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Abstract. In this paper we construct a geometrization on the 1-jet fiber
bundle J1(T, M) for the multi-time quadratic Lagrangian function

L = hαβ(t)gij(t, x)xi
αxj

β + U
(α)
(i) (t, x)xi

α + F (t, x).

Our geometrization includes a nonlinear connection Γ, a generalized
Cartan canonical Γ-linear connection CΓ together with its d-torsions
and d-curvatures, naturally provided by the given multi-time quadratic
Lagrangian function L.
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1 Metrical multi-time Lagrange spaces

It is important to note that quadratic multi-time Lagrangians dominates most sci-
entific domains. We can remind only the theory of elasticity [19], the dynamics
of ideal fluids, the magnetohydrodynamics [6], [7], the theory of bosonic strings
[5] or the multi-time evolution (p-flow) of some physical or economical phenomena
[21, 22, 23, 24, 25, 26]. This fact emphasizes the importance of the geometrization of
quadratic multi-time Lagrangians. In conclusion, a Riemann-Lagrange geometry on
1-jet spaces was required. Such a geometry was initially developed by Saunders [20]
and Asanov [2], and continued, in a Miron’s approach [10], by Udrişte ([21]-[26]) and
Neagu ([13], [16]).

In the sequel, let us fix h = (hαβ(tγ)) a semi-Riemannian metric on the temporal
manifold T and let g = (gij(tγ , xk, xk

γ)) be a symmetric d-tensor on E = J1(T, M),
of rank n and having a constant signature.

Generally, a smooth multi-time Lagrangian function

L : E → IR, E 3 (tα, xi, xi
α) → L(tα, xi, xi

α) ∈ IR,(1.1.1)
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produces a fundamental vertical metrical d-tensor

G
(α)(β)
(i)(j) =

1
2

∂2L

∂xi
α∂xj

β

,(1.1.2)

where i, j = 1, ..., n and α, β = 1, ..., p.

Definition 1.1. A multi-time Lagrangian function L : E → IR, having the fundamen-
tal vertical metrical d-tensor of the form

G
(α)(β)
(i)(j) (tγ , xk, xk

γ) = hαβ(tγ)gij(tγ , xk, xk
γ),(1.1.3)

is called a Kronecker h-regular multi-time Lagrangian function.

In this context, we can introduce the following important concept:

Definition 1.2. A pair MLn
p = (J1(T, M), L), p = dim T, n = dim M, consisting

of the 1-jet fibre bundle and a Kronecker h-regular multi-time Lagrangian function
L : J1(T, M) → IR, is called a multi-time Lagrange space.

Remark 1.3. i) In the particular case (T, h) = (IR, δ), a multi-time Lagrange space
is called a relativistic rheonomic Lagrange space and is denoted by

RLn = (J1(IR, M), L).

For more details about the relativistic rheonomic Lagrangian geometry, the reader may
consult [15].

ii) If the temporal manifold T is 1-dimensional one, then, via a temporal repara-
metrization, we have

J1(T, M) ≡ J1(IR, M).

In other words, a multi-time Lagrange space, having dim T = 1, is a reparametrized
relativistic rheonomic Lagrange space.

Example 1.4. Let us suppose that the spatial manifold M is also endowed with a
semi-Riemannian metric g = (gij(x)). Then, the multi-time Lagrangian function

L1 : E → IR, L1 = hαβ(t)gij(x)xi
αxj

β(1.1.4)

is a Kronecker h-regular one. It follows that the pair

BSMLn
p = (J1(T,M), L1)

is a multi-time Lagrange space. It is important to note that the multi-time Lagrangian
L1 = L1

√
|h| is exactly the ”energy” Lagrangian, whose extremals are ultra-harmonic

maps between the semi-Riemannian manifolds (T, h) and (M, g) [4]. At the same time,
the multi-time Lagrangian that governs the physical theory of bosonic strings is of type
L1 [6].
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Example 1.5. (geometric dynamics [21, 22, 23, 24, 25, 26]) Let us start with a
p-flow described by the completely integrable PDES system

∂xi

∂tα
= Xi

α(t, x(t)), i = 1, ..., n; α = 1, ..., p.

