Einstein-Yang Mills equations for gauge
transformations of second order

Irena Comié

Abstract

Lately a big attention has been paid to the gauge transformations and their
applications. The gauge theory of second order was studied by Gh. Munteanu
in [16], [17] , [18]. In [7] and [8] some generalizations are given. Fundamental
results in gauge theory can be found in [1], [2] etc. The transformations of type
(1.1) were studied in [9], [10], [17], [18]. Some other types of transformation with
more variables and their applications were studied in [3], [9], [13], [14], [15], [16].

Here in the tangent space T'F' such an adapted basis is constructed, that the
horizontal and the two vertical distributions with respect to the given metric
structure are mutualy orthogonal. The torsion free generalized connection is
determined and its coefficients are obtained under condition that the metric
structure is parallel or recurrent. The Einstein-Yang Mills equations are also
given.

Mathematics Subject Classification: 53B40, 53C60, 53C80, 81T13, 53C07.
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1. Adapted basis in T'F

Let F be an n + m + [ dimensional C*° manifold. Some point u € F' has coordinates
(z*,y*, 2P) and the allowable coordinate transformations are given by the equations

’ ’

rt = a2t (1) i, j,hk=1,...,n,
(1.1) ya: :ya:(x,y) a,b,c,d,e=n+1,...,n+m,

2P =2P (x,2) pgrs,t=n+m+1,....n+m+1,
where

i a’ p/
rank l?‘;ﬂ] =n, rank [ZZZ“] = m, rank l?;;p] =1.

Proposition 1.1. The coordinate transformations of type (1.1) form a pseudo group.
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The FEinstein-Yang Mills equations

If the functions NY (2/,4') and ./\/lf/l (z',2') satisfy the following law of transfor-

mation ([18]):

, oz oy oy oy
b _ 13 / /
(1.2) N (@y) = N (&) 55 55+ aat oy
, ozt 0zp  0zF 0P
p o o
(1.3) M (z,2) = M5 (2, 2) ort 7' + Ozt 020"

then the adapted basis of TF is B(N, M) = {5‘;, aga , 8—‘;}, where

6 0 p 0
St Ozt M (z,2) 5.

0
b
_M($7y) 2P

(1.4) 5

Let us denote by Ty F', Ty, F', Ty, I the subspaces of T'F' spanned by {52 h {aza 2

{%} respectively, then
TF =TyF&Ty,F &Ty,F.

Theorem 1.1. The horizontal distribution Ty F' is integrable if

c 6'/\/7,c ba'/v.ic s\
(1.5) NG = (axa‘ — N oyt ) —(i,7) =0,
oM!? oM!
q __ T p [ A ) —
(1.6) M = ( i Ry ) (4,5) =0,

and (i,7) is the expression in the previous bracket, in which ¢ and j change their
places. Ty, and 1Yy, are integrable distributions.

Proof. By direct calculation using the abbreviations §; = %, 0; = %, 0, = a‘ZQ,

Op = 52, we get
(17) [6“5J] :J\/chac-i—/\/lijaq

and this vector is in Ty F only if N;$ = 0 and M,%; = 0. On the other side it is
obvious, that
[80,7617] = 0> [apa 8q} =0.

Putting ‘
(1.8) oy* = dy* + Ni'(z,y)da’,
(1.9) §2P = dzP + MP(z, 2)dz’,

the adapted basis B*(N, M) = {dz*,dy®,§zP} of T*F is formed.

There are so many adapted basis B(N, M) and B*(N, M) as many solutions have
the equations (1.2) and (1.3). In the next section we shall determine such N and M
((2.9)), that Ty F, Ty, F and Ty, F' are mutually orthogonal subbundles with respect
to the given metric G.

Some d-tensor gauge T on F' in the bases B and B* is expressed in the form:

®5yb...i®§zs...

— @dxt -
@ oz"

dye
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The components of d-tensor gauge T', with respect to the coordinate transforma-
tions (1.1) are transformed in the following way:

Tz eal Tza T 8561/ axj . aya' ayb . 8ZT/ 625 .
7l b oo boso axl axj’ aya ayb’ 0z" azs'

Theorem 1.2. The adapted bases B and B* are dual to each other.

