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Abstract. This paper reformulates a problem of Sharafutdinov [4] and
extend the new variant from the single-time context to the multi-time
context.

Section 1 is dedicated to the single-time case. It starts with well-known
facts of describing geodesics as extremals. Then it is formulated and stud-
ied the problem of determination of a metric by the boundary energy. The
linearization of this problem leads to the ray transform of a tensor field
and to moment problem.

Section 2 extend the single-time case to the multi-time case. It begins with
well-known facts about harmonic maps and continues with determining a
pair of metrics from boundary energy. Using the linearization, we extend
the idea to multi-ray transform of a distinguished tensor field (moment
problem).
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1 Single-time Case

1.1 Geodesics

Let (M, g) be a Riemannian manifold, dim M = n. Consider (z',...,2™) the local
coordinates and I'}; the Christoffel symbols of the second type.

Definition 1.1 Let 2:[0,1] — M, z(t) = (2'(t),...,2"(t)) be a curve on M joining
the points x(0) = p and (1) = q¢ of M. The integral

By =3 [ laIFat =5 [ au@iion o

is called the energy of the curve x.
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Proposition 1.1 A minimum point of the energy functional E4, with the boundary
conditions £(0) = p and x(1) = q, necessarily verifies the boundary value problem:

oL d [ OL .
l’(O) =D, x(l) =4q,

where L(z*, &) = §gij:'czij is the Lagrangian (kinetic energy) determining the func-

tional.
Ezxplicitly,

i+ T alik =0, i=Tn,
z(0)=p, z(1)=gq

Proof. Let us refer to the second part of the Proposition. We have

oL 1 0 10¢k ...
= _ pdak) = 2R L5k
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ot 204t (g0373") = gija?
pT (m) = gt 0%) = g + g

Hence, the Euler-Lagrange equations become

1agjk:.j.k agij.k.j .
Sk gk 990 ki gl = 0
B 8x1x$ aka‘ x gZ]fL'

1 5gi'.k.» ag‘k.'.k
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1 . (0gi;  Ogix  Ogin)\ ..
;'z':”+g”’(g] Iik _ gjk)xjxkO@

(1.2)

2 ozk + ozJ ozt

BT =0, p=Tn.

Remark 1.1 a) We suppose that the problem (1.1) stated in the previous proposition
has a unique solution.
b) The equations

P+ Idlit =0, i=Tn
of the extremals of the energy functional E, coincide with the equations of the geodesics
of (M, g).

1.2 Determination of a Metric by Boundary Energy

Definition 1.2 Let (M, g) be a compact Riemannian manifold and OM be the
boundary of M. The Riemannian metric g is called simple if any two points p,q € OM
can be joined by a unique geodesic

Tpe:[0,1] = M, M= MUOIM,

z(0)=p, x(1)=q,  x(0,1)C M.
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Definition 1.3 Let (M, g) be a simple Riemannian manifold. The function
E :OM x OM — R, E4(p,q) = E(zpq),

where pq s the geodesic joining the points p, q, (xpg \ {p,q}) C M \ OM, is called
the boundary energy produced by the metric g.

The problem of existence of a simple metric g with the property that a given
function E:0M x OM — R represents the boundary energy attached to g cannot
have a unique solution. To justify this statement, let ¢: M — M be a diffeomorphism
of M such that ¢|gpar = id and g* = ¢*¢". The diffeomorphism ¢ transforms the
simple metric ¢° into the simple metric g'. The relation

gl(‘r)(ga 77) = go((dw@)gv (dz¢)n)¢(z)7

where dyp: Ty M — T,,)M is the differential of ¢, implies that ¢° and ¢' have
different families of geodesics, but the energy is the same.

Is the nonuniqueness of the proposed problem settled by the above-mentioned
cons-truction?

Problem 1. Let ¢° and g' be simple metrics on the manifold M, with the
boundary dM, such that Ej, = Egi. Is there a diffeomorphism ¢: M — M, such that
¢loar = id and g' = ¢*¢"? (the problem of determination of a metric by its boundary

energy).

1.3 Linearization of The Problem of Determination of a Metric
by its Boundary Energy

Let us linearize the above-mentioned problem.

Let (¢7) be a family of simple metrics on M, depending smoothly on the parameter
7€ (—¢,¢),e > 0. Let 27:[0,1] — M be a geodesic joining the points p = 27 (0) and
q = z7(1). Consider 27 (t) = (x'(¢,7),...,2"(t,7)) as the representation of z7 in a
local coordinate system. Suppose that g” = (g7;) and 24 (t,7), i,j = 1,n, are C
functions.

