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Abstract. We apply a result of Kim about the eigenvalue estimation
of the Dirac operator on a Riemannian compact spin manifold (M, g),
considering M = N×S1, where N is a Riemannian compact spin manifold
admitting a parallel vector field.

We show that the lower bounds given in a theorem of Hijazi and Zhang
for the eigenvalues of the so called (submanifold) twisted Dirac operator
DH in the case when H 6= 0 is true for H = 0 also.

As an example, we consider every spin Kähler manifold as a totally geo-
desic submanifold of its twistor space and we study its twisted Killing
spinors.
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1 Introduction

In general, the term ”Dirac operator” is used to refer to any first-order operator which
factorizes the ”Laplacian” for a given quadratic space of arbitrary signature.

In 1928, Dirac [10] introduced a first-order linear operator in order to express the
square root of the wave operator ut = ∂2

∂x2
0
− ( ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
).

Dirac constructed this first-order operator using the Dirac algebra which is a
particular realization of the Clifford algebra associated to the real quadratic form of
signature (1,3). We briefly review the construction of the Dirac algebra, using the
same method that Dirac did. Let

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
0 1
1 0

)

denote the Pauli matrices. The Pauli matrices are used to construct the Dirac
γ−matrices

γ0 =
(

0 σ0

σ0 0

)
, γj =

(
0 σj

−σj 0

)
, j = 1, 2, 3.

The γ−matrices satisfy γ2
0 = I, γ2

1 = γ2
2 = γ2

3 = −I, γjγk = −γkγj , j 6= k.
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As a differential operator on C4−valued (i.e. spinor-valued) function on an open
set U ⊆ R4, the Dirac operator D = γ0

∂
∂x0

+ γ1
∂

∂x1
+ γ2

∂
∂x2

+ γ3
∂

∂x3
has the desired

property D2 = ut.
Not long after Dirac’s original construction, Brauer and Weyl generalized it to any

arbitrary finite-dimensional quadratic space of arbitrary signature, using the universal
Clifford algebra associated with a real non-degenerate quadratic space [9].

The natural operations for vector spaces with quadratic forms carry over to vector
bundles with metrics. In particular, suppose that π : TM → M is the tangent vector
bundle of the Riemannian manifold (M, g). Then in each fibre Tx(M) = π−1(x), the
quadratic form gx can be used to construct the associated Clifford algebra Cl(gx).
The result is the a bundle Cl(M) → M of algebras over M called the Clifford bundle
of M. In the light of representation theory of Clifford algebra, it is natural to ask
whether one can also find a vector bundle S(M) → M with the property that each
fibre Sx is an irreducible module over Cl(gx). The answer is in general no. But, with
some obstructions, if M is an oriented Riemannian manifold and the second Stiefel
-Whitney class w2(M) is vanish, the vector bundle S(M) → M exist. Then, this will
lead to the notion of a spin structure and spin manifold M, using also the theory of
morphism fibre bundles.

Let (M, g) be a compact Riemannian spin manifold and S(M) a spinor fibre bundle
on M. We can define a canonical first-order differential operator D : Γ(S(M)) →
Γ(S(M)) called the Dirac operator on M, by setting Dσ =

∑n
i=1 ei.∇eiσ, at x ∈ M,

where {e1, ..., en} is an orthonormal basis of TxM, where ∇ denotes the covariant
derivative on S(M) determined by the connection and where ”.” denotes the Clifford
module multiplication. The operator D2 is called the Dirac laplacian.

In 1963, André Lichnerowicz was the first to consider estimating eigenvalues
of Dirac operator. He was also the first to provide a rough approximation of this
eigenvalues. By integration, from the Schrödinger-Lichnerowicz formula [21]

D2 = ∇∗∇+
s

4
(1.1)

it is clear that all eigenvalues λ of D must satisfy the inequality

λ2 ≥ s0

4
(1.2)

where s0 = min{s(x) | x ∈ M} is the minimum of the scalar curvature s. Of course,
this is interesting only if the scalar curvature is positive but then the estimate (1.2)
is never sharp.

In 1980, the first sharp estimation was given by Friedrich [12] who proved [11]
that

λ2 ≥ n

4(n− 1)
s0.(1.3)

Friedrich’s proof is based on a modification of the Levi-Civita connection and a for-
mula similar to (1.1). The boundary of this estimate is characterized by the existence
of a non-trivial real Killing spinor on M. The manifolds with non-trivial real Killing
spinors have constant positive scalar curvature. They are furthermore Einstein and
do not admit any parallel k− form for k 6= 0, n. This shows that the estimation (1.3)
cannot be sharp in some situations.
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In 1986, Hijazi [17] proved that in dimension n ≥ 3, λ2 ≥ n
4(n−1)µ1 where µ1 is

the first eigenvalue of the Yamabe operator Y = 4n−1
n−2∆ + s.

