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Abstract

In some recent articles ([13, 14]) we have studied the geometry of complex
Hamilton spaces.

In brief, the geometry of a complex Hamilton space is the geometry of the
dual holomorphic bundle (7' M)* endowed with a Hermitian metric derived from
a Hamiltonian function. In this study the notion of complex nonlinear connec-
tion plays a special role. A significant result provides the complex nonlinear
connection derived only from the Hamiltonian function.

If in addition a positive Hamiltonian satisfies the condition of homogeneity,
then the notion of complex Cartan space is obtained. This is the correspondent
of complex Finsler space on the manifold (7' M)*, and coincides with the notion
of complex Finsler Hamiltonian introduced by S. Kobayashi ([7, 5]).

In the present paper we make a geometric study of the complex Cartan space
and of some its immediate generalizations.
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1 The bundle (7"M)*

Let M be a complex manifold, dimcM = n, and denote by (2*) the complex coor-
dinates in a local chart. 7'M is the holomorphic bundle of (1,0)—type vectors and
(T"M)* is its dual bundle. In a local chart on the manifold (T7/M)*, a point u* is char-
acterized by the coordinates u* = (2¥,(), k = 1,n, and the change of local charts
determines the following change of coordinates ([14]):
027 027

(1.1) P =Rz = Wcj ; rank(ﬁ) =n

Now, let us consider the holomorphic bundle 7% : T(T"M)* — (T"M)*. A local
frame in u* is { %, a%k} and its changes are imposed by the Jacobi matrix of (1.1).

The vertical subbundle V(T"M)* = ker m’ is holomorphic too and a local base in
the vertical distribution V* is {%}. A complex nonlinear connection (in brief (c.n.c.))
on (T"M)* is a supplementary subbundle of V(T'M)* in T'(T'M)* , i.e. T'(T'M)* =
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HT'M)* @ V(I'M)*. If a (c.n.c.) is given, by conjugation a decomposition of the
whole complexification T (T'M)* is obtained.
In the horizontal distribution H* = Hn«(7'M)* a local basis has the form

o 0 * 0

(12 5 =t Nk g

and this basis is said to be adapted if it transforms under the rule:

§ 027§
1.3 _— s = T T
(13) dzt 0z 621
The basis {3 = 52, o = B—Z} is an adapted basis on T, .(T'M)*. The corre-

sponding dual basis {dz¥, §¢x = d(y— Nj; dz7} is an adapted basis on 105 (T"M)*.
Of course, the condition (1.3) involves that the coefficients N;j of (c.n.c.) obey
a certain rule of transformation. Let us note that if N is a (c.n.c.) then Ni; and

L(Njr+Ny; ) are (c.n.c) too.

Proposition 1.1 If N is a (c.n.c.) then %sz: Cm determines a (c.n.c.), called the

*
spray connection of Njj .

In our approach a special meaning have those geometrical objects, called d—complex
tensors, which are transformed only by means of the matrices (0z"/92") or (0z*/9z'7)
for the bar indices, and with their inverses, in a similar way as on the base manifold
M.

A linear connection D : xc(T'M)* x xc(T'M)* — xc(T'M)* is said to be a

]t] —complex linear connection (shortly Z:Z —(c.l.c.)) if for a given (c.n.c.) it preserves
the four distributions of To(7T"M)* and its coefficients coincide two by two ([14]).

Note that for a d — (c.l.c.) D we have DxY = DY, and so it is well defined in
respect to the adapted base if the following local expression is given:

D5 0" = —H%, 7

Dy, b; = Hyybi 5 D5, 0" = —Hj & ; Dy, 65 = Hj\6

(14)  Dyudj = C¥6; s Dyd' = —CiFd7 1 Dybj = C2F6; ; D0 = —C o)
Th?refore, a Z:f —(c.l.c.) is characterized only by the set of coefficients (H]’k ;H%&
C;k; Cj?k), and their conjugates. The covariant derivatives of a d—complex tensor in

respect to a N —(c.l.c.) D will be denoted by “”, “ [x 7 or “z”, “[g 7. The local

expressions of curvatures and torsions of a N —(c.l.c.) are calculated in [14].

2 Complex Hamilton space

Let N be a fixed (c.n.c.) and g;;(2,¢) a Hermitian metric on (7"M)*, i.e. g;; is a
d—complex tensor, g;; = g;; and det(g;;) # 0. By (g%7) we denote the inverse matrix
of (g;7). The following metric structure on To (T M)*,
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(2.1) G = g;3dz' ® dF¥ + g0 ® 8,

is called the N —li Jt of the metric structure g,; .
AN —(cd.c.) D is metrical, that is DG = 0, iff g;5, = 9;5 [k= 9i5% = 9ij [r= 0.
A remarkable example of metrical N —(ed.c.) on (T"M)* is given by

Theorem 2.1 ([14]). The following N —(c.l.c.), denoted by ﬁ, is metrical :

< 1 7,,00:n  Ogun : 1 dght gk
99 i L Ri09 kh .ok L
( ) Jk 29 (5Zk 8520 ) ) C] 2gjh( aCk + aCz )
S 1 5,09, Ogk; P dg'h gt
H = 397Com — ) 7 O0= —mile ~ g,

and has the following zero torsions hT'(hX,hY) = vT(vX,vY) = 0.

