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Abstract

We show the vanishing of the Betti numbers βi(M), 2 ≤ i ≤ n− 2, of com-
pact irreducible manifolds of nonnegative isotropic curvature and pure curvature
tensor. We also study manifolds of constant isotropic curvature and show that
this condition for dimensions n ≥ 5 is equivalent to constant sectional curvature.
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1 Introduction

The concept of isotropic curvature for manifolds of dimension n ≥ 4 was introduced by
Micallef and Moore in [13]. In that paper, they proved that if M has positive isotropic
curvature then the homotopy groups πi(M) vanish for 2 ≤ i ≤ [n/2]. Therefore, if
π1(M) is finite, the Betti numbers βi(M) are zero for 2 ≤ i ≤ n − 2. The question
whether this conclusion remains true for manifolds with infinite fundamental group
remains open, especially because the fundamental group of compact manifolds of pos-
itive isotropic curvature can be very large. We remark that a great contribution to the
understanding of the fundamental group of a compact manifold of positive isotropic
curvature was recently made by Frasier in [4]. She proves that if the fundamental
group of compact manifolds of positive isotropic curvature and of dimension n ≥ 5
does not contain a subgroup isomorphic to Z⊕ Z.

We cannot expect the vanishing of the Betti numbers βi(M), 2 ≤ i ≤ n−2, in the
case of nonnegative isotropic curvature, since all symmetric spaces have nonnegative
curvature operator and therefore, nonnegative isotropic curvature. However, under
certain conditions, we have such a conclusion, namely, for hypersurfaces of Euclid-
ean space, for conformally flat manifolds ([12]), and for manifolds of nonnegative
Weitzenböck operator and whose Weyl tensor satisfies W ≤ S/[(n− 1)(n− 2)], where
S denotes the scalar curvature (see [6]). In addition, Micallef and Wang proved in [14]
that the second Betti number of even dimensional compact manifolds nonnegative
isotropic curvature is at most 1.
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Definition 1.1 A Riemannian manifold is said to have pure curvature tensor if for
every x ∈ M there is an orthonormal basis {e1, . . . , en} of the tangent space such that
the 2-forms ei ∧ ej are eigenvectors of the curvature operator R.

We recall that conformally flat manifolds and hypersurfaces of Euclidean space
have pure curvature tensor. The main result of this paper is the following theorem,
which generalizes the results in [12] .

Theorem 1.2 Let Mn, n ≥ 4 be an irreducible compact manifold of nonnegative
isotropic curvature. If the curvatute tensor of M is pure, then the Betti numbers
βi(M) are zero, for 2 ≤ i ≤ n− 2.

We point out that submanifolds of Space Forms with flat normal bundle also have
pure curvature tensor and thus Theorem 1.2 can be applied to study such compact
submanifolds in the presence of nonnegative isotropic curvature.

The key points in the proof of Theorem 1.2 are Lemma 2.2 in Section 2 and the
study of the holonomy algebra of locally irreducible compact manifolds of nonnegative
isotropic curvature and pure of curvature tensor in Section 3. For the latter, we show
that the holonomy algebra is the whole orthogonal algebra (see Proposition 3.1).

Since manifolds of constant sectional curvatures have pure curvature tensor, we
investigate next if constant isotropic curvature implies the purity of the tensor. Sur-
prisingly, we obtain that for dimensions greater than 4, constant isotropic curvature
implies constant sectional curvature.

Theorem 1.3 Let Mn, n ≥ 4, be a Riemannian manifold. Then:
(1) If n = 4, the isotropic curvature is constant if and only if Mn is conformally flat
with constant scalar curvature.
(2) If n ≥ 5, Mn has constant isotropic curvature if and only if Mn has constant
sectional curvature.

This paper is organized as follows. In Section 2 we prove the main lemma, in
Section 3 we study the holonomy algebra, and Theorem 1.2 is proved in Section 4,
after we derive the Weitzenböck for manifolds with pure curvature tensor. Theorem
1.3 is proved in Section 5.