2. Orthogonality of the subspaces of T'F

The metric tensor G in F' is a symmetric, positive definite tensor of type (0,2). In the
natural basis of T*F, B* = {dx%, dy®,dz"}, G has the form:

(2.1) G = gijde' ®dr? + gpdr' @ dy’ + Gigdr' © dz9 +
Gajdy" ® da? + Gapdy® ® dy’ + Gagdy® ® dz" +
Gpjdz? @ dz? + GupdzP @ dy® + Gpgd2? @ dz?.

In the adapted basis B* = {dx?,§y?, 6y®} of T*F the metric tensor G has the
following components:

(2.2) G = gjde' ®dr! + gpdr' @ 6y° + gigda’ @ 527 +
9a;j0Y" ® dz’ + gapdy® @ 6y° + gaqby” @ 029 +
9pj02P @ da? + gppd2P @ Sy° + gpg62P ® 524

_ Proposition 2.1. The components of the metric tensor G expressed in the bases
B* and B* are connected by formulae:

(2.3) gij = Gij — 9esN{ — GieNj — GrgMi — Gir M} +
gab/\/ia/\/f + gaq-/\/iaM? + gprf-/v-Jb + gqu:Z‘nMg»
giv = Gib — GaN;' — Gpp MY
Gaj = gaj - gab-/\/']b - gaqM?
Gig = Gig — GagN;' — GpgM;
9pi = Gpj — gpbj\/gb = GpgM
(2.4) Gab = Gab, Yag = Gags Ipb = Gpb> Ipq = Ipq-

The proof follows from (1.8), (1.9), (2.1) and (2.2).
Proposition 2.2. If Ty F, Ty, F' and Ty, F' are mutually orthogonal spaces with
respect to the metric tensor G, then (2.3) has the form:
(2.5) 9i; = Gij — GejNE — GieNT = GryM§ — Gir M7y +
gqufM? + gab/\/‘ia-/\/’]b,
(2.6) 0= gib — gabN, 0= Gaj — gau N7,

(27) 0= Giq — gqufa 0= Gpj — quMq

j
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Proof. FromFrom the orthogonallity of Ty F', Ty, F' and Ty, F' with respect to the
metric tensor G, follows that in (2.2) we have:

(2.8) 9ib =0, giqg =0, gaj =0, gag =0, gp; =0, gpp = 0.

Substituting (2.4) and (2.8) into (2.3) we obtain (2.5), (2.6) and (2.7).
Theorem 2.1. If Ty F, Ty, F and Ty, F' are mutually orthogonal with respect to
the metric tensor G given by (2.1), then:

(2.9) N =Gang™s M = Gpi9™"

where (g*) and (gP") are the inverse matrices of (g.;) and (g,s) respectively. If Ty,
is orthogonal to Ty, with respect to G and (2.9) are satisfied, then Ty is orthogonal
to Ty, and to Ty,.

Proof. The first assertion follows from (2.6) and (2.7). The existence of inverse
matrices follows from the fact, that G is positive definite. From the symmetry of the
metric tensor and (2.9) follow (2.6) and (2.7). From the orthogonality of Ty, and Ty,
we have goq = Gag = 0, gpp = Gpb = 0. From these relations, (2.6) and (2.9), using
(2.3), we obtain gi = 0, gaj = 0, giq = 0, gpj = 0.

Proposition 2.3. The nonlinear connections Nf and My determined by (2.9)
satisfy the transformation laws (1.2) and (1.3).

Proof. Using the relations

e’ = 2 gy _ +6y dy®,

oxt ox't oy°
P F A
A2V = S dat 4 S der

and the expression similar to (2.1) for the metric tensor G in B* = {da" , dy® ,d=""}
we get

_ Oxt ayb/ _ 8ya/ 8yb/ 9 ayb/
2.10 ib = Gilb! b e ——— py
(2.10) Gib = iy o7 6b+gb8xl oy + 9p'v 0z Oy
B 8ya‘/ ayb/
2.11 b = Jalt) —— ——.
(2.11) Gab = 9 7 5
From Y
oxt’ Ay
gib = Gi'v! 5 Ot (9 a0 and gib = gzb gabN
follows Y
, Ozt Oy~
2.12 Gib — Ja N& = gi'v' o /N
(2.12) 9iv = 9avNi' = (Giryy — Garwr NiY ) 55 o

Subsituting (2.10) and (2.11) into (2.12) and using the fact that Ty, is orthogonal to
TV2, le gpb = gp’b’ = O = gplb/ we get

dy ’ayb’ e ayb’
2.1 o “ ==
(2.13) a0 07 Db IV Gy By
/6.1’ 8
—Ja’ b’Na y

v ozt oyt
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If we multiply (2.13) with g;’:, g<' 55:’ we obtain (1.2). In the similar way we can
obtain (1.3).