This system and the semi-Riemannian metrics hαβ(t) and gij(t, x) determine the
quadratic Lagrangian function

L2 : E → IR, L2 = hαβ(t)gij(t, x)(xi
α −Xi

α(t, x(t))(xj
β −Xj

β(t, x(t)),(1.1.5)

which is Kronecker h-regular. If the metrics h and g are positive definite, then this is
the least squares Lagrangian. Also, we remark that any PDEs system can be replaced
with a p-flow (multi-time evolution), and consequently it produces a Lgrange-Hamilton
problem via any quadratic Lagrange function of preceding form.

Example 1.6. In the above notations, taking U
(α)
(i) (t, x) a d-tensor field on E and

F : T ×M → IR a smooth function, the quadratic multi-time Lagrangian function

L2 : E → IR, L2 = hαβ(t)gij(x)xi
αxj

β + U
(α)
(i) (t, x)xi

α + F (t, x),(1.1.6)

is also a Kronecker h-regular one. The multi-time Lagrange space

EDMLn
p = (J1(T,M), L2)

is called the autonomous multi-time Lagrange space of electrodynamics. This
is because, in the particular case (T, h) = (IR, δ), the space EDMLn

1 naturally genera-
lizes the classical Lagrange space of electrodynamics, that governs the movement law
of a particle placed concomitently into a gravitational field and an electromagnetic
one. From physical point of view, the semi-Riemannian metric hαβ(t) (resp. gij(x))
represents the gravitational potentials of the manifold T (resp. M), the d-tensor
U

(α)
(i) (t, x) plays the role of the electromagnetic potentials which produce a gyro-

scopic force, and F is a potential function. The non-dynamical character of the
spatial gravitational potentials gij(x) motivates us to use the term ”autonomous”.

Example 1.7. More general, if we consider the symmetrical d-tensor gij(t, x) on E,
of rank n and having a constant signature on E, we can define the Kronecker h-regular
multi-time Lagrangian function

L3 : E → IR, L3 = hαβ(t)gij(t, x)xi
αxj

β + U
(α)
(i) (t, x)xi

α + F (t, x).(1.1.7)

The multi-time Lagrange space

NEDMLn
p = (J1(T,M), L3)

is called the non-autonomous multi-time Lagrange space of electrodynamics.
We use the term ”non-autonomous”, in order to emphasize the dynamical character
of spatial gravitational potentials gij(t, x), i.e., their dependence of the temporal coor-
dinates tγ .
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An important role and, at the same time, an obstruction in the subsequent devel-
opment of the theory of the multi-time Lagrange spaces, is played by the following
theorem, proved in [12]:

Theorem 1.8. (of characterization of multi-time Lagrange spaces)
If p = dim T ≥ 2, then the following statements are equivalent:

i) L is a Kronecker h-regular Lagrangian function on J1(T, M).
ii) The multi-time Lagrangian function L reduces to a multi-time Lagrangian func-

tion of non-autonomous electrodynamic type, that is

L = hαβ(t)gij(t, x)xi
αxj

β + U
(α)
(i) (t, x)xi

α + F (t, x).

Corollary 1.9. The fundamental vertical metrical d-tensor of an arbitrary Kronecker
h-regular multi-time Lagrangian function L is of the form

G
(α)(β)
(i)(j) =

1
2

∂2L

∂xi
α∂xj

β

=

{
h11(t)gij(t, xk, yk), p = dim T = 1

hαβ(tγ)gij(tγ , xk), p = dim T ≥ 2.
(1.1.8)

Remark 1.10. i) It is obvious that the preceding theorem is an obstruction in the
development of a fertile geometrical theory for the multi-time Lagrange spaces. This
obstruction was surpassed in the paper [13], by introducing the more general notion of
a generalized multi-time Lagrange space. The generalized multi-time Riemann-
Lagrange geometry on J1(T,M) will be constructed using only a Kronecker h-regular
vertical metrical d-tensor G

(α)(β)
(i)(j) and a nonlinear connection Γ, ”a priori” given on

the 1-jet space J1(T,M).
ii) In the case p = dimT ≥ 2, the preceding theorem obliges us to continue our

geometrical study of the multi-time Lagrange spaces, directing our attention upon the
non-autonomous multi-time Lagrange spaces of electrodynamics.