We start with the boundary energy

1t g »
Eprlp.a) = [ 000" (@0)(07) (¢, )
0
Differentiating with respect to 7 and then considering 7 = 0, we have

0

or 7=0

1 . .
Eyr(p.q) = / £ (20 (6)) (£, 0)a (£, 0)

1 [9q0. ) ; ok

+24%(2°(¢))2* (¢, 0) aij(t 0)| dt
1] ) a7 ) )
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where 1o
(1.3) fi=55- . gij-
Using an integration by parts, having in mind that o (0 0) = f_l (1,0) = 0 and
20 is extremal of energy functional, we obtain
[ e eniwon= [ dawweod (%) o
1 .
Ly = dEOEe0 50| - [ 5 e oo) 5 6o

1 [9g0 | | b
:_/ [ail,i (:Uo(t»j:k(t,())j;l(t,O)+g?j($0(t))jz(t’0)] %—T(t,O)dt.
0

The equations (1.2) can be written in the form

995, g5
(1.5) 81:’1 il =2 ( &Z’“ i'dd + gt | .

By replacing the relations (1.4) and (1.5) in the equality (1.3), we find

% Byl / iy (20 (£)) (£, 0)3 (1, 0) .
If we denote
/ Fig (@0 (0) (1,00 (1, 0)dt,
the previous relation becomes
(16 T By(pa) = Iy(ay),
7|0

Zpq being a geodesic of the metric q°.

In the particular case when the energy E,, does not depend on 7, the left side of
the equality (1.6) is null.

From ¢|,,, = id we obtain v|,,, = 0, so we have the following linearization of
the problem 1: to what extent the family of integrals

If(qu):/ fij(z(t)d" ()37 (t)dt,

counted after p,q € OM, determine the tensor f = (f;;) over a Riemannian manifold
(M, g°)?

The existence of the solutions of the stated problem for the family (¢7) implies
the existence of an one-parameter group of diffeomorphisms ¢: M — M, such that
©7| o = id and g7 = (p7)*¢°, that is

da'* o't
(1.7) 9 (gkec“P s O (z aT)w(%T%
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where ©7(x) = (o' (2,7),...,¢"(2,7)) and 2’ = ¢ ().
If we differentiate with respect to 7 and we make 7 = 0, we obtain

Theorem 1.1 The relation (1.7) implies
1
(1.8) fiz = 5 (Wisg + vjsi),

v = (v%) being the covariant vector field that generates the one-parameter group (")
and v;.; is the covariant derivative of the covariant vector field (v; = g?jvj) in the
metric g°.

Proof. The covariant derivative of v in the metric ¢° is

ov;

k
Vi = 8 J - I Uk

where

_ 0.
v = g;;v?,

0 0 0
I‘fj = lgkp <8ng n 99ip B agij) ’

2 oz’ OxJ oxP

9
97|,

P (z) = oz, 1), i,4,k=1n.

Differentiating the relation (1.7) with respect to 7 and then considering 7 = 0, we
find

9
or |,

2fi; = 81(0)81(350)

T agké ( 9
9ij -
-0 T 890

ox'* oz’
or|._ )
o [ox'" ax"
+(gke o) 5= (axi ) (@,0) 5 (@,0)

o 0" o [0
T Ik G0t B

x/l> agk€ m&ké@ (9 5€

or |, dxm e o
vt 09 o OvP ovP
k ij P 0
TR om7 o’ T iy oz 9w

On the other hand

Ov; m _ ag?mvm+ 0 o™ + agjm o™

Uj _
oz ozt I T pg Jim ei T oz

0 0 0 0
L0 o 995, n 99y, _ 99; \ o o5 — 99 n 9Gjm o
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Vij Vi =
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N ( 0o O™ (%7"1) B (89%, N 99y, B 39?;‘) P

Gim oxJ t9jm oz’ ozt oxI oxP
0
_ 8gij WP 4 o ovP

o OvP
OxP Yiv ozt

9

+

Hence, we obtained the equality
1
fiz = 5 (vi +vgia).

1.4 Ray Transform of a Tensor field

Let us generalize this problem from covariant tensors of second order to covariant
tensors of superior order.