Proposition 2.4. If the adapted basis B = {0;,04,0,} is formed by Nf and M’;
determined by (2.9), then the horizontal distribution Ty F is integrable iff:

NG =10;Gia9™) — 5a9" 00 (Giag")] — [i,4] =0
M, = 105(G9™) — 508" 05109 — [12] = 0.

The proof follows from Theorem 1.1 and (2.9).
The connection between adapted basis and metric structure for the generalized
Finsler space was studied in [5], [6].

3. Gauge covariant derivatives of the second order

We shall suppose that on F' the metric tensor G is given by (2.1).

If we form the adapted basis B* using the nonlinear connection coefficients Nf
and M7 determined by (2.9), as functions of the metric tensor G and suppose that
Ty, is orthogonal to Ty,, then according to Theorem 2.1 it follows that Ty F', Ty, F,
Ty, F' are mutually orthogonal subbundles with respect to G and in this basis the

metric tensor instead of (2.2) has the form:
(3.1) G = gijdz" @ d? + gapdy® @ Syb + pg02P @ 629,

From now on we shall always choose such adapted bases B and B* in which Nf
and M are determined by (2.9).

Definition 3.1. Let V : TF X TF — TF (x is the Descarte’s product) be a usual
linear connection, such that V : (X,Y) - VxY € TF,VX,Y € TF. The operator V
is called generalized gauge connection of the second order.

A generalized gauge connection V of the second order locally is expressed by

(3.2) Vo,0p = F4,0,,

where o, 3,7,...=1,...,n+m+ 1 and 0, are elements of the basis B.

It is called d-gauge connection of second order if VxY is in Ty F, Ty, F or Ty, F
if YVisin Ty F, Ty, F or Ty, F respectively, VX € TF. It has been studied by many
authors, mostly romanian geometers ([2], [16], [17], [18]). The generalized connection
in K-Hamilton spaces and in dual vector bundles were studied in [3] and [4].

Theorem 3.1. If the vector fields X, Y expressed in B have the form

X =Xy = X"6; + X0y + XP0,,
Y =YP05 =Y96; + Y0, + Y10,
then
(3.3) Vy X = XY 0,,

where
(3.4) U= 05X+ F,%X" = 05X + F;3 X' + F%X" 4+ F,5X".
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Theorem 3.2. The covariant derivatives are transformed as tensors if all connec-
tion coefficients are transformed as tensors except

. 0xt oxF 927 92z%  Ozk
Fk =FF ., — , —
(a) Fji=Fy, 9zt 0% 0w | 0xidwi OzF
aiz’ ayb’ 8yc 82yc/ ayc e 62yc’ 8yc
Y oxt Oyb Oy Oxioyd Oy< b oyboye dy<
. 02" 929 927 92z 9z 92z 9z
FT- = FT ) el ; - H
(C) qi 9V Hri Dzl Oz + Ori9z9 Oz v 925029 Oz’

(b) FS5=Fy

ayb’ aya’ ayc N a2yc' ayc
gy dyr Ay dyrdyb Ay

(d) Fbca = Fb’C/

. o029 2P 927 9% 97
() Fo=Fyy 029 0zp 0z7  0290zP 02"
The torsion tensor T'(X,Y") is defined in the usual way by:
(3.5) T(X,Y)=VxY -Vy X —[X)Y].

Theorem 3.3. The torsion tensor for the generalized gauge connection of the
second order has the form:

(3.6) T(X,Y)=Tk6, + T, +T"0,,
where
(3.7) T*=  TSYIX'+TSYIX 4+ T0Y X+

LAY X' + 1,0 Y X+ T,% VP X1+
ToAYPX +TSYPXP + T2 YPXY,

where o = k or o = ¢ or a« = r. The components of the torsion tensor are expressed
as the difference of the corresponding connection coefficients for instance

k _ pk k k _ pk k
T =F5 —F5 T, =F -5, ...

except the following

chi = chi _FiCj —MCJ
T,% = F5% — B + (ON5)
I e (ab/\/ic)

T]Tz = FjTi *Firj *Mirj
Tjrq = Fqu - quj + 3(;/\/1;
Tpri = FpTi - Fi; — OpM;
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Theorem 3.4. The generalized gauge connection of the second order is torsion free
if all connection coefficients are symmetric in the lower indices except the following:

(3.8) (a) F)%=Ff5~— 8;,/\/]?, Fy=F/; — 0,M;
(b) Ff =F5+N5
(c) FjTi = FZ”] + MiTj

As N5 and M"; are tensors, so all F”s appeared in (3.8)(b) and (3.8)(c) are also
tensors. When the horizontal distribution is integrable, then J\/fj =0and M/; =0
(Theorem 1.1) and then F}5 = F;§ and F}'; = F,';.

