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Abstract

In this paper we shortly summarize the many advantages of the discrete
wavelet transform in the analysis of time series. The data are transformed into
clusters of wavelet coefficients and rate of change of the wavelet coefficients, both
belonging to a suitable finite dimensional domain. It is shown that the wavelet
coefficients are strictly related to the scheme of finite differences, thus giving
information on the first and second order properties of the data. In particular,
this method is tested on financial data, such as stock pricings, by characterizing
the trends and the abrupt changes. The wavelet coefficients projected into the
phase space give rise to characteristic cluster which are connected with the
volativility of the time series. By their localization they represent a sufficiently
good and new estimate of the risk.
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1 Introduction

In the analysis of time series such as financial data, one of the main task is to con-
struct a model able to capture the main features of the data, such as fluctuations,
trends, jumps, etc. If the model is both well fitting with the already available data
and is expressed by some mathematical relations then it can be temptatively used to
forecast the evolution of the time series according to the given model. However, in
general any reasonable model depends on an extremely large amount of parameters
both deterministic and/or probabilistic [10, 18, 23, 2, 1, 29, 24, 25, 3] implying a com-
plex set of complicated mathematical relations. Therefore the complexity seems to be
a logical consequence of the modelling. However, the every day (practical) experience
and the simple known models of physics which describes even the more complicated
natural phœnomena tell us that not necessarely the mathematical modelling of a
phœnomena should follows from a particularly complicated framework. In physics,
even complicated systems with high degrees of freedom, are described by very simple
equations and a few set of variables. Therefore we propose in the following a sim-
ple model of (financial) data mining [18, 23], i.e. data analysis aiming to define a
mathematical model corresponding to data. Our model is based on the simple idea
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to describe the characteristic features of the time series by analysing the correspond-
ing wavelet coefficients, i.e. the coefficients of the discrete wavelet transform of data
[4, 9, 16, 20, 10, 12, 26, 19, 22, 1, 30].

It is well known that financial time series have a structure very suitable for the
wavelet analysis [16, 10, 12, 28, 23, 1, 24, 25], in fact, usually the financial data might
be rouglhly represented by the composition of a sequence of high and low frequency
“small” waves with a trend. The small waves have a bounded frequency, and are
localized according to the fact that what happen at a given time t, in general, has a
very negligible influence (correlation) with the other data at time t′ À t. Therefore
wavelets are the most significant functions to represent“small” waves or localized
wave. In fact, the most important properties of wavelets [26, 19, 22, 1, 29, 30, 17] are:

• the localization in time and frequency,

• the data compression: any function can be analytically represented by a series
expansion (in terms of wavelets) having a small number of coefficients (compar-
ing e.g. with the Fourier series).

In the following we use the Haar wavelets, which are the simplest wavelets, analytically
defined, compactly supported in time and symmetric, combined with splines [4, 5,
7, 15, 8, 16, 14, 17]. They fit very well with time series represented by histograms
(piecewise constant functions), but they are not convenient for the analysis of data
to be represented by smoother functions.

The trend of the time series is simply analysed by a smoothing of the data, done by
a moving average. In particular, it is shown that the smoothing of the data coincides
with the first wavelet coefficient. The remaining coefficients describe the detail, i.e.
the local jumps of the data.

In order to investigate the first order differential properties [5, 7, 8, 16, 10, 14] of
the histograms we consider first a smoothing process of the histograms, using splines.
The spline is derived (once) and discretized at fixed time decomposition, so to get
a time-series (first derivative) with the same cardinality of the original time-series.
The wavelet coefficients of the first derivative of the time-series together with the
wavelet coefficients of the time-series represent a cluster [4, 9, 16, 20, 12] of points in
a suitable finite dimensional space. The projections of this cluster into bi-dimensional
spaces give interesting information about the volatility of the data. It is shown that
the wavelet coefficients are strictly related to the finite differences of various order,
and this implies that the volatility of the data is connected with the finite differences.