Let (M,g) be a simple Riemannian manifold and 7y = (TM,p, M), T}, =
(T'"M,p', M) the tangent and the cotangent bundle of M, respectively. Let S™7},
be the set of the symmetric tensor fields on 73, and C°°(S™7;,) the space of the sec-
tions of this bundle. Consider V the covariant derivative and o the symmetrization.

Problem 2. Let (M, g) be a simple Riemannian manifold. Do integrals
(1.9 [pp) = [ i @l (0) -3 ()
Tpq

p.q € OM, determine a symmetric tensor field f € C*(S™71),) (xp is the geodesic
joining the endpoints p, ¢ and dt is the geodesic arc length)? Particulary, the equality
I¢(xpe) = 0 allows us to state the existence of a field v € C°°(S™~!7},), such that
Vg = 0 and o(Vov) = f7

The function Iy, determined by the equality (1.9) on the set of the geodesics
joining the points situated on the boundary of M, is called single-ray transform of
the tensor field f.

Remark 1.2 According[4],there are some known results on problem 1.

R. Michel obtained a posi-tive answer to problem 1 in the two-dimensional case
when ¢° has constant Gauss curvature.

R. G. Mukhometov, J. W. Bernstein and M. L. Gerver found a solution to the
linear problem 2 for simple metrics, in the case m = 0. When m = 1, Yu. E. Anikonov
and V. G. Romanov solved problem 2. R. G. Mukhometov generalised these results
to metrics whose geodesics form a typical caustics.

2 Multi-time Case

2.1 Harmonic maps

Let (M,g) be a compact Riemannian manifold of dimension n > 1, with the
boundary M. Let (x!,...,2") be the local coordinates, I'ij %, respectively F;k the
Christoffel symbols of the first type, respectively the second type.
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Definition 2.1 The pair of metrics (h, g) is called simple if for any o € OM there is
a unique minimal submanifold N represented by x: T UJT — M UOM, x or o, T
parallelipiped, (T \ 0T) C M, such that x depends smoothly on o.

Let (N,h) be a minimal Riemannian submanifold of M, dim N = p, 2 < p < n,

fixed by a closed border ¢ of dimension p — 1, included in OM. Suppose that OM is
foliated by submanifolds of type o. Let (t!,...,t?) be the local coordinates in N.

Definition 2.2 Let 2:T — M, x(t) = (x'(t),...,2"()), t = (t},...,t?), 2| =0,
x € C=(T,M).
The integral

1

E(h,q)( ) = 2

/T B (g (1)), (2 () (2(8) o,

o 0 o 0 R
afy —1 _ L= — ;
where (R*P) = (hag) ™", hap = h <6t(¥’ 6155)’ gij =g (83;’" 8xj> and x*, = pretle
called the energy of the application x.

Proposition 2.1 A minimum of the energy functional E(, 4, with the boundary con-

dition x o o, necessarily verifies the boundary value problem
T

0oy,
ort  ote \oxi ) 7

| =0
orT

where L(z",x!) = 5\/Ehaﬂgijxflx/]3 is the Lagrangian of the functional, h = det(hqg).

Ezplicitly, T(x) =0, x‘aT = o, where

oot ort

2.
is the tension field of the application x.

Proof. We have

gfl - f\fhﬁ 882(.9ka6$) \fhmag]k fémk
T

= ,\/ﬁhﬁw zjk—szk])xB:C \fhﬁ ”kxﬁx + = \fhﬁ'yfzk]xﬁx

= 7\fhﬁ ”kxﬂx + = thVF,kaﬁx =Vhh? 7I‘kaﬁ,x

oL
Bt = f\fhﬁ o ( kaﬁx) Vhh* gzjx]ﬁ;

0 (0L 0 ; 1 0Oh 0Oh hes
— = — afg. ) — Vi By
ot <8x§x> ot (\/Eh g”xﬂ) 21 Ohy, Ot h*Pgijay ) + \f ot gwmﬁ
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0Gi; 029
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. 027
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0?27
9ij 5ra B
ot*ot

@ > av j a j
= \/E |:h Bgz'j P —h nggijx% +h p (Fik,j + ij,i) IJB.TZ:| .

+\/Ehaﬂ (Fik,j + ij,i) x/JBJJi + \/Ehaﬁ

+\/Ehaﬂ (Fikj + L, i) xéxk + Vhh?

+\/Ehaﬁ (Fik,j + ij,i) l“};l‘i + Vhh?