Let MLn
p = (J1(T, M), L), where dim T = p, dim M = n, be a multi-time La-

grange space whose fundamental vertical metrical d-tensor metric is

G
(α)(β)
(i)(j) =

1
2

∂2L

∂xi
α∂xj

β

=

{
h11(t)gij(t, xk, yk), p = 1

hαβ(tγ)gij(tγ , xk), p ≥ 2.

Supposing that the semi-Riemannian temporal manifold (T, h) is compact and
orientable, by integration on the manifold T , we can define the energy functional
associated to the multi-time Lagrange function L, taking

EL : C∞(T, M) → IR, EL(f) =
∫

T

L(tα, xi, xi
α)

√
|h| dt1 ∧ dt2 ∧ . . . ∧ dtp,

where the smooth map f is locally expressed by (tα) → (xi(tα)) and xi
α =

∂xi

∂tα
.

The extremals of the energy functional EL verify the Euler-Lagrange PDEs

2G
(α)(β)
(i)(j) xj

αβ +
∂2L

∂xj∂xi
α

xj
α −

∂L

∂xi
+

∂2L

∂tα∂xi
α

+
∂L

∂xi
α

Hγ
αγ = 0,(1.1.9)
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where xj
αβ =

∂2xj

∂tα∂tβ
and Hγ

αβ are the Christoffel symbols of the semi-Riemannian
temporal metric hαβ .

Taking into account the Kronecker h-regularity of the Lagrangian function L, it is
possible to rearrange the Euler-Lagrange equations of the Lagrangian L = L

√
|h| in

the following generalized Poisson form (ultra-hyperbolic partial differential equations):

Œhxk + 2Gk(tµ, xm, xm
µ ) = 0,(1.1.10)

where

Œhxk = hαβ{xk
αβ −Hγ

αβxk
γ},

2Gk =
gki

2

{
∂2L

∂xj∂xi
α

xj
α −

∂L

∂xi
+

∂2L

∂tα∂xi
α

+
∂L

∂xi
α

Hγ
αγ + 2gijh

αβHγ
αβxj

γ

}
.

Proposition 1.11. i) The geometrical object G = (Gr) is a multi-time dependent
spatial h-spray.

ii) Moreover, the spatial h-spray G = (Gl) is the h-trace of a multi-time dependent
spatial spray G = (G(i)

(α)β), that is Gl = hαβG
(l)
(α)β.

Proof. The proof of this proposition is given in [12].

Following previous reasonings and the preceding result, we can regard the equa-
tions (1.1.10) as being the equations of the ultra-harmonic maps of a multi-time
dependent spray.

Theorem 1.12. The extremals of the energy functional EL attached to the Kronecker
h-regular Lagrangian function L are ultra-harmonic maps on J1(T, M) of the multi-
time dependent spray (H,G) defined by the temporal components

H
(i)
(α)β =





−1
2
H1

11(t)y
i, p = 1

−1
2
Hγ

αβxi
γ , p ≥ 2

and the local spatial components G
(i)
(α)β =

=





h11g
ik

4

[
∂2L

∂xj∂yk
yj − ∂L

∂xk
+

∂2L

∂t∂yk
+

∂L

∂xk
H1

11 + 2h11H1
11gkly

l

]
, p = 1

1
2
Γi

jkxj
αxk

β + T
(i)
(α)β , p ≥ 2,

where p = dim T .

Definition 1.13. The multi-time dependent spray (H, G) constructed in the preceding
Theorem is called the canonical multi-time spray attached to the multi-time
Lagrange space MLn

p .
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In the sequel, by local computations, the canonical multi-time spray (H,G) of
the multi-time Lagrange space MLn

p induces naturally a nonlinear connection Γ on
J1(T,M).

