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Abstract

Here we study second-order conditions for a functional of the form

∫

V

J(x, u,∇u)dV

which achieves extrema in a convenient Banach space. V denotes a type of com-
pact subset of a smooth surface for which a Maximum Principle holds. The
method consists of finding the second derivative of the functional and general-
izing the notion of conjugate point to the boundary of V . The results include
proofs of general Legendre’s and Jacobi’s necessary conditions as well as a com-
plete set of sufficient conditions for the existence of maxima and minima. Also,
we provide an interesting example showing the application of the theory to the
case of the conformal prescribed Gaussian curvature deformation functional.
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1 Introduction

For the moment, V is a compact subset of an oriented, simple, regular surface whose
interior ıV is connected and whose boundary ∂V is simple, close and enough regu-
lar, including interior spheres at each of its points. Later on, we will impose on V
an additional condition, namely, a hypothesis of the so-called “Maximum Principle
when a supersolution exists”. C0(V ), C(V ), C1

0 (V ), C1(V ) and C2
0 (V ), C2(V ) denote

the usual Banach spaces of functions vanishing or not on ∂V furnished with their
corresponding supremum norms. We assume some familiarity of the reader with the
Classical Differential Geometry of Surfaces (as in [1], for example) and with the basics
of Calculus of Variations, for instance, the following result, cf. [2].
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Lemma 1.1 Let U be an open subset of a Banach space B and F : U → R a twice
differentiable functional at u ∈ U such that dF (u) = 0 and d2F (u) 6= 0. Then, F
achieves a local minimum (maximum) at the critical point u if and only if there exists
a c > 0 (c < 0) such that d2F (u)(h) ≥ (≤) c‖h‖2, for all h ∈ B, i. e., d2F (u) is a
definite positive (negative) quadratic functional.

In a previous work [3], it was proved the rightness of next theorem.

Theorem 1.2 (Euler-Lagrange) If a functional F : C1
0 (V ) → R has the form

F (u) =
∫

V

J(x, u,∇u)dV, where J is enough differentiable, then F is differentiable

and its first derivative is given by

dF (u)h =
∫

V

[∂uJ − div(∂∇uJ)]hdV.

Henceforth, at any local extremum u of F the Euler-Lagrange equation

∂uJ − div(∂∇uJ) = 0

holds in V .

The point of departure for what follows is to compute the second derivative of
such a functional. Then, this derivative is used to establish necessary and sufficient
conditions for the existence of maxima or minima. In the first place, we can generalize
Legendre’s necessary condition from the Classical Calculus of Variations, cf. [2].

Theorem 1.3 (Legendre) Let F : C1
0 (V ) → R, F (u) =

∫

V

J(x, u,∇u)dV, be an

enough differentiable functional. Then, its second derivative is given by

d2F (u)(h) =
∫

V

(∇htP∇h + Qh2)dV,

where the tensor field P = 1
2∂2
∇u∇uJ and the scalar field Q = 1

2 (∂2
u2J − div(∂2

u∇uJ)).
Moreover, if F achieves a minimum (maximum) at a critical point u, then P is definite
nonnegative (nonpositive).

Next, we need a general and convenient definition of conjugate point.

Definition 1.4 (Conjugate points to ∂V ) Given a quadratic functional d2F (u) :

C2
0 (V ) → R of the form d2F (u)(h) =

∫

V

(∇htP∇h + Qh2)dV, we say that ıV does

not have conjugate points to ∂V with respect to d2F (u) if no one of the non-trivial
solutions (if any), h ∈ C2

0 (V )\{h ≡ 0}, of Jacobi’s differential equation −div(P∇h)+
Qh = 0 vanishes in ıV .

This allows us to get a general version of other classical theorem on quadratic
functionals.
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Theorem 1.5 If ıV does not have conjugate points to ∂V with respect to d2F (u)(h) =∫

V

(∇htP∇h + Qh2)dV , where the tensor field P is definite positive (negative) in V ,

then d2F (u) is definite positive (negative).