2 The Main Lemma

In what follows M will always denote an n-dimensional Riemannian manifold with
n ≥ 4 and R its curvature tensor. For x in M we consider the complexified tangent
space TxM ⊗ C and we extend the Riemannian metric 〈 , 〉 to a complex bilinear
form (, ). An element Z in TxM ⊗C is said to be isotropic if (Z, Z) = 0. A two plane
σ ⊂ TxM ⊗C is totally isotropic if (Z,Z) = 0 for any Z ∈ TxM ⊗C. If σ is a totally
isotropic two-plane then there exists a basis {Z, W} of σ such that

Z = ei +
√−1ej and W = ek +

√−1em

where ei, ej , ek, em are orthonormal vectors of TxM . Conversely, any two such vectors
span a totally isotropic two plane. Let R̃ denote the complex linear extension of the
curvature operator R : Λ2(TxM) → Λ2(TxM) given by
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〈R(X ∧ Y ), (U ∧ V )〉 = 〈R(X, Y )V, U〉.

Definition 2.1 A Riemannian manifold is said to have nonnegative isotropic curva-
ture if 〈R̃(Z ∧W ), (Z ∧W )〉 ≥ 0 whenever {Z,W} is a totally isotropic two plane.

It follows from this definition that for Z and W as above

〈R̃(Z ∧W ), (Z ∧W )〉 = Kik + Kim + Kjk + Kjm − 2〈R(ei, ej)ek, em〉 ≥ 0

where Kik denotes the sectional curvature of the plane spanned by ei, ek and R is
the curvature tensor of M (see [13] pg.203). If we consider Z̄ = ei −

√−1ej , then
{Z̄,W} is a totally isotropic two plane. Performing the same computation for 〈R̃(Z̄ ∧
W ), (Z̄ ∧W )〉 and adding with 〈R̃(Z ∧W ), (Z ∧W )〉 we get that the nonnegativity
of the isotropic curvature implies

Kik + Kim + Kjk + Kjm ≥ 0,(2.1)

for all sets of orthonormal vectors ei, ej , em, ek in TxM .

Lemma 2.2 (Main Lemma) Let M be a manifold with nonnegative isotropic cur-
vature and {e1, . . . , en} an orthonormal basis of TxM . Then, for 2 ≤ p ≤ n − 2, we
have

p,n∑

i=1, k=p+1

Kik ≥ 0.(2.2)

Proof We divide the proof in the following cases:

Case 1: n and p are both even. Using (2.1) we get that

K1,p+1 +K2,p+1 +K1,p+2 +K2,p+2 + . . .+Kp−1,p+1 +Kp,p+1 +Kp−1,p+2 +Kp,p+2 + . . .

. . . + Kp−1,n−1 + Kp,n−1 + Kp−1,n + Kp,n ≥ 0.

Case 2: n is even, but p is odd. Therefore so is n− p.
In this case, we first show that there exists k ∈ {p + 1, . . . , n}, for which we find

i, j ∈ {1, . . . , p} such that
Kik + Kjk ≥ 0.(2.3)

In fact, suppose that Kik + Kjk < 0 for all k ≥ p + 1 and for all i, j ∈ {1, . . . , p}.
Then for k, m ∈ {p+1, . . . , n} we would have Kik+Kim+Kjk+Kjm < 0, contradicting
equation (2.1). Therefore, for simplicity, we suppose that

Kp−1,n + Kp,n ≥ 0.(2.4)

Now we claim that either

Kp−1,p+1 + Kp−1,p+2 + . . . + Kp−1,n ≥ 0

or
Kp,p+1 + Kp,p+2 + . . . + Kp,n ≥ 0.
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If not,
Kp−1,p+1 + Kp−1,p+2 + Kp,p+1 + Kp,p+2 + . . .

. . . + Kp−1,n−2 + Kp,n−2 + Kp−1,n−1 + Kp,n−1+

+Kp−1,n + Kp,n < 0,

which contradicts (2.1) and (2.4). Let us then suppose that Kp,p+1 + Kp,p+2 + . . . +
Kp,n ≥ 0.

