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Abstract

Our aim is to emphasize the topical interest, richness and vitality of Tzitzeica
theory. Rather than aspiring to a comprehensive treatise, this Note contains the
mathematical discussion of only those topics which are in connection with our
concerns. That is why, we have in view four aspects :

· to recall the symmetry groups associated to Tzitzeica PDEs;
· to emphasize again that the Tzitzeica PDEs are Euler -Lagrange equations;
· to reveal some physical roots of Tzitzeica theory;
· to underline new properties of Tzitzeica PDEs and their connection to

Painlevé ODEs.
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1 Introduction

Gheorghe Tzitzeica is known as one of the founders of the centro-affine differential
geometry. He introduced a class of surfaces and a class of curves that today carry his
name. Also, he realized the curve net theory based on a partial derivative equation of
Laplace type. The work of Gheorghe Tzitzeica is a permanent incitation to mathemat-
ical reflection. It inspired many mathematicians, but the most faithful continuers have
been the Romanians Alexandru Myller, Octav Mayer, Gheorghe Theodor Gheorghiu
and Gheorghe Călugăreanu. The Tzitzeica ideas have reappeared in recent times due
to their relation with groups of symmetries, variational equations, electrons theory,
soliton theory, etc.

2 PDEs of Tzitzeica type

In 1907, Gheorghe Tzitzeica [9] introduced a famous class of surfaces, that now carries
his name. Locally, these surfaces can be considered as graphs of functions u = u(x, y)
which satisfy the partial derivative equation
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uxxuyy − u2
xy = c(xux + yuy − u)4, c = const 6= 0.(2.1)

In 1923, still Gheorghe Tzitzeica [10] has described the surfaces that carry his
name as solutions of a completely integrable PDEs system

ruu = aru + brv, ruv = hr, rvv = a′′ru + b′′rv,(2.2)

where r = xī + yj̄ + zk̄.
More precisely:
1) the ruled Tzitzeica surfaces are defined as solutions of the PDEs system

ruu =
hu

h
ru +

ϕ(u)
h

rv, ruv = hr, rvv =
hv

h
rv,(2.3)

where h is a solution of partial derivative equation (complete integrability condition)

(lnh)uv = h;(2.4)

2) the non-ruled Tzitzeica surfaces are defined as solutions of the PDEs system

ruu =
hu

h
ru +

1
h

rv, ruv = hr, rvv =
1
h

ru +
hv

h
rv,(2.5)

where h is a solution of partial derivative equation (complete integrability condition)

(lnh)uv = h− 1
h2

.(2.6)

With a change of function ln h = ω the equations (2.4) and (2.6) rewrite respec-
tively

ωuv = eω,(2.7)

and

ωuv = eω − e−2ω.(2.8)

Being impressed by the Tzitzeica genius and stimulated by the papers of Bobenko
[2] and Wolf [18], as well as the debates with Romanian and foreigner [6], [8] geometers,
together Nicoleta Bâlă, the author studied two problems [1],[11]:

1) the characterization of the symmetry groups associated to the equations (2.1)-
(2.4);

2) showing that the equations (2.1), (2.3), (2.4) are equivalent to Euler-Lagrange
equations.

The surprises where in line with expectations:
A. The symmetry group associated to the equation (2.1) is the unimodular sub-

group of the centro-affine group. The Lie algebra of this group is generated by the
vector fields

X1 = x
∂

∂x
− u

∂

∂u
,X2 = y

∂

∂y
− u

∂

∂u
,X3 = y

∂

∂x
,X4 = u

∂

∂x
,
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X5 = x
∂

∂y
,X6 = u

∂

∂y
,X7 = x

∂

∂u
,X8 = y

∂

∂u
.(2.9)

These infinitesimal generators have permitted the finding of group-invariant solu-
tions of the equation (2.1). Also, we proved that the only partial derivative equation
of Monge-Ampere-Tzitzeica type, invariant with respect to unimodular group (2.9),
is the equation (2.1). The equation (2.1) is equivalent to an Euler-Lagrange equation
produced by the second order Lagrangian

L1(x, y, u(2)) =
u(u2

xy − uxxuyy)
(xux + yuy − u)4

− cu.

Automatically, it appears the variational symmetry group and adequate conser-
vation laws. From this point of view, the problem is still open.

Open problem. There exists or not a first order Lagrangian producing the Tz-
itzeica equation?