Using (1.2), (1.3) and (b), (c) from Theorem 3.2 it can be proved that F;% and

F", given by (3.8)(a) are transformed as tensors, as was stated in Theorem 3.2. By

the proof the relation

(0D y*)(Dvy”) + (060ay” ) (Dery®) (By*) =
0er[(Dhry°) (Bpy"] = Der; = O
(similar for z) is used.

The proofs of Theorems 3.2, 3.3 and 3.4 are given in [8] and the curvature theory
of V is given in [7].

4. Recurrent gauge connection of
second order

As before we shall use such adapted basis B* in which the nonlinear connections are
given by (2.9) and the metric tensor G has the form (3.1).
Definition 4.1. The generalized gauge connection V of second order is recurrent
(metric) if
(4'1) JaBly = W~yGap (gaﬂ\'y = O)a
where
w = wpdz" + wgdy? + wdz°

is a 1-form in T*F and

(4'2) JaBly = OyGap — Fanfygnﬂ - Fﬁmrygaw

Theorem 4.1. The connection coefficients of the recurrent gauge connection of
the second order are determined by

(4.3) QFQVB = gﬁry(’ya,ﬂg — Wakp + Ta,{g),
where
(44) YarB = 8ﬁgom + 8ocgmﬂ - &-;9(15

(4.5) Wayg = WaPyp + WaGay — WyJas,
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(4.6) Tanp =T 905 + Tﬁpygpa + Tapﬁgpw
(4.7) T, =Ff —Ff,

From (3.1) and (4.1) follows

(4.8) Yajly = 05 9pjly = 05 Gagly =0,

where
y=1i, ory=b, ory=s.

Theorem 4.2. The connection coefficients of the metric gauge connection of the
second order are given by

(4.9) 2Fa’yﬂ = 9" (Yarp + T(x‘yﬁ)'
Theorem 4.3. The connection coefficients of the recurrent torsion free gauge

connections of the second order are given by (4.3) in which Ty = 0 except when in
(4.6)

(4.10) L= =N = -1,5 . Ty = —0,Mj = ~1;
T = N , Tr =M,
appear.

The proof follows from Theorem 3.4.

If the horizontal distribution Ty F' is integrable, then according to the Theorem
1.1 for the torsion free connection (in (4.10)) we have chi =0 and sz = 0.

From (4.3) we can obtain all 3 types of connection coefficients. In the following
we shall give some explicite expressions for (4.3). In all calculations it is important
that such an adapted basis B* is used in which the metric tensor G is determined by
(3.1).

Case 1. For (o, 8,7) = (i, j,a) we get
(4.11) 28 = gab(%‘bj — Wipj + Tibj)a
where
Yiv; = *3b9ij, Wipj = —WhTij,
Tinj = T. gnj + T}y gin + T, goe.

Using (4.7) and (4.10) for the torsion free connection the above equation has the
form

C
Tivy = N; Gve,

because in this case
ho_
y = 0.

If the horizontal distribution Ty F is integrable, then Tibj = O(MCJ = 0). In this case
for the torsion free metric connection (4.11) reduces to the form

T

K2 2
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2F5 = _gababgij«
Case 2. For (o, 3,7) = (4,4,7) we get
(4.12) 2F,"; = 9" (Yips — Wips + Tipj);
where

Yinj = —OpGij, Wipj = —Wplij,
h

- o i _
For the torsion free connection we have

mh __ mh mq q
Ty =0, T;, = 0, T, = My

and if beside the above conditions the horizontal distribution Ty F' is integrable
(M = 0), then T;% = 0. In this case (4.12) reduces to

2Fig’ = grp(*apgij - wpgij)-

For the metric connection in the above equation w, = 0.