Now we claim that there exists k > p such that K1,k + K2,k + . . . + Kp−1,k ≥ 0.
If not,

K1,k + K2,k + . . . + Kp−1,k + K1,l + K2,l + . . . + Kp−1,l < 0,

which again contradicts (2.1). Let us then suppose that K1,n+K2,n+ . . .+Kp−1,n ≥ 0
Now, to obtain the desired result, just observe that

p,n∑

i=1, k=p+1

Kik = K1,p+1 + K2,p+1 + K1,p+2 + K2,p+2 + . . .

. . . + Kp−2,p+1 + Kp−1,p+1 + Kp−2,p+2 + Kp−1,p+2 + . . .

+Kp,p+1 + Kp,p+2 + . . . + Kp,n + K1,n + K2,n + . . . + Kp−1,n ≥ 0.

Case 3: n is odd. If p is odd, n− p is even. It is proved in a similar manner. ut

3 The holonomy algebra of manifolds with pure
curvature tensor

Notice that the definition of pure curvature tensor is equivalent to saying that there
exists an orthonormal basis {e1, . . . , en} for which 〈R(ei, ej)ek, em〉 = 0 whenever the
set {i, j, k, m} contains more than two elements. We will call this basis an R-basis.

The aim of this section is to prove the following result.

Proposition 3.1 Let M be a compact locally irreducible manifold of nonnegative
isotropic curvature. If the curvature tensor is pure then the holonomy algebra h of M
is the whole orthogonal algebra.

Before we prove Proposition 3.1 we recall two well known facts about the orthog-
onal algebra o(U), where U is a vector space. The reader is refered to [3] for their
proofs.

Lemma 3.2 Let v be a non-zero element of U . Then

vU = {v ∧ u | u ∈ U}

generates o(U).

Lemma 3.3 Let U = V + W with V = W⊥ and not both have dimension two. Then
o(V ) + o(W ) is a maximal proper subalgebra of o(U).
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Proof of Proposition 3.1
First, we recall a result in [5], which states that a locally irreducible locally symmet-

ric space with pure curvature tensor has constant sectional curvature (see also [15]).
Therefore, the result is proved for locally symmetric spaces, since the only possible
case is that M has constant positive curvature.

Next we show that if the sectional curvature of M is nonnegative then h = o(n).
In fact, since the curvature tensor is pure, the sectional curvatures are eigenvalues of
the curvature operator, which in turn, implies that the curvature operator is nonneg-
ative. It follows then from Gallot-Meyer Theorem ([7]) that the only possible cases
for the restricted holonomy groups are the orthogonal group O(n) or the unitary
group U(n/2). In the latter case, a result of Micallef-Wang in [14], implies that M
is a simply connected Kähler manifold, that having nonnegative curvature operator,
would be biholomorphic to the Complex Projective Space CPn/2. But this is a con-
tradiction, since it is well known that manifolds of pure curvature tensor have zero
Pontrjagin forms (see [2] p. 439 or [9]). Therefore the only possible case for the re-
stricted holonomy group and hence for the holonomy group is O(n), which implies
that h = o(n)

Now we show that if h 6= o(n) and n > 4, then M has nonnegative sectional
curvature, which by the above paragraph is a contradiction. For that, let r(x) denote
the Lie algebra generated by ImR ⊂ Λx(M), where ImR denote the image of R. It
is well known that r(x) is a subalgebra of h for all x ∈ M (see [1] for instance).

Let us consider an R-basis {e1, . . . , en} and suppose that K12 6= 0. We then
consider

V = {e1} ∪ {ei | K1i 6= 0}
W = V ⊥

and denote TxM = U = V + W . We have that dimV ≥ 2. Notice that dimW ≥ 1,
otherwise, e1 ∧ ei ∈ ImR, for all i and hence r(x) would contain e1U . But from
Lemma 3.2 we get that e1U generates o(n), contradicting that h 6= o(n). Moreover, if
dimW = 1, Lemma 3.2 implies r(x) = o(n− 1) and from Lemma 3.3 we obtain that
h = o(1)+o(n−1), which contradicts that M is locally irreducible. Thus, henceforth,
we assume dimW ≥ 2. Since we are also supposing that n > 4 and dimV ≥ 2, not
both have dimension two.

