0 o [P0 o [P 0
v 0 0 0 0 0 0
where,

i) forp=dimT = 1, we have

T = -G, PR = o, P = —Gn

) B (C) N A OO ¢ L

oNpy ONGY) ONGY)

plm) (1) _ " mi NV,
(1)i(4) Ay iz Sxd dxt
ON™ oN™)
(m) _ (1)Jj 1 (m) 1) k.
Rayg === THn [N, =¥ |

ii) for p=dimT > 2, denoting

gmP agpi
m - =
Fi(u) D Otk

OHY OH"

Y _ pa pB n oY _ g gy

Huaﬂ_ oth ota +HWH175 HuBHna’
orm  orm

_ pi PJ k k

Tpij = 0zi i + Iyl — Tyl

1 (8)
+ ih“fBU(p)i ,

we have

_ m (8) _ (m)  _
T = =Gl Pha(h = =09Ge Biag) = ~Huas®'s

(m)

ON,; " mk 9 h
(m) _ _77wi 9 " B 9ik | By ()
Riaj =~ + 5 Hua [atﬁ += U(k)y}
(m) _ k .
Riig = Tijrty + [Fi%)\j - FJ%)IZ’]’
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Theorem 2.7 The curvature d-tensor R of the Cartan canonical connection of a
MLy space is determined by the local adapted components:

hr har v
p=1|p>2| p=1 | p>2 p=1 p>2
hrhr 0 H;;BW 0 Rzﬁv 0 RE;))((C;))B’Y
harhr 0 0 Rilk Rz,Bk RE?)((lz';m = R%lk RE?)((C;))Bk
harhar 0 0 Réjk Ri;k Rgi))((li;jk = Réjk RE? B
7 N A A
vhar 0 0 Pilj&) 0 ul ((38))3'(}») ZJEQ) 0
w | 0 [ 0 [SGw | 0 [S0mhe=Shm] ¢

()  _ s« ()  _ sapl (0)(a) apl
where R, 5., = 677R + 6lH HYs s Riyyiysr = 00 Rigrr By = 0y Rijr and
i) forp=dimT = 1, we have

oGl oL,

Ry = <5t =~k + GRLL, — LGy + Ci R
= ot~ S EEl + G
i) = aaj%cl Ciliyn * Citm P

P = ol 4l )

T O TR

i) for p=dim T > 2, we have

Hys, = 6’;{7:% a;gﬂy +H7L7LBH3 — Hj, Hps,

Rl = 6525 555? Gy — GG,

Rigy, = % - 651;;k + G —TRG 5,

Rl =1l = ?91; %ij +TPT, — DRI,

3 Generalized Maxwell equations for a multi-time
electromagnetic field

Let ML = (J'(T, M), L) be a metrical multi-time Lagrange space, together with
r =W (((i)) B’N(((i))j) its canonical nonlinear connection. Let us consider the Cartan

canonical connection of MLy, locally expresed by CT = (H 4, Gy, LY i Clk((];))
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Using the canonical Liouville d-tensor C= z% (0/0x!) and the fundamental verti-

)(

cal metrical d-tensor G(?( ,g) of the metrical multi-time Lagrange space M Ly, we can
construct the metrical deflection d-tensors

(@) _ A@)) k) _ ()
Diys = Gy Dinys = T(iys0
(@) _ ()0 (k) _ (a)
(3.16) Dii = Gl D(w)y = f”(z')\w
@) _ G ) _ pfe )
diey = G dG y 16

where x(f‘) — G(z’)‘))((k’})’)xs and ” /,3”7 ”‘j” and

induced by CT.
Taking into account the expressions of the local covariant derivatives of CT' (see
the papers [15], [20]), by a direct calculation, we obtain

7 |Eé.3))” are the local covariant derivatives

Proposition 3.1 The metrical deflection d-tensors of a metrical multi-time Lagrange
space M Ly have the expressions:

i) forp=1,
11
p) M 0gim m
D =575 v
(3.17) D{}); = h'gy [—N((f))- + Lfmym] ,
Ay = [g’ + 90 Coy” ]
it) for p > 2,
(o) ﬁagkm m
Diys = 5
318 (a) _  h®0gii 1 (o)
(3.18) Diy; = 2 ot 4U(i)j’

In order to construct the metrical multi-time Lagrangian theory of electromag-
netism, we introduce

Definition 3.1 The distinguished 2-form on J' (T, M), locally defined by

(3.19) F = F)oxl, Ada' + £\ 62, A oxd,

l

where
()7 (i J)z

@) _ L[ (@) _ (@)
fouw =3 [d< DG~ 96 ]

is called the multi-time electromagnetic field of the space M Lj.