Theorem 1.14. The canonical nonlinear connection

Γ = (M (i)
(α)β , N

(i)
(α)j)

of the multi-time Lagrange space MLn
p is defined by the temporal components

M
(i)
(α)β = 2H

(i)
(α)β =




−H1

11y
i, p = 1

−Hγ
αβxi

γ , p ≥ 2,
(1.1.11)

and the spatial components

N
(i)
(α)j =

∂Gi

∂xj
γ

hαγ =





h11
∂Gi

∂yj
, p = 1

Γi
jkxk

α +
gik

2
∂gjk

∂tα
+

gik

4
hαγU

(γ)
(k)j , p ≥ 2,

(1.1.12)

where Gi = hαβG
(i)
(α)β.

Remark 1.15. In the particular case (T, h) = (IR, δ), the canonical nonlinear connec-
tion Γ = (0, N

(i)
(1)j) of the relativistic rheonomic Lagrange space RLn = (J1(IR, M), L)

generalizes naturally the canonical nonlinear connection of the classical rheonomic
Lagrange space Ln = (IR×TM,L) [10].

2 Generalized Cartan canonical connection CΓ of a
metrical multi-time Lagrange space

Now, let us consider that MLn
p = (J1(T, M), L) is a multi-time Lagrange space,

whose fundamental vertical metrical d-tensor is

G
(α)(β)
(i)(j) =

1
2

∂2L

∂xi
α∂xj

β

=

{
h11(t)gij(t, xk, yk), p = 1

hαβ(tγ)gij(tγ , xk), p ≥ 2.

Let Γ = (M (i)
(α)β , N

(i)
(α)j) be the canonical nonlinear connection of the multi-time La-

grange space MLn
p .

The main result of this Section is the Theorem of existence and uniqueness of
the generalized Cartan canonical connection CΓ, which allowed us to develop in the
paper [14] the multi-time Riemann-Lagrange geometry of physical fields, theory that
represents a natural generalization of the classical field theories (the Finslerian theory
[1], [2] and the ordinary Lagrangian theory [10]).

Theorem 2.1. (the generalized Cartan canonical connection)
On the multi-time Lagrange space MLn

p = (J1(T, M), L), endowed with the canonical
nonlinear connection Γ, there is a unique h-normal Γ-linear connection
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CΓ = (Hγ
αβ , Gk

jγ , Li
jk, C

i(γ)
j(k)),

having the metrical properties:

i) gij|k = 0, gij |(γ)
(k) = 0,

ii) Gk
jγ =

gki

2
δgij

δtγ
, Lk

ij = Lk
ji , C

i(γ)
j(k) = C

i(γ)
k(j) ,

where ”|α”, ”|i” and ”|(α)
(i) ” are the local covariant derivatives of the h-normal Γ-linear

connection CΓ.

Proof. Let CΓ = (Ḡγ
αβ , Gk

jγ , Li
jk, C

i(γ)
j(k)) be an h-normal Γ-linear connection, whose

local coefficients are defined by the relations Ḡγ
αβ = Hγ

αβ , Gk
jγ =

gki

2
δgij

δtγ
and

Li
jk =

gim

2

(
δgjm

δxk
+

δgkm

δxj
− δgjk

δxm

)
,

C
i(γ)
j(k) =

gim

2

(
∂gjm

∂xk
γ

+
∂gkm

∂xj
γ

− ∂gjk

∂xm
γ

)
.

(2.2.1)

Taking into account the local expressions of the local covariant derivatives induced by
the connection Γ, by a local calculation, we deduce that CΓ satisfies the conditions
i) and ii).

Conversely, let us consider an h-normal Γ-linear connection

C̃Γ = ( ˜̄G
γ

αβ , G̃k
jγ , L̃i

jk, C̃
i(γ)
j(k))

which satisfies the metrical conditions i) and ii). In this context, we have

˜̄G
γ

αβ = Hγ
αβ , G̃k

jγ =
gki

2
δgij

δtγ
.