Case 3. For (o, 8,7) = (4, b, ¢) we get
(4.13) 2F% = QCd(’deb — Wjap + Tjdb)v
where
Yjdb = 0jgab, Widb = wW;jJa,
Tiap = T;%49ch + Ty'agis + T;%9ed-
For the torsion free connection we have
T, =0, chd = —0aN¥

and

Tiay = —(0aN5)geb — (OpN})gea-
For the torsion free metric connection (4.13) has the form:
2F5 = 9° (9 9an — 9abOaN;' — gadOpN7').

The other coefficients of the generalized recurrent second order gauge connection
V can be obtained in the similar manner.

5. Einstein-Yang Mills equations of the
second order

Let L(z,y,z) be a Lagrangian defined on the compact set @ C R**+. As it is a
scalar field we have
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(5.1) L(x,y,2) = L(2',y, 2").

We shall suppose, that the adapted basis B = {§;,0,,9,} of T(F) and its dual
basis B* = {dz*,dy®, 62P} are choosen in such a way, that Ty F, Ty, F, Ty, F are
mutually orthogonal with respect to G, i.e. when (2.9) is satisfied. The metric tensor
in this basis has the form

(5.2) G = gijda’ ® drd + gapdy® @ 6y° + gpgd2P ® 52P4.
We have
(53) g = detG(m,y,z) = |gl]| : |gab| : |gpq|'
As
B ozt oz’
Jid = 95" G0 i
oy oy”
Gab = Ga'b’ 5 ay ay
9z¢" 927
99 = 904 G G

and the determinant of the Jacobian matrix is

D(z',y, 2 ozt | | oy | |02
(5.4) ) = [BE 2| 0O
D(z,y,z2) Ox' || Oy || 0=p
from (5.3) we obtain
(5.5) G(x,y,2) = |girjrl|garw ||gpa [|T]* = |G,y )| T

Let us define the Lagrangian density by

(5.6) L(z,y,2) = L(z,y,2)\/G(x,y,2) = /gL(z,y, 2).
The substitution of (5.1) and (5.5) into (5.6) results
(5.7) L(z,y,z) = L'y, 2 )\WIG('y', 2 )T = L&',y 2")]]|.
The elementary volume element dw in € is
dw(z,y,z) =dae* A Ada™ Ady"™ AL A dy™ T A dZMTTY A LA dev

It is known, that
(5.8) dw(@',y',2") = |J|dw(z,y, 2).

Proposition 5.1. The integral of action

(5.9) I= | L(z,y,2)dw
/
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does not depend on coordinate system if and only if L(x,y, z) satisfies the relation

(5.10) L(z,y,2) = [J|L(",y", 7).

Proof. I is invariant if
(5.11) L(x,y,2)dw(z,y,2) = L(z',y,2")dw(x',y, 2).

The substitution of (5.8) into (5.11) results (5.10). The proof in the opposite
direction is obvious.

From (5.6) and (5.7) it follows, that one example for £, which gives coordinate
invariant integral of action is

L(z,y,2) = /9L(z,y, 2).
Proposition 5.2. For arbitrary C? function L(z,y,z) the following relation is
(Vglg) AL = (§:£)52" + (5.L)5y" + (8,L)52P.
Proof. As £ = L(x,y, z) we have:
(5.13) dL = (0;L)dz" + (0uL)dy® + (9,L)dz".
From (1.4), (1.8) and (1.9) we have

(5.14) 5 = 0; — NPy — MPD,, 8, = Da, 0, = 0,

(5.15) ox' = da’, Sy = dy® + Nfdz', §zF = dzP + MPda'.

The substitution of (5.14), (5.15) into (5.13) results (5.12).
We shall suppose that the Lagrangian L(z,y,z) is the function of ¢*(x,y, 2),
;0 (,y, 2), 0a0™ (x,y,2) and 3p¢>‘4(z,y, z), where ¢ (z,v, 2) are scalar fields, i.e.

(5.16) ¢ (z,y,2) = ¢ (@'Y 2) A=1,2,...,p.

For the simplification, we shall consider only one function ¢ = ¢(z,y, z) and use
these abbreviations:

(517) 8’L¢ = 81(25(1', Y, Z)7 aa¢ = aad)(x, Y, Z), apd) = 8p¢($, Y, Z)

Now we have

(518) ‘C((b? ald)? 8a¢; 8p¢) = \/§L(¢, az¢7 8a¢7 ap(b)

and the integral of action has the form

(5.19) 1(6) = / L(6, 01, Buh, D).
Q
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We are looking for such functions ¢, for which I(¢) has maximal or minimal value,
i.e. for which §I(¢) =

For the simplicity we shall suppose that €2 is the n + m + [ dimensional rectangle,
such that

N
(5.20) /dw—/dw /dy /dzp a-n—i—l ,n+m
l—n—|—m—|—1 Ln+m+l

and the variation of ¢ on the boundary of € is equal to zero, i.e.