Flo) = %[ ple) _ pla ]
1

Remark 3.1 The naturalness of the previous definition comes considering the par-
ticular case of a relativistic rheonomic Lagrange space (i. e., (T, h) = (IR, 6)). In this
particular case, we find a natural relativistic generalization of the electromagnetic
d-tensors used in [12].
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Proposition 3.2 The components F(( . and f(a) of the electromagnetic d-form F
of the metrical multi-time Lagrange space ML” are described by the formulas:

i) in the case p =1,

hll
1 m m m 1
F((i))j = B gij((l)i) - gimN((l); + (gikL?m - gjkam)y ] , f(( ))((])) = 0;

ii) in the case p > 2,

FOB — g,

(a)
v () ()

Fl =3 [U((Ja))z (i)j] ’

(©F]
)

Because the vertical electromagnetic components f((gz](’)g vanish, it follows that
the main laws that govern the electromagnetic metrical multi-time Lagrangian theory
must be intimately conected by the horizontal electromagnetic components F ((SJ)..

(

Theorem 3.3 The electromagnetic components Fg]) of the metrical multi-time La-

grange space MLy are governed by the following generalized Mazwell equations:

i) forp=1,

(1) ( ) 1) m (1)(1) p(m) p(1) p(m)
Flokn = A{z k} { itk T Pioym Tk + Ay iy B lz\k + Crimy B ] y(p)}
(1) (1)(1)(1)
> Flu = Z Clyim By’
{i,5,k} {i,3,k}
(1) (1)
Foiliy =0,
\ {lJ k}
i) for p > 2,

(@ _1 A () (@) R(m) P p(i) p(m) 1. ()
Fiyss = 5000 {D(i)mk D TE A iy Rl = | Thin + Ck(m)Rm)m] (p)}

> Fju=0

{i.4.k}
(a) (v _
> Fijlay =0,
L {4d.k}

(1 )(1) (HMWA) _ ~M)(@A) ~q(1) h_ o°L ( ) _ g5,
where yp) = Gy ¥"s Coam = G Ciem) = 3 agiag0m “0 = S %5
Proof. Firstly, we point out that the Ricci identities [20] applied to the spatial met-
rical d-tensor g;; imply that the following curvature d-tensor identities:

Rpigr + Rimpr =0, Rmijk + Rimjr =0, Pmij(&; + Pimj((lﬁ =0,

where R,igr = giprnﬁk, Rpijk = giprnjk and Pm”((;; = gipPT’;j((,:)), are true.

Now, let us consider the following general deflection d-tensor identities [20]:
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. mpP ® m (p)(u) (m)
k78 = 20 Bk = Dy Tk = A (o By

_ P (p)(p) p(m)
ki = 20 B = ) iy By

) _ 4 _ zm p (v) p) m(7) (p) (1) p(m) (v)
Aoyl = 20 Pty = PaymCitey” — Awyim Flwyjich) >

o)

where D'” DEi)). = xalj, @G = :cfl|(j). Contracting these deflection

(@8 = Ta/p
d-tensor identities by GE?))(%) and using the above curvature d-tensor equalities, we
obtain the metrical deflection d-tensors identities:

N (@) (a) (@) pm (@) m_ A(@)(1) pp(m)

1) Diiyai = Diiyiss = =% Bie = Diiym ik = Ay m) By

N ple) (@ _ () pm _ g(@)w) plm)

dy) Diyjk D(z)ku = =) Bk = 45 on) By

/) D@ _ g _ (@) pm () _ ple) gm) _ g plm) ()
d3) Dyl = iy = ~Cm P — PomCitn. — A im D

(&) (m)~ (1)i(k) ©
At the same tlme, we recall that the following Bianchi identities hold good [15]:

b1) Ay {Ré'ak +T, J\k + Ck(l:r)L)RE:SLJ} =0,
) plm) | _
b2) 2, k}{ ik Ck<m>R(u>ij} =0,

l(e
b3) A { Pisty) + i+ Cilom Py} =0
where Ay 1 means alternate sum and Z{i7j7k} means cyclic sum.