Moreover, the condition gij|k = 0 is equivalent to

δgij

δxk
= gmjL̃

m
ik + gimL̃m

jk.

Applying now a Christoffel process to the indices {i, j, k}, we find

L̃i
jk =

gim

2

(
δgjm

δxk
+

δgkm

δxj
− δgjk

δxm

)
.

By analogy, using the relations C
i(γ)
j(k) = C

i(γ)
k(j) and gij |(γ)

(k) = 0 and using also a
Christoffel process applied to the indices {i, j, k}, we obtain

C̃
i(γ)
j(k) =

gim

2

(
∂gjm

∂xk
γ

+
∂gkm

∂xj
γ

− ∂gjk

∂xm
γ

)
.

In conclusion, the uniqueness of the generalized Cartan canonical connection CΓ
is clear.
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Remark 2.2. i) Replacing the canonical nonlinear connection Γ with an arbitrary
nonlinear connection, the preceding Theorem holds good.

ii) In the particular case (T, h) = (IR, δ), the generalized δ-normal Γ-linear Cartan
connection associated to the relativistic rheonomic Lagrange space

RLn = (J1(IR, M), L)

generalizes naturally the canonical Cartan connection of a classical rheonomic La-
grange space Ln = (IR×TM, L), constructed in [10].

iii) The generalized Cartan canonical connection of the multi-time Lagrange space
MLn

p verifies also the metrical properties

hαβ/γ = hαβ|k = hαβ |(γ)
(k) = 0, gij/γ = 0.

iv) In the case p = dim T ≥ 2, the coefficients of the generalized Cartan canonical
connection of the multi-time Lagrange space MLn

p reduce to

Ḡγ
αβ = Hγ

αβ , Gk
jγ =

gki

2
∂gij

∂tγ
, Li

jk = Γi
jk , C

i(γ)
j(k) = 0.

3 Local d-torsions and d-curvatures of CΓ

Applying the formulas that determine the local d-torsions and d-curvatures of an
h-normal Γ-linear connection ∇Γ (see [16]) to the generalized Cartan canonical con-
nection CΓ, we obtain the following results:

Theorem 3.1. The torsion d-tensor T of the generalized Cartan canonical connec-
tion CΓ of the multi-time Lagrange space MLn

p is determined by the local components

hT hM v
p = 1 p ≥ 2 p = 1 p ≥ 2 p = 1 p ≥ 2

hT hT 0 0 0 0 0 R
(m)
(µ)αβ

hMhT 0 0 Tm
1j Tm

αj R
(m)
(1)1j R

(m)
(µ)αj

hMhM 0 0 0 0 R
(m)
(1)ij R

(m)
(µ)ij

vhT 0 0 0 0 P
(m) (1)
(1)1(j) P

(m) (β)
(µ)α(j)

vhM 0 0 P
m(1)
i(j) 0 P

(m) (1)
(1)i(j) 0

vv 0 0 0 0 0 0

(3.3.1)

where,
i) for p = dim T = 1 we have

Tm
1j = −Gm

j1 , P
m(1)
i(j) = C

m(1)
i(j) , P

(m) (1)
(1)1(j) = −Gm

j1 ,

P
(m) (1)
(1)i(j) =

∂N
(m)
(1)i

∂yj
− Lm

ji , R
(m)
(1)ij =

δN
(m)
(1)i

δxj
−

δN
(m)
(1)j

δxi
,
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R
(m)
(1)1j = −

∂N
(m)
(1)j

∂t
+ H1

11


N

(m)
(1)j −

∂N
(m)
(1)j

∂yk
yk


;