Ch. Bär showed [3], [4] that for a closed and connected Riemannian spin manifold
of dimension n = 2, we have λ2 ≥ 2πχ(M)

area(M) , where χ(M) is the Euler Poincaré number
of M.

B. Alexandrov, G. Grantcharov and S. Ivanov [2] showed that if M admits a
parallel 1− form, then

λ2 ≥ n− 1
n− 2

s0

4
.(1.4)

Moroianu and Ornea [24] proved that the same holds true under the weaker as-
sumption that the 1− form is harmonic and has constant length.

In [1] B. Alexandrov proved that if TM = ⊕k
i=1T

i, where T i are parallel distrib-
utions of dimension ni, with n1 < ... < nk, then

λ2 ≥ nk

nk − 1
s0

4
(1.5)

and this result is a generalization of one of Kim [19] for k = 2.
E. Witten [30] has introduced the hypersurface Dirac operator to prove the positive

mass theorem. The spinorial background that has developed to extend the classical
estimates to hypersurfaces has now become a powerful tool to investigate extrinsec
geometry and manifolds with boundary problems.

Using Hijazi-Zhang’s theorem, in [15], [14] lower bounds are given for the eigen-
values of the so called (submanifold) twisted Dirac operator DH and are discussed
their limiting cases if the mean curvature H 6= 0. We showed that this study is very
natural, because when the considered spin submanifold is minimal, and therefore
H = 0, Hijazi-Zhang’s theorem is true as well. Furthermore, the corresponding (real)
twisted Killing spinors play the same role as the Killing spinors for spin manifolds.
As an example, we have considered every spin Kähler manifold as a totally geodesic
submanifold of its twistor space and we study its twisted Killing spinors.

2 First application

Let (N, g) be a n− dimensional Riemannian manifold.
In [29] we have showed:

Theorem 2.1. Let ξ be a global field on N. Let Di : N × S1 → Tp(N × S1), i = 1, 2
be the maps D1 : p = (x, a) → T 1

p , D2 : p = (x, a) → T 2
p where

T 1
p = Sp{(−ξp, 1), (ξp, 1)}

T 2
p = {(X, 0) | X ∈ Tp(N), gp(ξp, X) = 0}

Tp(N) being the tangent space of N on the point p. Then, the maps D1, D2 gives rise
respectively to two smooth distributions T 1 and T 2 on NXS1 of dimension 2 and n−1
respectively.
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Proposition 2.1. The distributions given by D1, D2 are parallel if the vector field ξ
is parallel.

Let (N, g) be a Riemannian, compact n−dimensional spin manifold, n ≥ 2, with
fixed spin structure and ξ a parallel vector field on N. On the compact Riemannian
spin manifold (N × S1, G), where G = g + g0, g0 being the standard metric of S1,
there is the global parallel vector field (ξ, 1). This fact allows as to use the formula
(1.4), and we have the following estimation for an eigenvalue λ of the Dirac operator
on N × S1

λ2 ≥ n

n− 1
s0 + 1

4
,(2.1)

where s0 is the minimum of the scalar curvature s of N.
In the other hand, the tangent space T (N × S1) = T 1 ⊕ T 2, where T 1, T 2 are

parallel distributions of dimension 2, n − 1, respectively. Then the first eigenvalue λ
of the Dirac operator satisfies, according with (1.5), the inequality

λ2 ≥
{

n−1
n−2

s0+1
4 if n ≥ 3

s0+1
2 if n = 2.

(2.2)

This last estimation is better than (2.1).
The only compact, orientable and therefore spin surface having a global parallel

vector field is the two dimensional torus T and we may apply the formula (2.2) for it.

3 Second application

Let (M̃,G) be a Riemannian m + n− dimensional spin manifold and let M be an
immersed oriented m− dimensional submanifold in M̃ with the induced Riemannian
structure g = G|M . Assume that (M, g) is spin. Denote by NM the normal vector
bundle of M in M̃. There exists also a spin structure on NM [23].

Let ΣM, ΣN and ΣM̃ be the spinor bundles over M, NM and M̃ respectively.
The restricted spinor bundle S := ΣM̃|M may be considered and is possible to identify
it with Σ =: ΣM ⊗ ΣN [14] if mn is even. If m and n are both odd, one has to take
Σ as the direct sum of two copies of that bundle.

Denote by (e1, ..., em, υ1, ..., νn) a positively oriented local orthonormal basis of
TM̃|M such that (e1, ..., em) (resp. (υ1, ..., νn)) is a positively oriented local ortho-
normal basis of TM (respectively of NM). If ∇̃ denotes the Levi-Civita connection
of (M̃,G), then for all X ∈ Γ(TM), for all A ∈ Γ(TN) and i = 1, ...,m, the Gauss
formula may be written, as ∇̃i(X + A) = ∇i(X + A) + h(ei, X) − h∗(ei, A) where
∇i(X + A) = ∇M

ei
X +∇N

ei
A, h∗(ei,.) is the transpose of second fundamental form h

viewed as a linear map from TM to NM, and ∇̃i stands for ∇̃ei .

