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Abstract
In this paper is studied the cotangent bundle T*M = T*M\{0} with a 0-

homogeneous lift G . The connection compatible with the homogeneous metric
is determined.
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1 Introduction

Let (T*M,n*, M) be the cotangent bundle, where M is a C*°-differentiable, real n-
dimensional manifold. If (U, ) is a local chart on M and (x%) are the coordinates
of a point p € M, p € p~'(x) € U, then a point u € 7*~}(U), 7*(u) = p has the
coordinates (z*,p;), (i = 1,n). The natural basis of the module X' (7*M) is given by
(9 = ami’a ~ Op,
single system of functions Ny, (x,p) such that 8, = 9 + Nio(x,p)0%, (a = 1,n) and
(0, 0%) is a local basis of X(7*M), which is called the adapted basis to N. We have
the dual basis (dz?, 6p, = dpa — Nia(x, p)dz¥). For X € X(T*M) is obtained a unique
decompostion X = hX +vX, hX € H, vX € V, (V is the vertical distribution) and
for w € X*(7T*M) we have w = hw+wvw, where (hw)(X) = w(hX), (Ww)(X) = w(vX).
In the adapted basis (§x, %) we have X = X%0; + X,0% and w = w;dz* + w*p,. The
homogeneous lift of the Riemannian and Finslerian metrics on the tangent bundle
have been studied by Acad. Radu Miron ([3], [4]), while the properties of homogeneous
structures on cotangent bundle were studied by P. Stavre and the author ([5], [6], [7]).
More specific, details on the homogeneous lift of a Cartan metric on cotangent bundle
and on integrability conditions of homogeneous almost complex structures are given
in [6], the properties of the homogeneous lift of a Riemann metric on cotangent bundle
are studied in [7], and the homogeneous almost product structure case is developed
in [5].
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). Given a nonlinear connection N on T*M ([1]) there exist a
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2 Existence of metrical d-connections

Let (M, g”( x)) be a Riemannian space and (T*M,7*, M) its cotangent bundle. We
introduce ¢"*(z) with g;x(7)g"**(z) = ;.

We consider . des

(1) Nkr (Z‘,p) = ps’yfk(x),

where 77, (2) are the Christoffel symbols of g. Evidently {]f]kr (z,p)} are the coefhi-
cients of a nonhnear connection on T*M = T*M \ {0} which is 1- homogeneous on

the fibres. Using N;W we consider 8, = O+ N;W (x,p)0"; dp, = dp.— le (z,p)da’.
We have

(2) G=hG +v (*}’, G= gij(z)da’ @ da? + g"* (x)dp, @ Ops.

If we define the homothety ;Lt: (z,p) — (z,tp), Vt € R, then
@) (Gohe)@p) = gyla)da’ ©da? + 12" (2)3p, © bp, £C (a.p).

Proposition 1 é is globally defined Riemannian metric on T*M and is not homo-
geneous on the fibres of T*M

We consider the function
(4) H(x,p) = grs (m)prps-
Obviously H is 2-homogeneous on the fibres of cotangent bundle T*M
If G is defined by
X , . 2
(5) G= g;j(z)dzs’ ® da’ + %grs(x)(Spr ® ops ,

where a > 0 is a constant, then we get:

Proposition 2 The followmg properties hold:

1° The pair (T*M G) is a Riemannian space depending only on the metric g.
2° G is 0-homogeneous on the fibres of T*M

3° The distribution N and V' are ortogonal with respect to (E

G (hX,0Y) =0, VX,Y € X(T*M).

*

(6) G= g;j(z)dx’ ® dz? + h"*(z,p)dp, @ Ops,
where

a2
(7) h™(@,p) = 59" (@)

From [1] we have:

Definition 1 A linear connection D on T*M is called metrical d—linear connection

* *
with respect to G if D G = 0 and D preserves by parallelism the horizontal distribution
N.
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We will prove the existence of metrical d—linear connections. In the adapted frame
we have:

v

h _ . )
D5, 8j =Fb, 0i + Fy, 0, D5, = —F 76— F) &

(8) h o
_vi(k) ~(k) or ro_ (r)i(k) 5. (K 55
Dowd; =C1® 5,4+ G o7, Dyedr = —C0Ii05,— P o1,
b ‘ (r A )k
where FJy, Fj(y, F,z(r), F((;))k, C’;( ), Cj(.(g), C)i(k), C’((;))) )) are the coefficients of D.

Theorem 1 There exists a metrical d— linear connection D on T*M with respect to

G, which depends only on the metric tensor g; its components are

— h

= i) AR Amitk) ik
FZ(T)k = =G = Cik) =G =0,
(9) F;kv:F((;))k: ’Y;-k(x)v
r)(k 1 r r r
Cl) W= 2@ +07p¢ — " py),

where g""pym = p'.

Proof. In the general case of a vector bundle we have a canonical metrical connection
given by [2],

hoo 1
Fj= 59”(53‘951' + 0kgjs — 0sgik),
UT T 1 TS
F(= 0" Ny, + S0 hgsi ks
h
. 1 ) 1 .
C?(/ﬂ): *gjngSHk _ *gjsﬁk is
jv 2 ) 2
C((;"))(k): 7§hjs(arhks + akhrs o ashrk),

where It and ,,||” are the h—, and v— covariant derivative with respect to the Berwald
connection (B}, = 0"Njy,0).
h h
But g = g(z), 50 §;95; = 0jgs; and OFg* =0 = ij: W;k(x) and C’;(k): 0.
2 H
From h™¢(x,p) = %g”(w) it follows h,s(z,p) = —grs(x). But
a

2

8rhks(z p) =" aing(z) — _Egks(m)grmp
’ 9 " PPy H? "

v

1
C((;"))(k): _ihjs(arhks + akhrs _ 8shrk) —

1 H 20‘2 ks rm 20‘2 rs km 20‘2 rk sm
573 =59 = 23070 o+ 259" Pm
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C((;)) ©— (5f P+ 050" — g™ p)) 9" pm ="

(J)k o Nﬂk + h hisjje = 0" Njk +5 hrswkhjs _8m(]§}sk)hjm _am(Njk)hsm]-

Since Njx = 7jpr and

la? . H 1
F((J? ik + 579" (@) 0kgjs + aﬁgjsakg’”lpmpz + Q’Yklpmg]sg "D —
H
_ﬁ'ygllcgjm - ?’V%gsm]a
we obtain
1 1
r) _ . o ) li .
Fijw= 5%kt 597 Okgis + 6kg Dm0 + ﬁg”“g ‘PmpiOkgis0;+

1 1
57709 PmpiOIks 0] — 50" PmpiDsgrd —

1 1 1
—19” s Gkj — Zg”(?kgsj + zgmajgsk-

But ¢™0k(g1s) = —9k(9™°)gis, and consequently

(T) 1 1 1 ml T 1 ms T
F= 57k + 797 (Okgjs + 0395 = Osgnj) + 57 06g™ Pmip18) — 57019 P05 —

1 1 1 1
_T{g “IrspmPiO1g"™ O] + *9 " GksPmPiO1g™' ] = Sk + 5

oH 9 B 'Y;k = ’Y;k,

which ends the proof.
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