As application of this method are considered and compared two time series repre-
senting the stock pricings STM (STMICROELECRONICS) and BPCV (Banca Popo-
lare di Bergamo Scrl) of Milano Stock Exchange Market, during the periods 8/06/1998
- 1/01/2001 and 24/08/1998 - 1/01/2001 respectively.
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2 Preliminary remarks

Let Y
def
= {Yi}, i = 0, . . . , N − 1 be the observed data (eventually corrupted by the

noise) of a time-series, at the discrete time spots ti = i/(N−1) ranging on the regular
grid of the (dyadic) points of the interval1 [0, 1].

A (discrete) wavelet transform is the linear operator W : <N → <N which asso-
ciates to the vector YYY the vector of the wavelet coefficients WYYY :

WYYY = {α, β0
0 , β1

0 , . . . , βN−1
2N−1−1

} .

The Haar wavelet interpolation Q is the wavelet (series) expansion

y(t) = QYYY = αϕ(t) +
N−1∑
n=0

2n−1∑

k=0

βn
k ψn

k (t)(2.1)

such that Yi = y(ti), and where ϕ(t), ψn
k (t) are the Haar scaling function (character-

istic function on [0, 1])




ϕn
k (t)

def
= 2n/2ϕ(2nt− k) , (n, k ∈ Z) ,

ϕ(2nt− k) =





1 , t ∈ Ωn
k , Ωn

k

def
=

[
k

2n
,
k + 1
2n

)

0 , t 6∈ Ωn
k ,

and the Haar wavelet basis [17, 19] respectively2





ψn
k (t)

def
= 2n/2ψ(2nt− k)

∣∣
k,n∈Z

, ||ψn
k (t)||L2 = 1 ,

ψn
k (t) =





−2−n/2 , t ∈
[

k
2n , k+1/2

2n

)

2−n/2 , t ∈
[

k+1/2
2n , k+1

2n

)

0 , elsewhere ,

(2.2)

there results that the Haar wavelet series (2.1) s a piecewise constant function (his-
togram).

2.1 Wavelet coefficients and finite differences

Let us consider the unit interval divided into four parts:

[0, 1) = [0, 1/4) ∪ [1/4, 1/2) ∪ [1/2, 3/4) ∪ [3/4, 1)

and, at the dyadic points t0 = 0, t1 = 1/3, t2 = 2/3, t1, be defined the vector
YYY = {Y0, Y1, Y2, Y3}, then the wavelet transform is: WYYY = {α, β0

0 , β1
0 , β1

1}, where
1The time series considered in the following range over more general interval that, for convenience,

are normalized to the unit interval.
2Usually, the function ψ, it is taken positive in the first half of the interval and negative in the

second half, but with our choice the wavelet coefficients have a more direct interpretation.
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• α is the mean value of the set {Y0, Y1, Y2, Y3}:

α = 2−2 (Y0 + Y1 + Y2 + Y3) ;

• β0
0 is the jump from the mean value in the first half of the interval to the second

half:

β0
0 = 2−1 [(Y2 + Y3)− (Y0 + Y1)]

or equivalently, is the mean value of the first derivatives from the extreme dyadic
points and the interior dyadic points:

β0
0 = 2−1 [(Y3 − Y0) + (Y2 − Y1)]

and it vanishes in case of a symmetric distribution with respect to the middle
point (Y0 = Y3, Y1 = Y2). It is also easy to recognize that this coefficient
represents the average of the first derivatives in the middle point, being the

derivative in the second point
Y2 − Y0

2
and in the third point

Y3 − Y1

2
;

• β1
0 is the jump from the mean value in the first quart of the interval to the

second one:

β1
0 = 2−1/2 (Y1 − Y0) ,

which gives us the slope (first derivative) in first part of the interval;

• β1
1 is the jump from the mean value in the third quart of the interval to the

fourth one:

β1
1 = 2−1/2 (Y3 − Y2) ,

which gives us the slope (first derivative) in the final part of the interval.