B. The symmetry subgroup that acts on the space of independent variables and
of the system (2.2) is generated by vector fields of the type

Z = ζ(u)
∂

∂u
+ η(v)

∂

∂v
,

where the functions ζ(u), η(v) are solutions of a PDEs system. The symmetry sub-
group which acts on the space of dependent variables x, y, z of the system (2.2) is the
unimodular subgroup of the centro-affine group of generators

X1 = x
∂

∂x
− z

∂

∂z
,X2 = y

∂

∂y
− z

∂

∂z
,X3 = y

∂

∂x
,X4 = z

∂

∂x
,

X5 = x
∂

∂y
,X6 = z

∂

∂y
,X7 = x

∂

∂z
,X8 = y

∂

∂z
.

In fact, the previous result is found.
C. The general vector field which describes the infinitesimal symmetry algebra

associated to the equation (2.7) is

W = f(u)
∂

∂u
+ g(v)

∂

∂v
+ (f ′(u) + g′(v))

∂

∂u
.

The equation (2.7) is the Euler-Lagrange equation provided by the first order
Lagrangian

L2(u, v, ω(1)) = −1
2
ωuωv − eω.

The Lie algebra of the variational symmetries for the action produced by L2 is
generated by the vector fields

W1 = u
∂

∂u
− ∂

∂w
,W2 = v

∂

∂v
− ∂

∂w
,W3 =

∂

∂u
,W4 =

∂

∂v
.

Automatically, adequate conservation laws have appeared. Also the equation (2.7) is
conservative in the sense that the divergence of the momentum-energy tensor field
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Tα
β = ωβ

∂L

∂ωα
− Lδα

β , α, β = 1, 2, ω1 = ωu, ω2 = ωv

vanishes on the solutions of the equation.
D. The vector fields which generate the algebra of infinitesimal symmetries asso-

ciated to the equation (2.8) are

U1 = u
∂

∂u
− v

∂

∂v
, U2 =

∂

∂u
, U3 =

∂

∂v
.

The equation (2.8) is the Euler-Lagrange equation produced by the first order
Lagrangian

L3(u, v, ω(1)) = −1
2
ωuωv − eω − e−2ω.

The Lie algebra of variational symmetry group for the action produced by L3 is
the same with {U1, U2, U3}. Automatically, one writes adequate conservation laws. We
prefer to add that the equation (2.8) is conservative in the sense that the divergence
of the momentum-energy tensor field vanishes on the solutions of the equation.

All the results underlined in the sections A-D confirm that Tzitzeica theory can be
considered as essential part of variational principles on differential manifolds. It was
a matter of course since the real world is governed, among other things, by optimum
principles, and Gheorghe Tzitzeica realized indirectly that this is the clue of real
problems.

3 Tzitzeica geometric dynamics

We find of interest to present shortly the Tzitzeica geometric dynamics introduced by
us in [15]. Also we point out its connections with physical theories. It is well-known
that the most simple Tzitzeica surface is that described by the equation xyz = 1 (see
Fig.1). If we denote the Tzitzeica potential by u(x, y, z) = xyz, then its gradient lines
are solutions of the first order ODEs system

dx

dt
= yz,

dy

dt
= zx,

dz

dt
= xy.

Interpreting them as trajectories for the motion of a particle in R3, we have well
known properties:

1) if two of the numbers x(0), y(0), z(0) are null, then the particle does not move;
2) if at least two of the initial values x(0), y(0), z(0) are different from zero, then

either the particle moves to infinity in a finite time (in future), or it comes from the
infinity in a finite time (in the past).

This differential system together with Euclidean metric determine a geometric
dynamics of Tzitzeica type described by the second order ODEs system

d2x

dt2
= x(z2 + y2),

d2y

dt2
= y(x2 + z2),

d2z

dt2
= z(y2 + x2).

This conservative dynamics is characterized by the density of energy

2f(x, y, z) = x2y2 + y2z2 + z2x2
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Figure 1: Tzitzeica surface

whose constant level sets are totally h-geodesic and hence h-minimal (see Fig.2). Sur-
faces with shapes similar to those in Fig. 2 were met as Fermi surfaces (surfaces of
constant energy) in the theory of Wolfgang Pauli and Arnold Sommerfeld [7] for metal
electrons (crystal meshes populated by electrons). For a complete theory of this type,
see [12]-[17].

