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Abstract

A slant immersion was introduced in [2] as an isometric immersion of a Rie-
mannian manifold into an almost Hermitian manifold (M̃, g, J) with constant
Wirtinger angle. From J-action point of view, the most natural surfaces in an
almost Hermitian manifold are slant surfaces. Flat slant surfaces in complex
space forms have been studied in [3, 4]. In this article, we study slant surfaces
in complex space forms with arbitrary Gauss curvature. In particular, we prove
that, for any θ ∈ (0, π

2 ], there exist infinitely many θ-slant surfaces in com-
plex projective plane and in complex hyperbolic plane with prescribed Gaussian
curvature.
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1 Introduction

Let M be a Riemannian n-manifold and M̃ an almost Hermitian manifold with almost
complex structure J and almost Hermitian metric g. We denote by 〈 , 〉 the inner
product for M as well as for M̃ . For any vector X tangent to M , we put

(1.1) JX = PX + FX,

where PX and FX denote the tangential and normal components of JX, respectively.
For each nonzero vector X tangent to M at x, the angle θ(X) between JX and TxM
is called the Wirtinger angle of X. The immersion f : M → M̃ is said to be slant
if the Wirtinger angle θ(X) is a constant (cf. [2]). The Wirtinger angle θ of a slant
immersion is called the slant angle. A slant submanifold with slant angle θ is also called
a θ-slant submanifold. Holomorphic and totally real immersions are slant immersions
with slant angle 0 and π

2 , respectively. A slant immersion is said to be proper slant if
it is neither holomorphic nor totally real.

From J-action point of view, slant submanifolds are the simplest and the most
natural submanifolds of an almost Hermitian manifold. Slant submanifolds have been
studied by many geometers in the last two decades (see, for examples, [1]-[12]). Slant
submanifolds arise naturally and play some important roles in the studies of subman-
ifolds of Kählerian manifolds. For example, it was proved in [8] that every surface in
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a complex space form M̃2(4c) is proper slant if it has constant curvature and nonzero
parallel mean curvature vector. Flat slant surfaces in complex space forms have been
studied in [3, 4]. There exist ample minimal proper slant surfaces in C2 (see, [2]). In
contrast, it was proved in [5] that there do not exist minimal proper slant surfaces
in complex projective and in complex hyperbolic planes. Furthermore, it was proved
in [7] that, for any θ ∈ (0, π

2 ] and any given function G = G(x), there exists a θ-
slant surface in the complex Euclidean plane C2 with G as the prescribed Gaussian
curvature function.

In this article, we investigate slant surfaces in complex projective and complex
hyerbolic planes with arbitrary Gauss curvature. More precisely, we prove the follow-
ing existence theorem for slant surfaces prescribed Gauss curvature.
Theorem 1. Locally, for any given θ ∈ (0, π

2 ] and any given function G = G(x),
there exist infinitely many θ-slant surfaces in the complex projective plane CP 2 and
in the complex hyperbolic plane CH2 with G as the prescribed Gaussian curvature.
Remark. The Theorem is false in general if Gaussian curvature were replaced by
mean curvature. For example, for any θ ∈ (0, π

2 ), there does not exist θ-slant surfaces
in CP 2 and in CH2 with zero as the prescribed mean curvature (see [5]).

2 Preliminaries

Let x : M → M̃m be an isometric immersion of a Riemannian n-manifold into a
Kählerian m-manifold. Denote by R and R̃ the Riemann curvature tensors of M and
M̃m, respectively. Denote by h and A the second fundamental form and the shape
operator of the immersion x; and by ∇ and ∇̃ the Levi-Civita connections of M and
M̃m, respectively. The second fundamental form h and the shape operator A are
related by

(2.1) 〈AξX, Y 〉 = 〈h(X,Y ), ξ〉

for ξ normal to M .
The well-known equation of Gauss is given by

(2.2) R̃(X, Y ;Z,W ) = R(X, Y ;Z, W ) + 〈h(X,Z), h(Y, W )〉 − 〈h(X,W ), h(Y, Z)〉

for X, Y, Z, W tangent to M .
For the second fundamental form h, we define its covariant derivative ∇̄h with

respect to the connection on TM ⊕ T⊥M by

(2.3) (∇̄Xh)(Y,Z) = DX(h(Y,Z))− h(∇XY, Z)− h(Y,∇XZ).