Clearly, Jacobi’s equation is elliptic if and only if P is definite positive or negative
and so, it is not surprising that the analytic ground for more elaborated conditions
turns out to be the existence and uniqueness theory for elliptic partial differential
equations as well as the Maximum Principles, cf. [4]. In particular, we are interested
in those Principles which do not depend at all on the sign of the independent term in
the elliptic operator.

Lemma 1.6 (Maximum principle for nonpositive functions) If L is an ellip-
tic operator and u ∈ C2(ıV )∩C(V ) satisfies Lu = 0 in ıV and and u ≤ 0 in V , then
either u < 0 in ıV , or u ≡ 0. Moreover, if ∂V satisfies an interior sphere condition
at y and u ∈ C1(ıV ∪ {y}) with u < u(y) = 0 in V , then ∂u/∂ν < 0 at y in any
direction ν pointing into an interior sphere.

In order to obtain a general version of Jacobi’s condition, we need to assume the
validity of the following Maximum Principle.

Lemma 1.7 (Maximum Principle if a positive supersolution exists) Suppose
L is elliptic and there is a w ∈ C2(V ) with w > 0 and Lw ≥ 0 in V . If
u ∈ C2(ıV ) ∩ C(V ) satisfies Lu = 0 in ıV , then either there exists a constant r ∈ R
such that u ≡ rw, or u/w does not attain a nonnegative maximum in ıV .

Accordingly, from now on we will demand our domain V to fulfil the supersolution
hypothesis of Lemma 1.7. The existence of such a supersolution can be accomplished,
for example, by demanding V to be narrow or, alternatively, by assuring the existence
of a positive eigenfunction for Jacobi’s operator, cf. [5]. The notion of conjugate point
together with this Maximum Principle lead to a deeper general necessary condition.

Theorem 1.8 (Jacobi) Assume u ∈ C2
0 (V ) is a local minimum (maximum) point

of a differentiable enough functional F : C2
0 (V ) → R of the form

F (u) =
∫

V

J(x, u,∇u)dV, d2F (u) 6= 0

and the tensor field 2P = ∂2
∇u∇uJ is definite positive (negative) at this extremum.

Then, ıV does not have conjugate points to ∂V with respect to d2F (u).

Corollary 1.9 Let d2F (u)(h) =
∫

V

(∇htP∇h + Qh2)dV be the second derivative of

the functional at some u ∈ C2
0 (V ) and suppose P = P (x, u(x)) is definite positive

(negative) in V . d2F (u) is definite positive (negative) if and only if ıV does not have
conjugate points to ∂V with respect to d2F (u).

To conclude, we put together the conditions of Euler, Legendre and Jacobi to
obtain a general theorem that gives a set of sufficient conditions for the existence of
an extremum.
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Theorem 1.10 Let F : C2
0 (V ) → R be a twice differentiable functional of the form

F (u) =
∫

V

J(x, u,∇u)dV.

Suppose also u ∈ C2
0 (V ) fulfills the following conditions:

1. u is a solution of the Euler-Lagrange equation ∂uJ − div(∂∇uJ) = 0;

2. u makes the tensor field P (x, u(x)) definite positive (negative);

3. ıV does not contain conjugate points to ∂V with respect to d2F (u).

Then, F attains a local minimum (maximum) at u.

2 Proofs of theorems and corollaries

Proof. (Theorem 1.3.) An easy calculation shows that

d2F (u)(h) =
1
2

∫

V

[
∂2J

∂u2
h2 + 2h〈∂2

u∇uJ,∇h〉+∇ht[∂2
∇u∇uJ ]∇h

]
dV.

Next, usual integration by parts transforms the second term of this integral into
∫

V

2h〈∂2
u∇uJ,∇h〉dV = −

∫

V

h2div(∂2
u∇uJ)dV.

Substituting this equation in the second derivative yields

d2F (u)(h) =
∫

V

(∇htP∇h + Qh2)dV,

where P = 1
2 [∂2

∇u∇uJ ] and Q = 1
2

(
∂2J
∂u2 − div(∂2

u∇uJ)
)

.