We claim now that there exists ej ∈ W such that K2j = 0. If not, we would have
that e2 ∧ ej ∈ ImR, for all ej ∈ W . Since e1 ∧ e2 ∈ ImR and

[e1 ∧ e2, e2 ∧ ej ] = −e1 ∧ ej ,

we would conclude that e1 ∧ ei ∈ r(x), for all i = 2, . . . , n. But e1U generates o(n),
contradicting again that h 6= o(n). Now we show that there exists el ∈ W such that
Kjl = 0. If not, ej ∧ el ∈ ImR for all el ∈ W and hence r(x) must contain o(W ),
the Lie algebra generated by ejW . Since r(x) also contains o(V ), the Lie algebra
generated by e1V , we conclude that by Lemma 3.3 that h = o(V ) + o(W ). But this
contradicts that M is locally irreducible.

Therefore we have obtained that for the totally isotropic two-plane spanned by
Z = e1 +

√−1 ej and W = e2 +
√−1 el we have

K12 + K1l + K2j + Kjl = K12 ≥ 0.
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If n = 4 and h 6= o(4), o(s) × o(4 − s), the only possible case is h = u(2). In
this case, the results of [14] and [16] combined imply that M is biholomorphic to the
Complex Projective Space CP2, which is again a contradiction. ut

4 The Weitzenböck Formula and the Proof of
Theorem 1.2

Conditions on the isotropic curvature fit well the classical Bochner technique and this
will be the basic tool to prove Theorem 1.2.

Recall that for a p-form ω, the Weitzenböck formula is given by

(∆ω, ω) =
n∑

i=1

(∇Xi
ω,∇Xi

ω) + (Qpω, ω),

where

(Qpω, ω) =
∫

M

〈Qpω(x), ω(x)〉dM.

We want to estimate (Qpω, ω) in the case that the manifold has pure curvature
tensor and nonnegative isotropic curvature. For that we use the formulae obtained by
Maillot in [10] (see also [11]).

Let ω ∈ Λ2
xM and X ∈ TxM . Consider the operator θω : Λp

xM → Λp
xM given by

a linear extension of

θω(X̃i1 ∧ . . . ∧ X̃ip) =
p∑

k=1

(−1)k+1(i(Xik
)ω) ∧ X̃i1 ∧ . . . ∧ ̂̃

Xik
∧ ... ∧ X̃ip ,

where {X1, ...Xn} denotes an orthonormal basis of TxM and i(X)ω is a 1-form given
by (i(X)ω)Y = ω(X,Y ). Maillot proved that θω is an skew-symmetric operator, that
is,

〈θω(X̃1 ∧ .... ∧ X̃p), Ỹ1 ∧ .... ∧ Ỹp〉 = −〈X̃1 ∧ .... ∧ X̃p, θω(Ỹ1 ∧ .... ∧ Ỹp)〉.(4.5)

He also proved that if {ωs}, s = 1, ..., n!/[2!(n − 2)!]) is an orthonormal basis of
eigenvectors of the curvature operator R with corresponding egenvalues λs, then

〈Qp ω, τ〉 =
n!/[2!(n−2)!]∑

s=1

λs〈θωsω, θωsτ〉.(4.6)

Lemma 4.1 Let M be a Riemannian manifold with pure curvature tensor and
{e1, . . . , en} an R-basis, with corresponding eigenvalues Kij, the sectional curvature
of the plane spanned by ei, ej. Then

Qp(ei1 ∧ . . . ∧ eip) = (
p,n∑

h=1,k=p+1

Kihik
)ei1 ∧ . . . ∧ eip .
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Proof From (4.5) and (4.6) we get that

〈Qpω, τ〉 =
∑
s<t

Kst〈θes∧etω, θes∧etτ〉 = −
∑
s<t

Kst〈θes∧et ◦ θes∧etω, τ〉, ∀ τ,

implying that
Qpω = −

∑
s<t

Kstθes∧et ◦ θes∧etω.

Therefore, all we need is to find θes∧et
◦θes∧et

(ei1 ∧ . . .∧ eip
). For that we consider

the following cases:
(i) {s, t} ⊂ {i1, ..., ip} or {s, t} ∩ {i1, ..., ip} = ∅.