The equation of Codazzi is

(2.4) (R̃(X, Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z),

where (R̃(X, Y )Z)⊥ denotes the normal component of R̃(X, Y )Z.
For an endomorphism Q on the tangent bundle of the submanifold, we define its

covariant derivative ∇Q by (∇XQ)Y = ∇X(QY )−Q(∇XY ).
For a θ-slant submanifold M in a Kählerian n-manifold M̃n, we have [2]
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(2.5) P 2 = −(cos2 θ)I, 〈PX, Y 〉+ 〈X, PY 〉 = 0,

(2.6) (∇XP )Y = th(X, Y ) + AFY X,

(2.7) DX(FY )− F (∇XY ) = fh(X,Y )− h(X,PY ),

where I denotes the identity map and fh(X, Y ) is the normal part of Jh(X, Y ).
If we define a symmetric bilinear TM -valued form α on M by

(2.8) α(X, Y ) = th(X, Y ),

then we obtain

(2.9) h(X, Y ) = csc2 θ(Pα(X, Y )− Jα(X, Y )).

Denote by M̃m(4c) the complete simply-connected Kählerian m-manifold with
constant holomorphic sectional curvature 4c. Hence, M̃m(4c) is holomorphically iso-
metric to CPm(4c), Cm, or CHm(4c), according to c > 0, c = 0, or c < 0.

For an n-dimensional θ-slant submanifold with θ 6= 0 in M̃n(4c), the equations of
Gauss and Codazzi become

(2.10)

R(X,Y ; Z, W ) = csc2 θ{〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉}+

+ c{〈X, W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉+ 〈PX, W 〉 〈PY, Z〉

− 〈PX, Z〉 〈PY, W 〉+ 2 〈X, PY 〉 〈PZ, W 〉},

(2.11)

(∇Xα)(Y, Z) + csc2 θ{Pα(X, α(Y, Z)) + α(X,Pα(Y,Z))}+

+(sin2 θ)c{〈X, PY 〉Z + 〈X, PZ〉Y } =

= (∇Y α)(X,Z) + csc2 θ{Pα(Y, α(X, Z)) + α(Y, Pα(X, Z))}+

+(sin2 θ)c{〈Y, PX〉Z + 〈Y, PZ〉X}.

We recall the following Existence and Uniqueness Theorems from [7].
Theorem A (Existence Theorem). Let c, θ be two constants with 0 < θ ≤ π

2
and M a simply-connected Riemannian n-manifold with inner product 〈 , 〉. Suppose
there exist an endomorphism P of the tangent bundle TM and a symmetric bilinear
TM -valued form α on M such that for X, Y, Z,W ∈ TM , we have

(2.12) P 2 = −(cos2 θ)I,

(2.13) 〈PX, Y 〉+ 〈X,PY 〉 = 0,

(2.14) 〈(∇XP )Y, Z〉 = 〈α(X, Y ), Z〉 − 〈α(X, Z), Y 〉 ,
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(2.15)

R(X, Y ; Z, W ) = csc2 θ{〈α(X,W ), α(Y,Z)〉 − 〈α(X, Z), α(Y, W )〉}+

+c{〈X,W 〉 〈Y, Z〉 − 〈X, Z〉 〈Y, W 〉+ 〈PX, W 〉 〈PY,Z〉−
− 〈PX, Z〉 〈PY, W 〉+ 2 〈X,PY 〉 〈PZ, W 〉},

and

(2.16)
(∇Xα)(Y, Z) + csc2 θ{Pα(X, α(Y, Z)) + α(X,Pα(Y, Z))}+

+ (sin2 θ)c{〈X, PZ〉Y + 〈X,PY 〉Z}

is totally symmetric. Then there exists a θ-slant isometric immersion from M into
M̃n(4c) whose second fundamental form h is given by

(2.17) h(X,Y ) = csc2 θ(Pα(X, Y )− Jα(X,Y )).