Finally, we obtain

oo (oL
oz ot \ox® )

af 32:103 kg
h Flj kl’ xﬁ g'L_] 8taat6 +Faﬁgzj - (Fikd +F]k’1) l’axﬂ :0<:>
0%zt
aB . _
o <8t0‘8t5 Fosty + D xﬁ) >

We suppose that the problem stated in the previous proposition has a unique solution.

Remark 2.1 a) The mapping x € C°(T, M) for which 7(x) = 0 is called harmonic
mapping.

b) If the mapping x € C(T, M) is a Riemannian immersion, x is harmonic if
and only if x is minimal.

2.2 Determining a Pair of Metrics by Boundary Energy

Let us consider (h,g) a simple pair of metrics.

Definition 2.3 Let 0 € OM and Ey, 4 (o) the energy of the submanifold N that
corres-ponds to the border o. The function E, 5:0M — R generated by the corre-
spondence o — E, gy(0) is called the boundary energy.
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Given an energy function F, is there a pair of simple metrics (h, g) that realize
that energy? How can these metrics be found?

Let us show that the existence problem of the metrics with the property that
E:OM — R represents the boundary energy cannot have a unique solution.

Let ®:T x M — T x M, ®(t',... ,tP;2t, ..., 2") = (¥(t),o(x)) be a diffeomor-
phism with the properties ©|gr = id, ¢|op = id. The diffeomorphism transforms the
simple metrics h?, ¢° into the simple metrics h' = ¢*h? and g' = ©*¢°, because we
have

Y (#)(pv) = WO (), (deth)v) ey
where dy): Ty T — Ty )T is the differential of 4, and

gl(‘r)(ga 77) = go((dw@)gv (dx(»O)n)tp(x)v

dpp: Te M — TypyM is the differential of .
(h0, ¢°) and (h', g') give different families of minimal submanifolds with the same
boundary energy F.

Problem 1’. Let (h° ¢") and (h',g') be pairs of simple metrics, h°, h* on T,
respectively ¢°, g' on M. The equality E(,0 g0y = E(p1 41y implies the existence of a
diffeomorphism ®: T x M — T x M, ® = (1, ¢), Y|or = id, ¢|lop = id, h' = *h°
and g' = ¢*g! (the problem of finding a pair metrics by the boundary energy)?

2.3 Linearization of the Problem of Determining Metrics
by the Boundary Energy

Let us linearize the problem 1’. Let (¢7) be a family of simple metrics on M which
depends smoothly on 7 € (—¢,¢), € > 0. Let 0 € OM and a = E(0), E:OM — R the
given frontier energy. Consider 27:T — M a minimal submanifold of the metric g”,

for which IT‘a =0, 2" =2(t*), a =1,p, i = 1,n. Let T = [0, a]” with the induced
T

Riemannian metric (hfm)7 t= (..., 7).
Let 27(t) = (2'(t,7),...,2"(t,7)) be the representation of ™ in a coordinate
system and g” = (g7;). The energy of the deformation 27 is

1 , .
Enr g7)(0) = 5/Thfﬂ(t)gfj(f(t))wé(t,T)wé(w)dvh-

Differentiating with respect to 7, we obtain

2 B (o) = /; [167(1)£:5 (20 () + B (£)5 (2°(1)) ] b (1, 0)a (8, 0)

dg0 4 : ak
+3 ) [hg%s) Gt )2 (1010 (1.0

. ox’
+2057 (£)g8) (" (1), (1,0) 5 2 (¢ o>] v,
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10 10
h = —— Toand k% = — — aB,
where f;; 297 _, g;; an 207 _ "
E) i
Integrating by parts and using the fact that < = 0, we have
T loT

/T h8ﬂ<t>g%<x°_<t>>xz<m>8]ﬁ(t 0)duy, — / B g0 i O ( )fdtl A d

0 9% 8755
aha 89 0%z’
_ i hoéﬁ ZJ o haﬁ 0 A
/T g SoaVh+ VA5l g Vi

+ha5_0f 1 0Oh 8h75} aa: 1

Jisoy J Ohys 08 | o R

6haﬁ ; 891‘ ; 92
- _/I' otP gijx”‘ + hgﬁ 8x’z xgxa + hgﬁg% ot oth
ah 5 8.’);‘j
haﬁh’y(; 0 Y )
+ 9ij%a oth | or U

The second integral of (2.1) becomes

dq° ong? dg? 9%
af Gie i ¢ _ af ZJ _ afB 0
/T{ho Bi “os 2 gyt — 2h0" 5 2ho"91j gragep
oxd
_pap 'yé 0 gL
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/T{h l@xﬂ ozt ] ToTh - ots 95 ho”9ij ot oth