The notion of Hermitian metric has a special signification if it is derived from a
complex Hamiltonian. A complex Hamiltonian is given by a C'*°—differentiable func-
tion H : (T'M)* — R with the property that the following d—complex tensor is
nondegenerate

(23) 9"(2,0) , rank(g’") = n.
The pair (M, H) is said to be a complez Hamilton space.

In [15] we made an extension of the well-known Legendre transformation to the
complexified of (T"M)*. As a product, a special result gives a very simple form of a
(c.n.c.)

Theorem 2.2 The following functions

*c 0’H
2.4 Ni=—qg.7 ———o
( ) J g]h 8218<—h
are the coefficients of a (c.n.c.) on (T'M)*, depending only on the complex Hamil-
tonian function H.

A straight computation of the bracket [0;,dz] = Q”;ﬁl yields to Q;r = d;(Nix)
*C *C
—0,(N;5) = 0 and consequently, the N;; (c.n.c.) plays a special role.

In respect to the adapted basis of the (c.n.c.) given by (2.4), we consider the
connection 5 from (2.2). So, the set 'H= (Njp, H;,w H;k, C;k7 C’;k) will be called the
canonical (c.l.c.) of the complex Hamilton space (M, H).

In the next lines we shall describe another method to obtain a ]iﬂf —(c.l.c.) which
generalizes to the dual case the idea of vertical connections ([1]) from the theory of
complex Finsler spaces.

Let V: x(T'"M)* x V(T'M)* — V(T'M)* be a linear connection on the vertical

bundle, locally given by its coefficients I', and Cl-j k, where



74 Gh. Munteanu

Vo & =-T,8 ; Vg5d =% .
k

oz

By d¥ is denoted the d—complex tensor d¥ = ¥ — Cijk@-. As in [4] we prove that
Y% =TI,(; are transformed by the rule:

02P 029 %21
0 _ 0 ¢
(2.5) Uik = 3.7 5w va T 9 Sagmgn

Therefore, if there exists the inverse (d¥)~! = b¥ then N;= bfl"?k satisfies the
rule of change of a (c.n.c.) on (T"M)*. If there exist b¥, by analogy with [1], we say
that V is a good vertical connection on (T"M)*.

Based on (2.5), it follows

Proposition 2.1 Any good vertical connection determines a (c.n.c.) on (T'M)*.

Moreover, a good vertical connection determines a N —(c.l.c.) of (1,0)-type as
follows. The coefficients C ¥ of a good vertical connection satisfy the same rule of

transformation as Cijk of one ]<<f —(c.d.c.)D and ka is directly obtained from the

calculation of ngéj =V o i 3h)5j' So we have that Hijk = ng+ Npk Cijh are
=% +Npr0"
82k

the horizontal coefficients of a N —(cd.c.) on (T"M)*. The coefficients C’gk, Hgk can be
zero (since they are d—tensors) and then the obtained N —(c.d.c.)D is of (1,0)—type.
Let us consider the whole vertical complexified bundle V(T'M)* @ V(T'M)* and

let G = }% [G® fé be a Hermitian vertical metric. We assume that V is a metric linear
connection of (1.0)—type, i.e. (VxG)U,V) = XGU,V)-G(VaU,V)-GU,VaV) =1
and C’gh =T, = 0. Then by choosing U = 7, V = 9* and X = 52 or 32 it results
that:

j 89Ej ih 3gkj
( ) ih Yik dzh ) i ik aCh
X . agﬁl . Sg™i
_ J. . Jo_
Niw = =bigngza i Hi=—gim =55

Thus, we have:

Theorem 2.3 A good vertical connection on a complex Hamilton space (M, H) de-

* CH * . .
termines a N —(c.l.c.) of (1,0)—type, TH= (N, H},0,C9" 0) given by (2.6), and
called the Chern-Hamilton connection.

3 Complex Cartan spaces
In the geometry of complex Finsler spaces there already exists a large reference ([1, 2,

3, 6, 11, 17]), the geometric support of such geometry being the holomorphic bundle
T'M.
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Concerning the Lagrangian-Hamiltonian duality from the classical mechanics we
have considered necessary to make a study of complex Hamilton spaces based on the
manifold (7"M)*. The correspondent of complex Finsler spaces in (T'M)* are the
complex Cartan spaces, defined as follows:

Definition 3.1 A complex Cartan space is a complex Hamilton space (M, H) for
which the function H : (T'M)* — {0} — R4 satisfies the homogeneity condition:

(3.1) H(z,XO) =| > H(z,¢() , VieC.

We see that this notion coincides with that of the complex Finsler Hamiltonian
initially introduced by S.Kobayashi ([7]), but here we prefer to use the notion of
complex Cartan space by analogy with the real known terminology ([8, 9, 10]).