If we remind the (forward) finite difference expressions approximating the first
and second derivatives





Ẏi
def
=

dy(t)
dt

∣∣∣∣
t=ti

∼= ∆hYi = (Yi+1 − Yi)/h

Ÿi
def
=

d2y(t)
dt2

∣∣∣∣
t=ti

∼= ∆2
hYi = ∆h(∆hYi) = (Yi+2 + 2Yi+1 − Yi)/h2 ,

with y(t) = QYYY , it is
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α =
1
4
(Y0 + Y1 + Y2 + Y3)

β0
0 = 2−7∆3

hY0 , (∆3
h

def
= ∆h∆2

h, h = 2−2)

β1
0 = 2−5/2∆hY0

β1
1 = 2−5/2∆hY2 .

(2.3)

For this reason the wavelet coefficients β’s are also called details coefficients, indeed
they express the finite difference, or better the first order approximate derivative of
the function QYYY .

3 First (spline) derivative of a time-series

The details coefficients are strictly related to the first derivative of the time series,
however it is possible to define a differential operator on the data as follows. Using
the so-called spline-derivative algorithm [4, 5, 7, 9, 13, 14], it is easy to associate
to the time series a time-series having the meaning of the first derivative. The first-
derivative gives immediately a description of the rate of changes of the data. The
spline-derivative algorithm is based on the following steps:

• the time-series is interpolated by a suitable order spline (usually a cubic spline)

• since the spline is enough smooth, it can be derived,

• the first derivative of the spline is then discretized at dyadic nodes, in doing so
we obtain a time-series having the menaing of the first-derivative of the original
time-series.

Let YYY ∪ Y4 = {Y0, Y1, Y2, Y3} ∪ Y4, it is possible to define the first approximate
derivative ẎYY = {Ẏ0, Ẏ1, Ẏ2, Ẏ3}, using the finite difference scheme as ẎYY ∼= ∆hY =
{∆hY0, ∆hY1, ∆hY2, ∆hY3} = 4{Y1−Y0, Y2−Y1, Y3−Y2, Y4−Y3}. With a simple
computation are easily obtained the wavelet coefficients {α̇, β̇0

0 , β̇1
0 , β̇1

1} of ẎYY





α̇ = Y4 − Y0 = ∆hα , (h = 2−2)

β̇0
0 = 2(Y0 − 2Y2 + Y4) =

1
2
∆2

2hY0

β̇1
0 = 2

√
2(Y0 − 2Y1 + Y2) = 2−5/2∆2

hY0

β̇1
1 = 2

√
2(Y2 − 2Y3 + Y4) = 2−5/2∆2

hY2 .

(3.4)

So that the wavelet coefficients of the derivative ẎYY , describe the rate of change of
the trend α and the coefficients β̇’s express the second order finite differences, respec-
tively. However it should be noticed that for the computation of the approximate first
(forward) derivative ∆hYYY it is necessary to add the auxiliary value Y4.

With the same computation we obtain the following set of relations between the
Haar wavelet coefficients of the vectors
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YYY ∪ Y8 = {Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7} ∪ Y8

with its derivative ẎYY and the finite forward differences




α =
1
8
(Y0 + Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7)

β0
0 = 2−29/2∆3

h∆2
2hY0 , (h = 2−3)

β1
0 = 2−4∆3

hY0

β1
1 = 2−4∆3

hY4

β2
0 = 2−7/2∆hY0

β2
1 = 2−7/2∆hY2

β2
2 = 2−7/2∆hY4

β2
3 = 2−7/2∆hY6 .

and for the derivatives




α̇ = ∆hα , (h = 2−3)

β̇0
0 = 32−9/2∆2

3hY0

β̇1
0 = 2−2∆2

2hY0

β̇1
1 = 2−2∆2

2hY4

β̇2
0 = 2−9/2∆2

hY0

β̇2
1 = 2−9/2∆2

hY2

β̇2
2 = 2−9/2∆2

hY4

β̇2
3 = 2−9/2∆2

hY6 .