Theorem B (Uniqueness Theorem). Let x1, x2 : M → M̃n(4c) be two θ-slant
(0 < θ ≤ π

2 ) isometric immersions of a connected Riemannian n-manifold M into the
complex space form M̃n(4c) with second fundamental form h1 and h2. If c 6= 0 and

(2.18)
〈

h1(X,Y ), Jx1
?Z

〉

=
〈

h2(X,Y ), Jx2
?Z

〉

for all vector fields X,Y, Z tangent to M , then P1 = P2 and there exists an isometry
φ of M̃n(4c) such that x1 = φ(x2).

3 Proof of Theorem

Let c ∈ {1,−1}, θ ∈ (0, π
2 ], and let G = G(x) be a differentiable function defined on

an open interval I. Consider the following Riccati’s differential equation:

(3.1) ψ′(x) + ψ2(x) + G(x) = 0.

The well-known existence theorem of first order differential equations implies that
equation (3.1) does have many solutions on some neighborhoods of 0.

For each given solution ψ = ψ(x) of (3.1) on an open interval containing 0, we
consider the following system of first order differential equations:
(3.2)

y′1(x) =
{

2y2
3 − 2y1y2 + (G(x)− c− 3c cos2 θ) sin2 θ

}

csc θ cot θ−

− 3ψy1 + 3c sin2 θ cos θ,

y′2(x) =
{

2y1y2 − 2y2
3 − (G(x)− c− 3c cos2 θ) sin2 θ

}

csc θ cot θ+

+ (2y1 − y2)ψ + 3c sin2 θ cos θ,

y′3(x) =
ψ
y3

{

y2
1 + y2

3 − y1y2 + (G(x)− c− 3c cos2 θ) sin2 θ
}

− 2ψy3+

+
{

y2
y3

(

y2
1 + y2

3 − y1y2 + (G(x)− c− 3c cos2 θ) sin2 θ
)

− y1y3

}

csc θ cot θ

with the initial conditions:

(3.3) y1(0) = c1, y2(0) = c2, y3 = c3 6= 0.



Slant Surfaces with Prescribed Gaussian Curvature 33

Although the equations in (3.2) can be written in slightly easier form, however,
(3.2) is the most suitable for checking that condition (2.16) will be satisfied.

It is well-known that the system (3.2) with the initial conditions (3.3) has a unique
solution y1 = µ(x), y2 = δ(x), y3 = ϕ(x) on some open interval I containing 0 on which
ϕ(x) is nowhere zero.

We put

(3.4) λ =
1
ϕ

{

µ2 + ϕ2 − µδ + (G(x)− c− 3c cos2 θ) sin2 θ
}

,

(3.5) f(x) = exp
(

∫ x

ψ dx
)

,

where
∫ x

ψdx is an anti-derivative of ψ.

Let M be a simply-connected domain containing the origin (0, 0) of the Euclidean
plane E2. Assume that the metric on M is the warped product metric:

(3.6) g = dx⊗ dx + f2(x)dy ⊗ dy.

Let e1 = ∂/∂x, e2 = f−1∂/∂y. Then {e1, e2} is an orthonormal frame field of the
tangent bundle TM of M . Then, by a direct computation, we have

(3.7) ∇e1e1 = ∇e1e2 = 0, ∇e2e1 = ψe2, ∇e2e2 = −ψe1.

We define a symmetric bilinear TM -valued form α on M by

(3.8) α(e1, e1) = λe1 + µe2, α(e1, e2) = µe1 + ϕe2, α(e2, e2) = ϕe1 + δe2.

Then

(3.9) 〈α(X,Y ), Z〉 = 〈α(X,Z), Y 〉

for X,Y, Z tangent to M .
It is well-known that the oriented Riemannian 2-manifold (M, g) admits a canoni-

cal Kählerian structure J , that is, (g, J) is a Hermitian structure on M with ∇J = 0.
If we put P = cos θJ , then we have

(3.10) P 2 = −(cos2 θ)I, ∇P = 0, 〈PX, Y 〉+ 〈X, PY 〉 = 0.

Hence, (M,P, α) satisfies conditions (2.12), (2.13) and (2.14).
On the other hand, by using (3.1)-(3.2), (3.4)-(3.7), and a straightforward long

computation, we know that (M, P, α) also satisfies the remaining two conditions stated
in the Existence Theorem. Thus, by applying the Existence and Uniqueness Theorem,
we know that, up to rigid motions, there exists a unique θ-slant isometric immersion

(3.11) φψ,c1,c2,c3 : M → M̃2(4c)

whose second fundamental form h is given by
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(3.12) h(X, Y ) = csc2 θ(Pα(X,Y )− Jα(X, Y )).