4 Tzitzeica law in economics

In the case of general economic equilibrium analysis the demand and the supply func-
tions relative to each good are in principle functions of the prices of all goods, and
not only of the price of the good to which they refer. That is why the problem of the
static or dynamic stability of demand and supply requires the introduction of excess
demand vector field E of components Ei = Ei(p1, ..., pn), i = 1, ..., n, where Ei is the
excess demand for the i− th good, and pi are prices [3], [17].

From dynamical point of view, we must analyze the excess demand flow

dpi

dt
= Ei, i = 1, ..., n.

In this context, the Walras law δijpiEj = 0 means that δijpipj is a first integral of the
excess demand flow. This condition is used for normalization and the completeness of
the field E, because the constant level surfaces are spheres.

The Tzitzeica law
∑

p1...pn−1En = 0 (summation by cyclic permutations), intro-
duced in [3], [17], says that p1...pn is a first integral of the excess demand flow. This
reflects a constant volume of the prices since the tangent hyperplane to the hyper-
surface p1...pn = C, at an arbitrary point, determines together with the coordinate
hyperplanes a hyper-tetrahedron of constant volume. Since this last condition repre-
sents a multiplicative effect, the individual prices act in series: the effect of process i
with price pi followed by process j with price pj will be the process of price pipj .
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Figure 2: 0.5-Level set of energy density

Open problem. A function f : Rn → R, (x1, ..., xn) → f(x1, ..., xn) whose value
remains unchanged under any permutation of its independent variables is called sym-
metric function. Any rational symmetric function is a rational function of elementary
symmetric polynomials

P1 =
∑

xi, P2 =
∑

xixj , P3 =
∑

xixjxk, ..., Pn = x1x2...xn,

where the summations are extended over all distinct products of distinct factors. If
X is a C∞ vector field of components Xi, then each condition of type

∑
Xi = 0,

∑
(xiXj + Xixj) = 0,

∑
(Xixjxk + xiXjxk + xixjXk) = 0,

...,
∑

(X1x2...xn + x1X2x3...xn + ... + x1x2...xn−1Xn) = 0

generates a first integral of the flow

dxi

dt
= Xi(x).

If instead ”equalities” we use the sign ≤ 0 or <, we obtain Lyapunov functions,
respectively strong Lyapunov functions. Find the sense of such functions when the
vector field X has a practical meaning.

5 Properties of Tzitzeica PDE

Let us use MAPLE simulations (PDEtools package) to find new properties of Tzitze-
ica PDE (2.1). The main result relates the Tzitzeica PDE to the second order Painlevé
equations, y′′(x) = f(x, y(x), y′(x)), i.e., equations where f is a rational function of
y, y′ with coefficients functions of x. The Painlevé equations have numerous appli-
cations to differential geometry, probability theory, soliton theory, topological field
theory, and others [4], [5] [6], [8].
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5.1 Decomposition of solutions

Theorem. The Tzitzeica PDE (2.1) admits solutions of the form

u(x, y) =
a

f(x)y
or u(x, y) =

f(x)
y

if and only if the function f is solution of a second order Painlevé ODE.
Model 1, Proof.
> PDE := diff(u(x, y), x, x) ∗ diff(u(x, y), y, y) − diff(u(x, y), x, y)2 = c ∗ (x ∗

diff(u(x, y), x) + y ∗ diff(u(x, y), y)− u(x, y))4;
> ansatz := u(x, y) = a/(f(x) ∗ y);
Use pdetest to simplify the PDE with regard to this ansatz.
ans−1 := pdetest(ansatz, PDE);

ans−1 := −a2(−3f ′2f4 + 2f ′′f5 + cx4a2f ′4 + 8cx3a2f ′3f)
f8y4

−a2(24cx2a2f ′2f2 + 32cxa2f ′f3 + 16ca2f4)
f8y4

The ansatz above separated the variables, so the solution of the PDE is determined
by the function f which is a solution of a Painlevé equation.

> ans−f := dsolve(ans−1, f(x));

ans−f := f =− ae(
∫
− b(−a)d−a+−C1)

&where
[
{−b(−a) =

3(27a2c−− a2)−b(−a)3

2−a
+

2(27a2c−− a2)−b(−a)2

−a2

+
3(18a2c−− a2)−b(−a)

2−a3
+

6a2c

−a4
+

a2c

2−a5−b(−a)
},

{−a =
f

x
,− b(−a) =

x

f ′x− f
}

{f =− ae(
∫
− b(−a)d−a+−C1), x =− ae(

∫
− b(−a)d−a+−C1)}

]

Model 2, Proof.
Another particular result can be obtained by separating the variables by product.