In this case the definition of θ implies

θes∧et(ei1 ∧ . . . ∧ eip) = 0.

(ii) If s ∈ {i1, ..., ip} and t /∈ {i1, ..., ip}, then

θes∧et
◦ θes∧et

(ei1 ∧ ... ∧ eip
) = −ei1 ∧ ... ∧ eip

.

It follows that

Qp(ei1 ∧ ... ∧ eip) = (
p,n∑

h=1,k=p+1

Kihik
)ei1 ∧ ... ∧ eip .

ut
Proof of Theorem 1.2

It follows from Lemma 2.2 and 4.1 that the operator Qp is nonnegative for all
2 ≤ p ≤ n− 2. This in the Weitzenböck formula implies that a p-form is harmonic if
and only if it is parallel. Since the only possibility for the holonomy group G of M is
SO(n), if βp(M) > 0 for 2 ≤ p ≤ [n/2] there would exist a parallel p-form φ, which
would be left invariant by SO(n). But, by the holonomy principle, the existence of φ
would give rise to a parallel and hence harmonic p-form on the sphere Sn, which is a
contradiction. ut

5 Manifolds with constant isotropic curvature

We begin by recalling that in [8], Kulkarni proved that a manifold of dimension
n ≥ 4 is conformally flat if and only if the sectional curvatures satisfy the relation

K12 + K34 = K13 + K24,(5.7)

for all orthonormal vectors e1, e2, e3, e4.
Proof of Theorem 1.3

First we will show that constant isotropic curvature implies the following two facts:
(a) For ei, ej , ek, el orthonormal vectors in TxM , we have 〈R(ei ∧ ej), ek ∧ el〉 = 0.
(b) For n ≥ 4, the sectional curvatures satisfy the Kulkarni equation (5.7), and hence
M is conformally flat.

In fact, for (a), we just consider the isotropic vectors
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Z = ei +
√−1ej , W = ek +

√−1el, W̄ = ek −
√−1el.

Then since KI(Z, W ) = KI(Z, W̄ ), where KI(Z, W ) denotes the isotropic curvature
of the plane spanned by {Z,W}, we have

Kik + Kil + Kjk + Kjl − 2〈R(ei ∧ ej), ek ∧ el〉 =

Kik + Kil + Kjk + Kjl + 2〈R(ei ∧ ej), ek ∧ el〉,
which gives (a).

For (b), we again consider the isotropic vectors Z = ei+
√−1 ek, W = ej+

√−1 el,
Z ′ = ei +

√−1 ej , and W ′ = el +
√−1 ek. Since KI(Z,W ) = KI(Z ′, W ′), using (a)

we obtain
Kij + Kil + Kkj + Kkl = Kil + Kik + Kjl + Kjk.

This gives
Kij + Kkl = Kik + Kjl,(5.8)

which implies (b).
Now suppose n ≥ 5 and consider the isotropic vectors Z = ei +

√−1 ej , W =
em +

√−1 el, W ′ = em +
√−1 ek. Since we have KI(Z, W ) = KI(Z, W ′), we get

Kil + Kjl = Kik + Kjk,

(5.9)

for all orthonormal vectors ei, ej , ek, el.
Now, from (5.7) we have

Kil + Kjk = Kik + Kjl.(5.10)

and subtracting (5.9) from (5.10), we have Kjk = Kjl. This implies

Ric(ek) = Kkl +
∑

j 6=l

Kkj = Kkl +
∑

j 6=k

Klj = Ric(el).

Therefore M is Einstein and since it is also conformally flat, M has constant curvature.
The converse is obvious.

Now we consider the case n = 4. Recall that in dimension 4, the isotropic curvature
is given by the Weitzenböck operator on 2-forms, which in turn is given by

Q+
2 = W+ +

S

3
Q−2 = W− +

S

3
,(5.11)

where ± indicates the selfdual and anti-selfdual components. Since M4 is conformally
flat, W+ = W− = 0 and since Q2 has constant eigenvalues, we conclude that S is
constant. The converse follows immediately from (5.11). ut
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