From (3.1) and (3.5), we know that the Gaussian curvature of the slant surface is
given by G.

Since, for any prescribed Gaussian curvature G = G(x), the function ψ can be
chosen to be any of the solutions of the Riccati equation (3.1) and c1, c2, c3 to be any
three real numbers with c3 6= 0, we conclude that there exist infinitely many θ-slant
surfaces in CP 2(4) and in CH2(−4) with G as the prescribed Gaussian curvature.

2

4 Some explicit solutions of the differential system

Here, we provide some explicit solutions of the differential system (3.1)-(3.2) with
c = ±1. For simplicity, we assume that G = 0 and we choose ψ = 0 which is the trivial
solution of the Riccati equation (3.1). Then the differential system (3.2) reduces to

(4.1) y′1(x) = 2(y2
3 − y1y2) csc θ cot θ − c(1 + 3 cos 2θ) cos θ,

(4.2) y′2(x) = 2(y1y2 − y2
3) csc θ cot θ + 4c cos θ,

(4.3) y3y′3 =
[

y2
(

y2
1 − y1y2 − (c + 3c cos2 θ) sin2 θ

)

+ (y2 − y1)y2
3

]

csc θ cot θ.

Summing up (4.1) and (4.2) gives

(4.4) (y1 + y2)′(x) = 6c cos θ sin2 θ.

Thus, by solving (4.4), we have

(4.5) y2 = 6cx cos θ sin2 θ − y1 − b

for some constant b. Substituting (4.5) into (4.1) yields

(4.6) y′1(x) = 2(y2
1 + y2

3 + by1) csc θ cot θ − 12cxy1 cos2 θ − c(1 + 3 cos 2θ) cos θ.

If we denote y2
3 by Φ, then (4.6) becomes

(4.7) Φ =
y′1
2

sin θ tan θ − (b + y1)y1 +
c
2
(1 + 12xy1 cos θ + 3 cos 2θ) sin2 θ.

By differentiating (4.6) we find

(4.8) y′′1 (x) = 2((b + 2y1)y′1 + 2y3y′3) csc θ cot θ − 12cy1 cos2 θ − 12cxy′1 cos2 θ.

Hence, by substituting (4.3), (4.5) and (4.7) into (4.8), we obtain

(4.9) y′′1 (x) = 4c(2b− 3cx cos θ + 3cx cos 3θ) cot2 θ.

After solving the differential equation (4.9), we have

(4.10) y1(x) = c1 + c2x + 4bcx2 cot2 θ − 8x3 cos3 θ
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for some integration constants c1, c2.
From (4.5) and (4.10) we obtain

(4.11) y2 = 6cx cos θ sin2 θ − 4bcx2 cot2 θ + 8x3 cos3 θ − b− c1 − c2x.

Hence, if we substituting (4.10) and (4.11) into (4.7), we have

(4.12)

y2
3(x) = −(c1 + c2x + 4bcx2 cot2 θ − 8x3 cos3 θ)×

×(b + c1 + c2x + 4bcx2 cot2 θ − 8x3 cos3 θ)

+
c
2
[

1 + 3 cos 2θ + 12x cos θ(c1 + c2x + 4bcx2 cot2 θ − 8x3 cos3 θ)
]

sin2 θ

+
1
2
(c2 − 24x2 cos3 θ + 8bcx cot2 θ) sin θ tan θ.

In particular, if c = 1 and b = c1 = c2 = 0, then we obtain the explicit solution of
(3.1)-(3.2):

(4.13) y1 = −8x3 cos3 θ,

(4.14) y2 = 6x sin2 θ cos θ + 8x3 cos3 θ,

(4.15) y2
3 =

1
2
(

1 + 3 cos 2θ − 96x4 cos4 θ
)

sin2 θ − 3x2 sin2 2θ − 64x6 cos6 θ.

Conversely, it is straightforward to verify that (4.10)-(4.12) satisfies the differential
system (4.1)-(4.3).
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