Accordingly, the Hamilton metric ¢7%(z, () = 2H/¢;0¢; is 0—homogeneous and,
applying the complex version of the Euler Theorem, a Cartan space is characterized
by

Proposition 3.1 In a complex Cartan space the following terms are true:

OH OH -
(3.2) ac, ¢ aC, ¢
7 0H == OH T
3.3 I == ; ¢ = : Jic.C = H
(3-3) g'¢ o, Y S =% 9 GG
dg7i dgI* gl ~ git
3.4 i = i = 0 3 = = = (s — 0
&4 9GS 0c 5G9 o ¢
d¢" . . 9*H . O0H  9*°H . 09H
(3:5) 0G99 oGS T ok T Brag S T 0
y y 8" ,
(3.6) gIG =0 5 giGG =0 ; Fg=—g"
G

In view of (3.4) we note that the coefficients C?" from (2.6) obey the condition
Cgkcj = 0 and then b} = d¥ = 6¥; therefore the vertical connection is good. Conse-
quently, in a complex Cartan space, from (2.6) it results the following (c.n.c.)

(3.7) Nji= _QﬂzWQ

and taking into account (3.3), we remark that it coincides with N;i .
Now we can consider the following (c.l.c.): the canonical metrical connection
*C c c c c
TH= (N;k,H;k,Hgk,CJ?k,Cgk) from (2.2), and in the same time the Chern-Cartan
K K K K
metrical connection TH= (Nji,H;-k,O,C;-k,O) with the coefficients given by (2.6).
Like in the complex Finsler case ([13]), we can consider the transformations group
of metrical connections and then express the d— tensors which ties this pair of con-
nections (possible with others that may be considered: Rund, Berwald type complex
connections).
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We emphasize only the fact that, although the Chern-Cartan connection being
of (1,0)—type is simpler, the canonical connection is h— and v— symmetrical and
therefore easy to use in calculations. For the complex Finsler space this aspect was
clearly proved by us in a paper that will appear.

Now let us summarize some direct properties of the canonical metrical connection.

Proposition 3.2 The following assertions are true:
1. TH depends only on the Hamilton function H(z,()
K .. *C
2. We have: H;k: 0"(Njk)
c K c K
5. clF=ci* . cF=cF=0
) i ’ % %

c c c . c c c
JCH=CI* ¢ =0 ; W= -2 COR=CTOR=CT= 0

c
5. TH has only the following nonzero torsions

oT(O4.5)) = [Hy —0"N ' i hT(0".5;) =CiF 5,
oT(@F,5)) = —OF(N,)d L WT(0,6;) =HY, 6
vT(05,0;) = —05(Nij)d' D hT(0,0;) =—H, 0,
oT(6;,0;) = —0;(Ni)d" 5  hT(65,87) = =07 (Niy) &'

6. 0 = dzF N oCy + dzF A 8¢ is a symplectic form on (T'M)*.

It seems that the class of complex Cartan spaces is poor enough (as well as that
of complex Finsler spaces). For the moment we have two classical examples: one
provided from a Hermitian metric on the base manifold M and, the Kobayashi Finsler
Hamiltonian metric ([7, 5]). The homogeneity condition (3.1) with A € C is more
restrictive. If we consider (3.1) only for all A € R (which is not an uninteresting
case for geometry, taking in account that the parameter on a curve is real, unlike for
the complex function theory) the class of examples is wider. If a? = aﬂ(z)(i@ and
B = 2Re{A(2)(;}, where a/%(2) is a Hermitian metric on M and A?(z) is a vector field,
then in analogy to the real case we can discuss on R—complex Randers-Cartan spaces,
Kropina-Cartan spaces or, more general, on R—complex (a, 3)—Cartan spaces.

A complex Hamilton space (M, H) is said to be an almost Cartan-Hamilton (a.C' —
H) space if the metric tensor ¢7*(z,¢) = 0*°H/d¢;0¢; is 0—

c
Let us note that in an (a.C — H) space we have C?%= 0. Hence b} = d¥ = 6¥, and

then in an (a.C — H) a (c.n.c) is Nj; too.

Theorem 3.1 A complex Hamilton space (M, H) is an (a.C — H) space if and only
if the Hamilton function has the form:

H(2,¢) = ¢ (2,0)G:C; + 2Re{ A (2)¢;} + B(2)

where A'(2) is a vector and B(z) is a real valued function.
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The proof is based on the fact that d°97(H — E) = 0 and by H(z,¢) = H(z,(),
where E = ¢7%(z, C)ij is the complex energy.

A complex Hamilton space is said to be of local Minkowski type if at any point u*
there exists a local chart where g/* depend only on the variable .

Particularly, the complex Cartan space of local Minkowski type is obtained.

In a complex local Minkowski space there exists a local chart in which the coeffi-
cients of one (c.n.c.) obtained from a good vertical connection are zero, and therefore
d; = 0/0%". For such a choice of local atlas one obtains simplified forms of torsions
and curvatures of (c.l.c.).
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