) 0
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_ oReAT ¢ _ 9% Ohi” 2187 g0 o
= )| %0l atﬁ 90 o 9ii pre s
ox?
haﬁh'yzi 0 = d
1] a at@ 67- Uh
af 2t
_ _opBp il aho 0 aﬁ 0 0w
— A{ 2hg Fzgvjxazﬁ 2 ot8 gi] Zhg Yij ot*0zb
. Oz’
hoﬁggjx hg’ [Tsp.s JFFMM]} Tdvh
oh 045 8 a?'
B 1aB 0 aﬁ 0
= /T{ 2h0 g]szZx xﬁ atﬁ 2h U 3150‘3155

o o0z’
—h gt (D25 +Th5) b v
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o Oz’
—2hoﬁglojxa1"7yﬁ} a—Tdvh.

Since x( is an extremal of the energy, we have

2
heBg0 (—rraiat - LT ) _ 900 hosry o
o Yip il ﬁ It oth 9ip aB™y

and the previous integral becomes

ongP Ol
aBry p _ _ RPN
/T[ Zgjph [0 578 — 2—% 5 g 2hg gmmal"w] 57 dvp,
B
L aB u 8h“ ox
= 2/Tgm /L(h F 8/3 )aTdUh
af ” pv 5 VBT By da’
= —2 gl] w (h F — h F h Fﬁy + hO F'YB) ﬁdvh = O

Denoting Fi‘;ﬂ = hy h fij + kP g?j, we have the equality

0

or

B (o) = [ P24 000001,

7=0

Using the functional Ip(xo) = / Fgﬁ(x(t))xg(t)xé(t)dvh, the previous relation
T

becomes

0
(22) E o E(hr,g")(o—) = IF(IO)7
where z° is a minimal submanifold of the metric ¢°.

The existence of solutions of this problem for the family (¢7) implies the existence
of an one-parameter group of diffeomorphisms ®7(¢,2) = (¢ (t), " (z)), such that
g" = (¢7)*g% and h™ = (¢7)*h. Explicitly

8 e a v
(23) R = (B 007) S (6 1) S5 (47,
where 47 (1) = (41 (t,7), .., 0P(t, 7)), 1 = 07(1),
9z’ dx'’
(2.4) 95 = (g0 ") G (@7 5 (7).

where ¢ (z) = (¢ (z,7),...,0" (2, 7)), ' = ©" ().
Instead of (2.3), we need

ot ot?
7 (6T) 2 (¢

ot ot

Theorem 2.1 The relations (2.4) and (2.5) imply

(2.5) h2F = (hl" op™T)

t, 7).

1
(2.6) fij = 5(%‘;;‘ + jsi),
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0 .
where v*(x) = a—(x’k)(sc,T), v; = giv? and v is the covariant deriative of (v;)
T
and
1 . .
(2.7) kY = 5(“0"5 + u%),
0 , _ . o
where g W) (t, 1) = u®, u™? = u.ol‘ihgﬂ and ug, is the covariant derivative of
Tlr=0 ' '

(u).

Proof. The relation (2.6) is similar to relation (1.8). Differentiating the relation
(2.5) with respect to 7, we have

et = T (2] o) B0 fee0+ 0o w02 (55 ) (0 3.0
oo S0 2 (5) (00 = =S i
+ht” afm ( 0 ) >5ﬁ+h“”5ﬁ ai)/”( >
- e G i

On the other hand

uoﬂﬁ + uﬁia = u® h#ﬁ + uﬁ ha:u — hl‘ﬁ du” + T Y 4 REH au + Fﬁ
Y Y 0 o'+ 14 o'+ pv¥

V@ 8'1/45 o 1
= B S+ " S + (WP + hGUT, ) u
af
_ huﬁau ap OUP Oy "
0 o't 0 o'+ Ot

“w

The equality (2.7) was proved.
We have the following linearization of the problem 1’: do integrals (2.2) determine
the tensor (Ff;ﬂ)?

2.4 Multi-ray Transform of a Distinguished Tensor Field

Problem 2'. Generalizing the problem to tensor fields of any rank, the following
question appears: to what extent the integrals

(2.8) Ip(z) = /T Fovom (p(t))ais (1) - 2 (t)do,

determine a symmetric tensor field F'?

The function I, determined by the equality (2.8) on the set of submanifolds
o € OM, is called multi-ray transform of the tensor F.
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