We can use HINT option to obtain the general solution, inspired by the solution
above.

> struc1 := solve(PDE, HINT = f(x)/y);
struc1 := (u(x, y) = f/y)

&where
[
{f ′′ =

f ′2 − 8cx3f ′3f + 24cx2f ′2f2 + cx4f ′4 − 32cxf ′f3 + 16cf4

2f
}
]
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> struc2 := solve(PDE, HINT = f(x)/xy);
struc2 := (u(x, y) = f/xy)

&where
[
{f ′′ = 2ff ′x− 3f2 + f ′2x2 − 12cx3f ′3f

2fx2

+
54cx2f ′2f2 − 108cxf ′f3 + cx4f ′4 + 81cf4

2fx2
}
]

In these two cases, the solution of the Tzitzeica PDE is determined by the function
f which is a solution of a Painlevé equation.

Case c= -1: > ode := diff(f(x), ‘$‘(x, 2)) = 1/2 ∗ (diff(f(x), x)2 − x4 ∗
diff(f(x), x)4− 16 ∗ f(x)4 + 32 ∗ x ∗ diff(f(x), x) ∗ f(x)3− 24 ∗ x2 ∗ diff(f(x), x)2 ∗
f(x)2 + 8 ∗ x3 ∗ diff(f(x), x)3 ∗ f(x))/f(x);

> ans := dsolve({ode, f(0) = 1, D(f)(0) = 1}, f(x), type = series);
ans := f = 1 + x− 15

4 x2 − 8
3x3 − 1

3x4 − 16
5 x5 + O(x6)

Case c= 1: > ode1 := diff(f(x), ‘$‘(x, 2)) = 1/2 ∗ (diff(f(x), x)2 + x4 ∗
diff(f(x), x)4 + 16 ∗ f(x)4− 32 ∗ x ∗ diff(f(x), x) ∗ f(x)3 + 24 ∗ x2 ∗ diff(f(x), x)2 ∗
f(x)2 − 8 ∗ x3diff(f(x), x)3 ∗ f(x)/f(x);

> ans := dsolve({ode1, f(0) = 1, D(f)(0) = 1}, f(x), type = series);
ans := f = 1 + x + 17

4 x2 + 8
3x3 + 1

3x4 − 16
5 x5 + O(x6)

Now let us refer to a boundary value problem with curvature c as unknown para-
meter:

> ode2 := diff(f(x), ‘$‘(x, 2)) = 1/2 ∗ (2 ∗ f(x) ∗ diff(f(x), x) ∗ x − 3 ∗
f(x)2 + diff(f(x), x)2 ∗ x2 − 108 ∗ c ∗ x ∗ diff(f(x), x) ∗ f(x)3 + 81 ∗ c ∗ f(x)4 −
12 ∗ c ∗ x3 ∗ diff(f(x), x)3 ∗ f(x) + 54 ∗ c ∗ x2 ∗ diff(f(x), x)2 ∗ f(x)2 + c ∗ x4 ∗
diff(f(x), x)4/f(x)/x2, f(0.1) = 1, f(0.2) = 1.5, D(f)(0.1) = −2;

> dsol := dsolve({ode2}, numeric);
dsol := proc(xbvp)...endproc
dsol(0.1);
[x = 0.1, f = 0.999999, f ′ = −1.999999, c = 0.112938]

5.2 DEtools[symgen]

We look for a symmetry generator for previous ODEs.
Case c = -1
> with(DEtools) :
> PDEtools[declare](f(x), pime = x);
> ode3 := diff(f(x), ‘$‘(x, 2)) = 1/2 ∗ (diff(f(x), x)2 − x4 ∗ diff(f(x), x)4 −

16 ∗ f(x)4 + 32 ∗ x ∗ diff(f(x), x) ∗ f(x)3 − 24 ∗ x2 ∗ diff(f(x), x)2 ∗ f(x)2 + 8 ∗ x3 ∗
diff(f(x), x)3 ∗ f(x))/f(x);