Now, in order to obtain the first Maxwell identity, we permute i and k in d} and
we subtract the new identity from the initial one. Finally, using the Bianchi identity
b1, we obtain what we were looking for.

Doing a cyclic sum by the indices {i, j, k} in d} and using the Bianchi identity bs,
it follows the second Maxwell equation.

Applying a Christoffel process to the indices {i,j,k} in d} and combining with
the Bianchi identity b3 and the relation P((:;;(IE)E ) = P((SI))(;)E ) we get a new identity.
The cyclic sum by the indices {i,7, k} applied to this last identity implies the third
Maxwell equation. m

Remark 3.2 In the particular case (T,h) = (IR,0), we discover a natural gener-
alization of the Maxwell equations appeared in the absolute rheonomic Lagrangian
electromagnetism from [12].

4 Multi-time gravitational h-potential on M L}. Gen-
eralized Einstein equations and conservation laws

Let h = (hag) be a fixed semi-Riemannian metric on the temporal manifold T

and I’ = (M(a))ﬁ, N((’)) ) a fixed nonlinear connection on the 1-jet space E = J(T', M).
In order to develope the metrical multi-time Lagrange theory of gravitational field,

we introduce the following abstract physical concept:

Definition 4.1 From physical point of view, an adapted metrical d-tensor G on E,
locally expressed by
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G = hopdt® ® di? + gijda’ © do? + h*P g;;62], @ da?,
where g;; = gij(tw,x’“,x’;) is a d-tensor field on E, symmetric, of rank n = dim M
and having a constant signature on F, is called a multi-time gravitational h-potential.

Remark 4.1 In the particular case (T,h) = (IR,¢), the gravitational d-potentials
naturally generalize the gravitational potentials used in [12].

Now, taking MLy = (J'(T, M), L) a metrical multi-time Lagrange space, via its

fundamental vertical metrical d-tensor GE'S)((J[;) (see (2.8)) and its canonical nonlin-

ear connection I' = (M((;))B’ N((;))j) (see (2.9), (2.10)), we can construct a multi-time

gravitational h-potential, naturally attached to the space MLy, setting
G = hopdt® ® dt” + gijda’ @ da? + h*P g;;6], @ da,.

Let us consider CT = (H;B, va, Lj.k, C’;Ez;) the Cartan canonical connection of M L.

We postulate that the generalized Einstein equations, which govern the multi-time
gravitational h-potential G of the metrical multi-time Lagrange space M Ly, are the
abstract geometrical Einstein equations attached to the Cartan canonical connection

CT of MLy and the adapted metric G on E, that is,

(4.1) Ric(CT) — SC(SF)

G=KT,
where Ric(CT) represents the Ricci d-tensor of the Cartan connection, S¢(CT) is its
scalar curvature, K is the Einstein constant and 7 is an intrinsec tensor of matter
(equal to 0 for vacuum), which is called the stress-energy d-tensor.
)

In the adapted basis (X4) = | —, —, =—

n the adapted basis (X 4) <5t°"6:c”8a:g
connection I' of M L7, the curvature d-tensor R of the canonical Cartan connection
is locally expressed by R(X¢, Xp)Xa = RE5-Xp. It follows that we have Rap =
Ric(Xa,Xp) = REyp, and Sc(CT) = GABR 45, where

) attached to the canonical nonlinear

hag, for A=a, B=
g%, for A=i, B=j
hapg®, for A= ((i)), B= ((é))
0, otherwise.