Now, if P is negative at x0 ∈ V , the continuity of P implies that

vtP (x)v < −β‖v‖2, ∀v ∈ Tx(V ),

for some β > 0 and for all x in a geodesic ball of radius α centered at x0. Now, we
consider the radially symmetric function h ∈ C1

0 (V ) defined by

h(x) =
{

sin2 πr
α if r ∈ [0, α]

0 otherwise,

where r is the geodesic distance from x0 to x. In this way,
∫

V

(∇htP∇h + Qh2)dV < −βmax
(

π2

α2
sin2(2

πr
α

)
)

πα2 + max|Q|πα2

< −βπ3 + max|Q|πα2.
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Finally, making α small enough, we obtain that the second derivative is negative. This
is an obstruction for u to be a minimum. Word by word, the proof for a maximum is
accomplished. 2

Proof. (Theorem 1.5.) With a non-trivial solution ĥ to Jacobi’s equation we con-
struct the vector field w = −P∇ĥ/ĥ in ıV . A straightforward computation shows this
field satisfies “Riccati’s” equation

Q + divw = wtP−1w.

Hence, for any h ∈ C2
0 (V ), we can complete a perfect square as follows.

∇htP∇h + Qh2 + div(wh2) = ∇htP∇h + Qh2 + (divw)h2 + 〈w, 2h∇h〉
= ∇htP∇h + 2h〈∇h,w〉+ (Q + divw)h2

= (∇h + hP−1w)tP (∇h + hP−1w).

The usual procedure of integration by parts together with the fact that h is null on
∂V yield ∫

V

div(wh2)dV = 0.

In this way, the integral reduces to

d2F (u)(h) =
∫

V

(∇htP∇h + Qh2)dV =
∫

V

(∇h + hP−1w)tP (∇h + hP−1w)dV.

Since P is definite positive, d2F (u)(h) = 0 implies that ∇h+hP−1w = 0. The unique
solution to this equation in C2

0 (V ) is h≡0. This shows the functional d2F (u) is definite
positive. 2

Remark 2.1 For the rest of the proofs below, we make repeated use of the additional
condition on the surface domain V and the Maximum Principles.

Proof. (Theorem 1.9.) If ıV has a conjugate point to ∂V, Jacobi’s problem

−div(P∇h) + Qh = 0, h ∈ C2
0(V) \ {h ≡ 0},

possesses a solution h vanishing at some point in ıV . We claim this is impossible. For,
we consider the family of functionals

dtF (u)(h) = t

∫

V

(∇htP∇h + Qh2)dV + (1− t)
∫

V

〈∇h,∇h〉dV,

t ∈ [0, 1]. The members of this family are all definite positive after Lemma 1.1. Also,
after rewriting

dtF (u)(h) =
∫

V

(∇ht(tP + (1− t)I)∇h + tQh2)dV,

we notice that the associated family of Jacobi’s elliptic equations is given by
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−div
(
(tP + (1− t)I)∇h

)
+ tQh = 0, t ∈ [0, 1].

From now on, we look at these equations as a unique equation with parameter t
whose solutions are denoted by h(x, t), (x, t) ∈ V × [0, 1]. To t = 0, it corresponds

Dirichlet’s functional d0F (u)(h) =
∫

V

〈∇h,∇h〉dV whose Jacobi’s equation is just

but Laplace’s equation −div(∇h) = −∆h = 0. From the Weak Maximum Principle,
it follows that ıV does not have conjugate points to ∂V with respect to d2

0F (u). To
t = 1, it corresponds the functional under consideration. Our claim on the absence
of conjugate points to ∂V with respect to d2

1F (u) relies on the fact that it cannot
appear conjugate points as t varies smoothly from 0 to 1 (homotopy invariance).