ii) for p = dim T ≥ 2, denoting

Fm
i(µ) =

gmp

2

[
∂gpi

∂tµ
+

1
2
hµβU

(β)
(p)i

]
,

Hγ
µαβ =

∂Hγ
µα

∂tβ
− ∂Hγ

µβ

∂tα
+ Hη

µαHγ
ηβ −Hη

µβHγ
ηα ,

rm
pij =

∂Γm
pi

∂xj
− ∂Γm

pj

∂xi
+ Γk

piΓ
m
kj − Γk

pjΓ
m
ki ,

we have

Tm
αj = −Gm

jα, P
m (β)
(µ)α(j) = −δβ

γ Gm
jα, R

(m)
(µ)α(j) = −Hγ

µαβxm
γ ,

R
(m)
(µ)αj = −

∂N
(m)
(µ)j

∂tα
+

gmk

2
Hβ

µα

[
∂gjk

∂tβ
+

hβγ

2
U

(γ)
(k)j

]
,

R
(m)
(µ)ij = rm

ijkxk
µ +

[
Fm

i(µ)|j − Fm
j(µ)|i

]
;

Theorem 3.2. The curvature d-tensor R of the generalized Cartan canonical connec-
tion CΓ of the multi-time Lagrange space MLn

p is determined by the local components

hT hM v
p = 1 p ≥ 2 p = 1 p ≥ 2 p = 1 p ≥ 2

hT hT 0 Hα
ηβγ 0 Rl

iβγ 0 R
(l)(α)
(η)(i)βγ

hMhT 0 0 Rl
i1k Rl

iβk R
(l)(1)
(1)(i)1k = Rl

i1k R
(l)(α)
(η)(i)βk

hMhM 0 0 Rl
ijk Rl

ijk R
(l)(1)
(1)(i)jk = Rl

ijk R
(l)(α)
(η)(i)jk

vhT 0 0 P
(l) (1)
i1(k) 0 P

(l)(1) (1)
(1)(i)1(k) = P

(l) (1)
i1(k) 0

vhM 0 0 P
l (1)
ij(k) 0 P

(l)(1) (1)
(1)(i)j(k) = P

l (1)
ij(k) 0

vv 0 0 S
l(1)(1)
i(j)(k) 0 S

(l)(1)(1)(1)
(1)(i)(j)(k) = S

l(1)(1)
i(j)(k) 0

where R
(l)(α)
(η)(i)βγ = δα

η Rl
iβγ + δl

iH
α
ηβγ , R

(l)(α)
(η)(i)βk = δα

η Rl
iβk , R

(l)(α)
(η)(i)jk = δα

η Rl
ijk and

i) for p = dim T = 1 we have

Rl
i1k =

δGl
i1

δxk
− δLl

ik

δt
+ Gm

i1L
l
mk − Lm

ikGl
m1 + C

l(1)
i(m)R

(m)
(1)1k ,

Rl
ijk =

δLl
ij

δxk
− δLl

ik

δxj
+ Lm

ij Ll
mk − Lm

ikLl
mj + C

l(1)
i(m)R

(m)
(1)jk ,

P
l (1)
i1(k) =

∂Gl
i1

∂yk
− C

l(1)
i(k)/1 + C

l(1)
i(m)P

(m) (1)
(1)1(k) ,

P
l (1)
ij(k) =

∂Ll
ij

∂yk
− C

l(1)
i(k)|j + C

l(1)
i(m)P

(m) (1)
(1)j(k) ,
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S
l(1)(1)
i(j)(k) =

∂C
l(1)
i(j)

∂yk
−

∂C
l(1)
i(k)

∂yj
+ C

m(1)
i(j) C

l(1)
m(k) − C

m(1)
i(k) C

l(1)
m(j) ;

ii) for p = dim T ≥ 2 we have

Hα
ηβγ =

∂Hα
ηβ

∂tγ
− ∂Hα

ηγ

∂tβ
+ Hµ

ηβHα
µγ −Hµ

ηγHα
µβ ,

Rl
iβγ =

δGl
iβ

δtγ
− δGl

iγ

δtβ
+ Gm

iβGl
mγ −Gm

iγGl
mβ ,

Rl
iβk =

δGl
iβ

δxk
− δΓl

ik

δtβ
+ Gm

iβΓl
mk − Γm

ikGl
mβ ,

Rl
ijk = rl

ijk =
∂Γl

ij

∂xk
− ∂Γl

ik

∂xj
+ Γm

ij Γl
mk − Γm

ikΓl
mj .
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