Taking into account, on the one hand, the form of the fundamental vertical metrical
d-tensor GE'S)((][; ) of the metrical multi-time Lagrange space M Ly, and, on the other
hand, the expressions of local curvature d-tensors attached to the Cartan canonical

connection CT', by direct computations, we deduce

Theorem 4.1 The Ricci d-tensor Ric(CT) of the Cartan canonical connection CT
of a metrical multi-time Lagrange space M L} is determined by the following adapted
components:
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i) forp=dimT =1,

Ry " Hyy =0, Ry=RT., Ry =R, RZ((B not P((]l)) sz(())
(1) not (1) _ pm (1) p1) not p(1) _ pm () pH1) not o(H1) _ qm()1).
R, PG, = Phol, RO E PG =PI RGG) " SGG) = S
it) forp=dimT > 2,
Rayp) " Hop = Hs,, Rio=RY,., Ryj=RJ,, R "™ P =0,

(@) 1t plo) g ple) 1 ple) _ R et gl
Riy; = Fa; =0 Ras = Pz =0, Rag) = Sou =0

Moreover, denoting H = h®*H,5, R = g R;j and S = haggijS((ng)), it follows
Corollary 4.2 The scalar curvature Sc(CT') of the Cartan canonical connection CT
of a metrical multi-time Lagrange space MLy is given by the formulas

i) forp=dimT =1, Se(CT) =R+ S,

i) for p=dimT > 2, Se(CT)=H + R.

The main result of the metrical multi-time Lagrange theory of gravitational field
is given by the following theorem:

Theorem 4.3 The generalized Finstein equations, which govern the multi-time grav-
itational h-potential G induced by the Kronecker h-reqular Lagrangian of a metrical
multi-time Lagrange space M Ly, have the following adapted local form:

i) forp=dimT =1,

( R+ Sh11 T
() { Rij—R"Q“ng = KT;
St R+Shn 3= KT
0="Ti, Ra=KTa, P\ =KT}]
- { 0="T Py =KT)s P&y =KTi)

it) forp=dimT > 2,
( H+R

Hyp — hag = KTap
H+R
(El) Rij - 9 5  Yij = ’CT
H+R, 5 oqrla)®)
- h*"gi5 = KTy )
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0="Tais  Ria =KTia, 0=T%)
(E2) (8) () (@)

0="Taw> 0=Tqp» 0=Tay;
where Tap, A,B € {a,i, ((‘2‘)} are the adapted local components of the stress-energy
d-tensor T .

Remark 4.2 Asumming that p = dim7 > 2 and n = dim M > 2, the set (Ej) of the
generalized Einstein equations can be rewritten in the more natural form

H -
(E1)

R ~
Rij — 5915 = KTij,

where 71,413, A,B € {a,i} are the adapted local components of a new stress-energy
d-tensor 7. This new form of the generalized Einstein equations is derived in the more
general case of a generalized metrical multi-time Lagrange space [14].

It is obvious that, in order to have the compatibility of the generalized Einstein
equations, it is necessary that certain adapted local components of the stress-energy
d-tensor 7 to vanish ”a priori”. Moreover, from physical point of view, it is well
known that a good stress-energy d-tensor 7 must verify the local conservation laws

T, =0,V A€ {ai, (((Z)) 1

where T2 = GBPTpa. Consequently, by a direct calculation, we find

Theorem 4.4 The conservation laws of the generalized Einstein equations of a met-
rical multi-time Lagrange space MLy are given by the formulas:

i) forp=1,
[R+S]  _ (m) (1)
2 }/1_ Tm = P01l imy
[ om  BES ] om0
(4.3) _Rj - T(Sj ]m = _P(l)j|(m)
[y R+S o, ‘(1) __om()
Swm — 5 % | |m = P G)m>
L
where R = g™ Ry, P(), = hug™PQ), R = g™ Ruj, PY); = hug™P)
i) _ imp (1) OO _ 3 imaD()
Py = 9" Py and Sy ) = haig™ S )3
i) forp>2,
H+R .
- Tt R,
(4.4) /m
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where Hg = h""H,,, R;- =g R,,; and Rg = g™ Ry5.

Remarks 4.3 i) In the case p > 2, n > 2, taking into account the components
Tap and T;; of the new stress-energy d-tensor 7 from (E7), we point out that the
conservation laws modify in the following simple and natural new form (see the paper
[14]):
TH T —

(4.5) 7;3/” =0, Tjm=0.

ii) In the particular case (T,h) = (IR ,J), the generalized Einstein equations,
together with their generalized conservation laws, naturally generalize the similar
equations described in [12].

Open problems.

i) What is the real physical interpretation of our abstract geometrical theory?

ii) The development of an analogous metrical multi-time Lagrangian geometry of
physical fields on the jet space of order two J?(T, M) is in our attention.
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