Therefore the significant parameters for the wavelet analysis of the time series are the
following:

N = 4 : α, β1
0 , β1

1 , α̇, β̇1
0 , β̇1

1

N = 8 : α, β2
0 , β2

1 , β2
2 , β2

3 , α̇, β̇2
0 , β̇2

1 , β̇2
2 , β̇2

3

where, for N = 4, α represents the average value and α̇ its finite difference, β1
0 the

first finite difference at the first point t0 and β1
1 the first finite difference at the third

point t2; the derivative β̇1
0 is the second finite difference in t0 and β̇1

1 is the second
finite difference in t3, analogously for N = 8.

In fig.1 are shown the Haar-wavelet interpolations for the stocks STM and BPCV,
together with the corresponding derivatives in fig.2.

Thus, from the spline-derivative of the piecewise interpolation of the shares (see
fig.2) one has a direct view of the positive — above the horizontal axis — or negative
— under the horizontal axis — changes in the rates: much higher is the column above
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Figure 1: The stocks STM (left) from 8/06/1998 to 23/11/2001 and
BPCV from 24/8/1998 to 23/11/2001 .

or under the horizontal axis, much faster is the change and, therefore, the volatility
of the stocks.

Figure 2: First spline derivative of the Haar-wavelet interpolation of
the stocks STM (left) from 8/06/1998 to 23/11/2001 and BPCV from
24/8/1998 to 23/11/2001.

3.1 Reduced wavelet interpolation

For a large amount of data, i.e. N > 8, we can analyse the longer historical series
YYY = {Y0, Y1, Y2, . . . YN−1}, using only four parameters as follows: we split the total
amount of N observations into M segments of four data, so that

YYY =
M⋃

i=1

YYY (i)

with Y (i) = {Y (i)
0 , Y

(i)
1 , Y

(i)
2 , Y

(i)
3 }. Due to the linearity of the wavelet transform, we

have WYYY =
⋃M

i=1 WYYY (i) and analogously WẎYY =
⋃M

i=1 WẎYY
(i)

there follows that the
wavelet analysis can be done on the cluster of points {WYYY (i)}i=1,... ,M , belonging

to a 4-dimensional space and on the cluster {WYYY (i), WẎYY
(i)}i=1,... ,M belonging to a

8-dimensional space.
In fig.3 are represented the STM and BPCV stocks, their spline-derivatives and

their corresponding curves of the coefficients α (averaged values), β0
0 , β1

0 ,β1
1 .

In fig.4 are represented the projection of the clusters of 3-points and are drawn the
ellipsoid quartiles centered on the mean values. It can be seen that nearly the 100 %



40 Carlo Cattani and Armando Ciancio

-16

12

-16

12

-12

8

-12

8

-16

13

-16

13

800

-8

7

800

-8

7

-20

20

-20

20

200 800

20

80

200 800

20

80

Figure 3: The stocks STM (top left) and BPCV (top right), the corre-
sponding spline derivatives (second row) and the graphs of the wavelet
coefficients (from second row to bottom) α, β0

0 , β1
0 , β1

1 of the spline
(first) derivative.

of the stocks BPCV lies inside the third quantile of the stocks STM. Analogously in
fig.5 are projected the clusters of the spline derivatives, while in fig.6 are represented
the projections of the cluster of points α, β0

0 , β1
0 , β1

1 , α̇, β̇0
0 , β̇1

0 , β̇1
1

Furthermore, the positive values of the first derivatives data (A′)I correspond to
the growing of the data (A)I , while the negative values describe decreasing slopes of
the data. Since volatility is strictly connected with the time derivative of the time
series, these clusters well represent this feature of the discrete sequences.
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