> odeadvisor(ode3);
> symgen(ode3);
[−ξ = −x,− η = f ]
Case c = 1
> with(DEtools) :
> PDEtools[declare](f(x), pime = x);
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> ode4 := diff(f(x), ‘$‘(x, 2)) = 1/2 ∗ (diff(f(x), x)2

+x4∗diff(f(x), x)4+16∗f(x)4−32∗x∗diff(f(x), x)∗f(x)3+24∗x2∗diff(f(x), x)2∗
f(x)2 − 8 ∗ x3 ∗ diff(f(x), x)3 ∗ f(x))/f(x);

> odeadvisor(ode4);
> symgen(ode4);
[−ξ = −x,− η = f ]

5.3 DEtools[buildsym]

Let us build the symmetry generator given a solution of an ODE.
> with(DEtools, bildsym, equinv, symtest);
We start with a pair of infinitesimals:
sym := [−ξ = −x,− η = f ] ;
The most general first order ODE invariant under the above flow is:
> ODE := equinv(sym, f(x));
ODE := f ′ = −F1(fx)

x2 . This ODE can be solved using the following command:
> ans := dsolve(ODE, Lie);

ans := f =
RootOf

�
ln(x)−∫−Z 1

−a+−F1(−a) d−a−−C1
�

x
The infinitesimals can be reobtained from this solution:
> buildsym(ans, f(x));[
−ξ = 0,− η = −−F1(fx)+fx

x

]

5.4 convert/ODE

Let us convert the previous ode3 to the other ODE of different type:
> convert(ode3, y−x);

xf,f =
1
2

x(f)4

xff
− 4x(f)3 + 12xffx(f)2 − 16x2

ff2x(f) + 8f3x3
f −

1
2

xf

f

Now, let us find the solution of a Cauchy problem attached to this second order
ODE.

> ode5 := diff(x(f), ‘$‘(f, 2)) = 1/2 ∗ x(f)4/(f ∗ diff(x(f), f))− 4 ∗ x(f)3 + 12 ∗
diff(x(f), f) ∗ f ∗ x(f)2 − 16 ∗ diff(x(f), f)2 ∗ f2 ∗ x(f) + 8 ∗ f3 ∗ diff(x(f), f)3 −
1/2 ∗ diff(x(f), f)/f ;

> ans := dsolve({ode5, x(0) = 1, D(x)(0) = 1}, x(f), type = series);
ans := x(f) = 1 + f − 1

2f2 + 1
2f3 − 5

8f4 + 7
8f5 + O(f6)

5.5 Tzitzeica PDE as hypersurface in second order jet space

Let us transpose the Tzitzeica PDE in the second order jet space of coordinates
(x, y, z, p, q, r, s, t), i.e., c(xp + yq − u)4 = rt − s2. This represents a hypersurface
of dimension 7 in an 8-dimensional space. To analyze this hypersurface we can use
MAPLE:

> f := c ∗ (x ∗ p + y ∗ q − u)4 − (r ∗ t− s2);
> f1 := diff(f, x); > f2 := diff(f, y); > f3 := diff(f, u);
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> f4 := diff(f, p); > f5 := diff(f, q); > f6 := diff(f, r); > f7 := diff(f, s); >
f8 := diff(f, t);

It follows the critical points:
> solve({f1 = 0, f2 = 0, f3 = 0, f4 = 0, f5 = 0, f6 = 0, f7 = 0, f8 =

0}, {x, y, u, p, q, r, s, t});
{p = p, q = q, s = 0, r = 0, t = 0, u = xp + yq, x = x, y = y}
To obtain information about the curvature, we can use:
> with(linalg) :
> H := hessian(f, [x, y, z, p, q, r, s, t]);
> D := det(H); D := −6144 ∗ c5 ∗ (x ∗ p + y ∗ q − u)14

Consequently the sign of the curvature of the hypersurface f = 0 is opposite to
the sign of the curvature c of the Tzitzeica surface u = u(x, y).

Acknowledgements. I want to express deep gratitude to Prof. Dr. Vladimir
Balan, Prof. Dr. Gabriel Pripoae for helpful discussions, and to Prof. Dr. Iskander
Taimanov, Prof. Dr. Serguei Tsarev for sending me three important references. All of
these confirm the originality of my results in the last section because the connection
spotlighted in the references [6], [8] between Tzitzeica and Painlevé theories is not the
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