Let h(x, 1) be the nontrivial solution with h(x0, 1) = 0 at some point x0 ∈ ıV ,
conjugate to ∂V with respect to d2

1F (u). We must also have∇h(x0, 1) 6= 0. Indeed, the
only choice in Lemma 1.7 is r = 0, which leads to the excluded possibility h(x, 1) ≡ 0.
Therefore, h(x, 1)/w does not achieve a nonnegative maximum in ıV and since w > 0,
so does h(x, t) and∇h(x0, 1) = 0 is not possible. This suggests to study a differentiable
structure for the set

N = {(x, t) ∈ ıV × [0, 1] | h(x, t) = 0}.
After our assumption, N 6= ∅. The Implicit Function Theorem implies then that N is
a curve x(t) = (x1(t), x2(t)) near (x0, 1). Since ∇h(x, t) 6= 0 in N for the same reasons
above, we consider its continuation in V × [0, 1] :

1. The curve cannot stop suddenly inside ıV × (0, 1) because this would contradict
the smooth dependence of h(x, t) on t.

2. It cannot return to ıV ×{1} as this would yield ∇h = 0 at some point and this
never happens.

3. The curve cannot reach ∂V × [0, 1] as, in an interior sphere with h > 0, Lemma
1.3 forbids ∂h/∂ν = 0 in any interior direction ν.

4. From above, N cannot hit ıV × {0}.
To sum up, the existence of a conjugate point results in a contradiction. The proof
for a maximum runs similarly. 2

Proof. (Corollary 1.9.) It follows directly from Theorem 1.5. 2

Proof. (Theorem 1.10.) It is an immediate consequence of Lemma 1.1 and Corollary
1.9. 2

3 Application to the conformal prescribed Gauss
curvature problem

The conformal Gaussian curvature deformation functional on a compact Riemannian
surface V with connected interior, cf. [7], is defined to be

F (u) =
∫

V

(
1
2
〈∇u,∇u〉 − K

2
e2u + ku

)
dV.
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The associated Euler-Lagrange equation is, therefore, given by

−div(∇u)−Ke2u + k = −∆u−Ke2u + k = 0.

A straight-forward computation yields

d2F (u)(h) =
∫

V

(∇htP∇h + Qh2)dV,

where the tensor field P = 1
2 (∂2

∇u∇uJ) = I (constant and equal to the identity matrix,
which is certainly positive definite) and

Q =
1
2

[
∂2

uuJ − div(∂2
u∇uJ)

]
= −Ke2u.

Now, if the prescribed curvature function K ≤ 0 in V , d2F (u) is definite positive and
any solution of the Euler-Lagrange equation (critical point) is a minimum.

The problem is not that easy if we allow K(x) > 0 at some x ∈ V . However, a
simple sufficient condition can be stated. Let u be a critical point of the Gaussian
conformal functional and suppose that

umax < − log
√

Cp|K|max

holds with the notations |K|max = max {|K(x)| : x ∈ V} , umax = max {u(x) : x ∈ V} and Cp

is Poincaré’s constant (Lemma 3.1 below). Then, u is a minimum. Certainly,
∣∣∣∣
∫

V

Qh2dV

∣∣∣∣ ≤ Cp|K|maxe2umax

∫

V

〈∇h,∇h〉dV

implies that

d2F (u)(h) ≥ (1− Cp|K|maxe2umax)
∫

V

〈∇h,∇h〉dV ≥ 0.

We have used the following well-known result, cf. [6].

Lemma 3.1 (Poincaré’s Inequality) For any h ∈ C2
0 (V ), we have

∫

V

h2dV ≤ Cp

∫

V

〈∇h,∇h〉dV,

for some positive constant Cp.

It is perhaps more interesting to notice that the assumption for V of a positive
eigenfunction with eigenvalue λ for Jacobi’s operator −∆h−Ke2uh implies a Maxi-
mum Principle for Q = −K(x)e2u(x) < λ, cf. [5].



104 L. Solanilla, A. Baquero and W. Naranjo

4 Concluding remarks

Most (if not all) of the results presented above do not really need the functions to
be identically zero on the boundary of the domain. It is important to point out that
the given definition of conjugate point is appropriate because it applies to unordered
sets as well to ordered sets. The reason for this is that it is based upon a boundary
value problem instead of an initial value problem. Last but not least, we remark again
that the generalization of Jacobi’s condition presented above depends on a domain
satisfying a Maximum Principle and interior sphere conditions at each of its boundary
points. These are indeed quite restrictive technical assumptions.
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