(5.21) 5¢( 7y7 )7 6¢( 7y7 )7 07 7:: 1’2,---’771
(5.22) 0p(x, 0%, 2) = dp(z,a% 2) =0, a=n+1,....,n+m
(5.23) 0p(x,y,bP) = d¢(z,y,a’) =0, p=n+m+1,....n+m+1

where for instance

b; bt b2 b
/dwi:/dwl/de.../dx
ai al a2 a™

3p(b',y, z) = dg(b*,a%, ... 2"y, 2), ...
5¢)(x’ y’ bn+m+l) = 6¢(];7 y7 Zn+m+17 M) bn+m+l>'

From the variation principle we have

(5.24) 0I(¢) = /5E(x,y,z)dw =

oL oL oL
/Lw¢+ 509 %) ¥ 50,9700 ¥ 55,9\ 0P0) |

From (5.19) it can be seen that £ is function of independent variables ¢, 9;¢, 9,0,
0po. To express this fact we shall write in (5.24)

oL  dc oL 4L oL AL
9(0;0)  d(0i9)" (0ud)  d(0ug)’ 0(0pp)  d(Dpe)

From (5.14) it follows

(5.26) L(¢,0i9,0a0,0p0) = L, 0:¢, Dath, Op¢),

(5.25)

(5.27) 8i¢p = 0ip — Ni'0op — MYP D, 9,
so we have

(5.28) AL _ oL 909) _ oL _

d(0,0) ~ 0(6:0) 0(D0)  0(6:0)
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dc 0L 0(5;¢) oL oL . oL
OB 10,6 = 06:0)00,0) T 00,0) 060 ) T 0@.)
aL _ oL 9(6;0) oL _ o » oL _c
O30 30,00 ~ 96,6 00,0) T 00,0 a0 ) T o@,0)
We shall suppose
(531) 5(az¢) = 81(5¢)7 5(8a¢) = aa(5¢)v 6(ap¢) = ap((sd))
From (5.24)-(5.31) we obtain
ac ac ac ac
. oL = —6 5(0; 0(0q ———0(0p0) =
(5:32) " 100" 10,0 " 19,6
g—géqﬁ + A5(0;¢) + Bo(0q9) + C(0p0) =
8—5(% + A0;(6¢) + BO,(0¢) + C(9,09) =
8—25(}5 + 0;(Ad¢) + 0,(Bo®) + 0,(Cép)
—(0;A)0¢ — 0a(B)d¢ — 9,(C)é¢.
Using (5.20) and (5.21) we have
b b? b
(5.33) 0;(Adp)dw = | dy® | dzP | 0;(Adp)dx’ =
o= ]
be bP
[ [ arasot -
In the similar way we obtain
(5.34) 0a(Bo¢)dw =0 [ 8,(Co¢)dw =
/ /
From (5.32)-(5.34) it follows
(5.35) /6£dw = /< — 0;A—09,B—0 C’) dopdw.

The extrem value of integral of action is obtained, when £ = 0. If we in (5.35)
substitute A, B and C from (5.28), (5.29) and (5.30) we obtain

- () (5s) 0 ()

+N;'0, oL + oL 0N}

9(di0)  O(ip) "

oo [ O oc .
M (awm)) 36,0 M-
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Theorem 5.1. The FEinstein-Yang Mills equation for the gauge transformation
(1.1) are given by

(5.36) 6L = % —0i <(9((?5L@) ~ % (%) % <&’(§ﬁ¢>)

oL . B
(5¢)(8N + 0, M) = 0.

As from (5.18) £ = /gL, and /g is not the function of ¢, 0;¢, 9,¢ and 9,¢ from
(5.36) we get

o(/5) oL oL o
(5.37) 06 —0; <\/§a(5l¢)> —Oa <\/§8(6a¢)> ~ % (\/gﬁ(@@))
V7 0uNE + 3, MT) =0

Theorem 5.2. The FEinstein-Yang Mills equation for the gauge transformation
(1.1) expressed as function of the Lagrangian L and metric function is given by

o[ (oi) o (o) o ()

g)wNuﬁMﬂ—
[i (aLa*f*()pd”

Proof. The proof follows from (5.37).
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