Denote also by ∇̃ and ∇ the induced spinorial covariant derivative on Γ(S). There-
fore, on Γ(S) we have:

∇̃ =





(∇ΣM ⊗ Id + Id⊗∇ΣN )⊕ (∇ΣM ⊗ Id + Id⊗∇ΣN ) if m, n odd

∇ΣM ⊗ Id + Id⊗∇ΣN otherwise
(3.1)
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The spinorial Gauss formula [7] is

∇̃iϕ = ∇iϕ +
1
2

2m∑

j=1

ej .hij .ϕ, (∀)ϕ ∈ Γ(S).

The following submanifold Dirac’s operators [14], may be introduced:

D̃ =
m∑

i=1

ei · ∇̃i, D =
m∑

i=1

ei.∇i, DH = (−1)nω⊥ ·D +
1
2
H.ω⊥,(3.2)

where we have denoted by H =:
∑m

i=1 h(ei, ei) the mean curvature vector field and
where:

ω⊥ =
{

ωn for n even,
iωn for n odd,

ωn denoting the complex volume form:

ωn = i[
n+1

2 ]ν1...νn.

In both cases ( ω⊥)2 = (−1)n.

We consider that (M, g) is a minimal submanifold of (M̃, G), therefore we have
H = 0 and for all ϕ ∈ Γ(S)

DHϕ = (−1)nω⊥Dϕ,(3.3)

Recall that there exists a hermitian inner product on Γ(S), denoted by < ., . >,

such that Clifford multiplication by a vector of TM̃|M is skew-symmetric. In the
following, we write (., .) = Re(< ., . >).

For any spinor field ϕ ∈ Γ(S) is defined the application RN
ϕ : Mϕ → R with

RN
ϕ := 2

m∑

i,j=1

(ei.ej .Id⊗RN
eiej

ϕ,
ϕ

| ϕ |2 )(3.4)

and Mϕ := {x ∈ M | ϕ(x) 6= 0}, where RN
eiej

stand for spinorial normal curvature
tensor [14].

Theorem 3.1. Let (M, g) be a compact m − dimensional immersed, minimal spin
submanifold in the spin manifold (M̃, G). Then, denoting the scalar curvature of
(M, g) by R, we have

λ2 ≥ inf
Mϕ

1
4
(R0 + RN

ϕ ),(3.5)

where R0 = infM R and λ is an eigenvalue of the twisted Dirac operator DH .
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Proof. Using (3.1), the Schrödinger-Lichnerowicz formula for the twisted Dirac
operator DH becomes

D2
Hϕ =

R

4
(Id⊗ Id)ϕ +

1
2

m∑

i,j=1

eiejId⊗RN
eiej

ϕ−
m∑

i=1

∇i∇iϕ(3.6)

and, therefore, we obtain

(D2
Hϕ,ϕ) =

R + RN
ϕ

4
| ϕ |2 + | ∇ϕ |2 .(3.7)

Suppose that ϕ ∈ Γ(S) is a non-zero eigenvalue spinor of the twisted Dirac operator,
so that DHϕ = λϕ. Therefore, (3.7) gives

(λ2 − R + RN
ϕ

4
) | ϕ |2=| ∇ϕ |2 .

Assuming by absurd that

λ2 − R + RN
ϕ

4
< 0

then it results ϕ = 0 in contradiction with the hypothesis. Hence the inequality is
verified.

The estimation (3.5) is not optimal. We have the following:

Theorem 3.2. Let (M, g) be a compact m − dimensional immersed minimal spin
submanifold in the spin manifold (M̃, G) and λ an eigenvalue of the twisted Dirac
operator DH . Then, if

R + RN
ϕ > 0

i) the following inequality holds

λ2 ≥ m

m− 1
inf
Mϕ

R + RN
ϕ

4
.(3.8)

ii) If λ = ±
√

1
2

m
m−1 infMϕ(R + RN

ϕ ) is an eigenvalue corresponding to the eigen-
spinor ϕ for the twisted Dirac operator DH , then the following equations are satisfied:

∇Xϕ +
1

2m

√
m

m− 1
(R + RN

ϕ )X.ω⊥.ϕ = 0(3.9)

∇Xϕ− 1
2m

√
m

m− 1
(R + RN

ϕ )X.ω⊥.ϕ = 0(3.10)

for all X ∈ Γ(TM).
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Proof. i) Let ϕ be an eigenspinor for the twisted Dirac operator DH , so that

DHϕ = λϕ.

We consider the modified connection

∇
λ
m
i = ∇i + (−1)[

n
2 ] λ

m
ei.ω⊥, (∀)i = 1, ..., m.(3.11)

We can easily compute

| ∇ λ
m ϕ |2=

m∑

i=1

(∇
λ
m
i ϕ,∇

λ
m
i ϕ) =| ∇ϕ |2 −λ2

m
| ϕ |2 .(3.12)

The equality (3.12) is a consequence of the fact that the Clifford multiplication with
ei, i = 1, ..., m, and γj , j = 1, ..., m is orthogonal and so

(
m∑

i=1

∇iϕ, eiω⊥ϕ) = (−1)[
n
2 ]+1(DHϕ,ϕ) = (−1)[

n
2 ]+1λ | ϕ |2 .

On the other hand, using Schrödinger- Lichnerowicz formula (3.6), (3.12) and (3.7)
we obtain

((DH − λ

m
)2ϕ,ϕ) = [

R + RN
ϕ

4
− m− 1

m2
λ2] | ϕ |2 + | ∇ λ

m ϕ |2

and by a direct calculus

((DH − λ

m
)2ϕ, ϕ) =

(m− 1)2

m2
λ2 | ϕ |2 .

Comparing the last two relations, we obtain

[
R + RN

ϕ

4
− m− 1

m
λ2] | ϕ |2 + | ∇ λ

m ϕ |2= 0.(3.13)

Because ϕ 6= 0, this equality (3.13) implies (3.8).
ii) If λ = ± 1

2

√
m

m−1 infMϕ(R + RN
ϕ ), the equality (3.13) implies that R + RN

ϕ is

constant, Mϕ = M and | ∇ λ
m ϕ |2= 0. So, ∇ λ

m ϕ = 0, and the definition (3.11) implies
respectively the equations (3.9), (3.10).

Remark 3.1. Compare theorem 4 with Hijazi-Zhang’s theorem [15], [14], which is
proved when H 6= 0, note that this is also true for H = 0, as shown in formula (3.8).

Let (M, g) be an oriented Riemannian manifold of dimension m = 2p and Z(M)
its corresponding twistor space. It is well know that the twistor space Z(M) may be
endowed with a natural metric G such that π : Z(M) → M results to be a Riemannian
submersion and the vertical and horizontal parts are orthogonal.

Assume that (M, g) is a Kähler manifold. This hypotheses implies that U(n) is
the structure group of its principal fibre bundle of orthogonal frames and, moreover,
the connection form of the Levi-Civita connection of the metric g is u(n)−valued. We
have showed [28]
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Theorem 3.3. Let (M, g) be a 2p− dimensional Kähler manifold and Z(M) its cor-
responding space of twistors. Then, there exists (M̂,G) an immersed oriented sub-
manifold in the twistor manifold (Z(M), G), such that π : M̂ → M is an isometric
transformation.

Remark 3.2. Via the projection π we may identify the manifolds (M̂, G) and (M, g).

We may consider the normal vector fibre bundle NM of M in Z(M), with respect
to the metric G . Assume that (M, g) is spin. It is proved [25], [26] that if M admits a
spin structure, then its twistor space Z(M) also admits a spin structure. There exists
also a spin structure on NM [23].

Let ΣM, ΣN and ΣZ(M) be the spinor bundles over M, NM and Z(M) respec-
tively. The restricted spinor bundle S := ΣZ(M)|M may be considered and is possible
to be identified with Σ =: ΣM ⊗ ΣN [14].

We have showed [28] that if M is a Kähler manifold, then M̂ is a totally geodesic
submanifold of Z(M).

Therefore, the theorems 3 and 4 holds with m = 2p and n = p(p − 1), because
H = 0.

Recall [14] that a non-zero section ϕ ∈ Γ(S) satisfying

∇Xϕ = − µ

m
X.ω⊥.ϕ, (∀)X ∈ Γ(TM),(3.14)

for a given real constant µ is called a twisted (real) Killing spinor.
If ϕ ∈ Γ(S) is a twisted Killing spinor, so that we have (3.14), then it is easy to

check that DHϕ = µϕ and so, ϕ is an eigenspinor of the twisted Dirac operator DH ,
corresponding to the eigenvalue µ. We have:

Theorem 3.4. Let (M, g) be a Kähler spin manifold of dimension m = 2p, with
a twisted Killing spinor ϕ so that we have (3.14). Then the manifold (M, g) is an
Einstein space. Moreover the scalar curvature function R is positive and

µ2 =
1
4

m

m− 1
R.(3.15)

Remark 3.3. An analysis similar to the one above can be carried out for a Rie-
mannian spin manifold considered as a submanifold of its manifold of euclidean inner
products [27], but this submanifold is not minimal.
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