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Abstract. In this paper, we introduce a new class, called slant
lightlike submanifolds, of an indefinite Hermitian manifold. We provide
a non-trivial example and obtain necessary and sufficient conditions for
the existence of a slant lightlike submanifold. As well, we give an example
of minimal slant lightlike submanifolds of R8

2 and prove some characteri-
zation theorems.
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1. Introduction

A 2k-dimensional semi-Riemannian manifold (M̄, ḡ, J̄) of constant index q,
0 < q < 2k, is called an indefinite almost Hermitian manifold if there exists a tensor
filed J̄ of type (1,1) on M̄ such that J̄2 = −I and

(0.1) ḡ(X,Y ) = ḡ(J̄X, J̄Y ), ∀X, Y ∈ Γ(TM̄),

where I denotes the identity transformation of TpM̄ . Moreover, M̄ is called an indef-
inite Kaehler manifold if J̄ is parallel with respect to ∇̄, i.e, ([1])

(0.2) (∇̄X J̄)Y = 0, ∀X, Y ∈ Γ(TM̄),

where ∇̄ is the Levi-Civita connection on M̄ with respect to ḡ. As a generalization
of complex and totally real submanifolds of almost Hermitian manifolds, Chen [3]
defined a slant submanifold (M, g) of an almost Hermitian manifold (M̄, ḡ, J̄) as a
real submanifold such that the angle between J̄X and TxM is constant for every
vector X ∈ TxM and x ∈ M . In 1996, Duggal-Bejancu presented the theory of
lightlike submanifolds in [5]. However, the concept of slant lightlike submanifolds has
not been studied as yet.

The objective of this paper is to introduce the notion of slant lightlike submanifolds
of an indefinite Hermitian manifolds. We study the existence problem and establish
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an interplay between slant lightlike submanifolds and Cauchy Riemann (CR)-lightlike
submanifolds [5, chapter 6].

Section 2 includes basic information on the lightlike geometry as needed in this
paper. In section 3, we introduce the concept of slant lightlike submanifolds and
give a non-trivial example. We prove a characterization theorem for the existence of
slant lightlike submanifolds and show that co-isotropic CR-lightlike submanifolds are
slant lightlike submanifolds. Finally, in section 4, we consider minimal slant lightlike
submanifolds, give an example and present two characterization theorems.

2. Preliminaries

We follow [5] for the notation and formulas used in this paper. A submanifold
(Mm, g) immersed in a semi-Riemannian manifold (M̄m+n, ḡ) is called a lightlike
submanifold if the metric g induced from ḡ is degenerate and the radical distribu-
tion Rad(TM) is of rank r, where 1 ≤ r ≤ m. Let S(TM) be a screen distribution
which is a semi-Riemannian complementary distribution of Rad(TM) in TM , i.e.,
TM = Rad (TM) ⊥ S(TM).

Consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian
complementary vector bundle of Rad(TM) in TM⊥. Since, for any local basis {ξi} of
Rad(TM), there exists a local null frame {Ni} of sections with values in the orthog-
onal complement of S(TM⊥) in [S(TM)]⊥ such that ḡ(ξi, Nj) = δij , it follows that
there exists a lightlike transversal vector bundle ltr(TM) locally spanned by {Ni} [5,
page 144]. Let tr(TM) be complementary (but not orthogonal) vector bundle to TM
in TM̄ |M . Then,

tr(TM) = ltr(TM) ⊥ S(TM⊥),
T M̄ |M = S(TM) ⊥ [Rad(TM)⊕ ltr(TM)] ⊥ S(TM⊥).

Although S(TM) is not unique, it is canonically isomorphic to the factor vector
bundle TM/Rad TM [8]. Following result is important to this paper.

Proposition 2.1 [5]. The lightlike second fundamental forms of a lightlike sub-
manifold M do not depend on S(TM), S(TM⊥) and ltr(TM).

Throughout this paper, we will discuss the dependence (or otherwise) of the results
on induced object(s) and refer [5] for their transformation equations.

Following are four subcases of a lightlike submanifold (M, g, S(TM), S(TM⊥).
Case 1: r - lightlike if r < min{m, n};
Case 2: Co - isotropic if r = n < m; S(TM⊥) = {0};
Case 3: Isotropic if r = m < n; S(TM) = {0};
Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TM⊥).

The Gauss and Weingarten formulas are:

∇̄XY = ∇XY + h(X, Y ), ∀X,Y ∈ Γ(TM),(2.1)
∇̄XV = −AV X +∇t

XV, ∀X ∈ Γ(TM), V ∈ Γ(tr(TM)),(2.2)
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where {∇XY,AV X} and {h(X, Y ),∇t
XV } belong to Γ(TM) and Γ(ltr(TM)), re-

spectively. ∇ and ∇t are linear connections on M and on the vector bundle ltr(TM),
respectively. The second fundamental form h is a symmetric F(M)-bilinear form on
Γ(TM) with values in Γ(tr(TM)) and the shape operator AV is a linear endomor-
phism of Γ(TM). Then we have

∇̄XY = ∇XY + hl(X, Y ) + hs(X, Y ),(2.3)
∇̄XN = −ANX +∇l

X(N) + Ds(X, N),(2.4)
∇̄XW = −AW X +∇s

X(W ) + Dl(X, W ), ∀X, Y ∈ Γ(TM),(2.5)

N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Denote the projection of TM on S(TM) by
P̄ . Then, by using (2.1), (2.3)-(2.5) and taking account that ∇̄ is a metric connection
we obtain

ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X, W )) = g(AW X,Y ),(2.6)
ḡ(Ds(X, N),W ) = ḡ(N, AW X).(2.7)

We set

∇X P̄ Y = ∇∗X P̄ Y + h∗(X, P̄Y ),(2.8)
∇Xξ = −A∗ξX +∇∗t

Xξ,(2.9)

for X,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM). By using above equations we obtain

ḡ(hl(X, P̄Y ), ξ) = g(A∗ξX, P̄Y ),(2.10)

ḡ(h∗(X, P̄Y ), N) = g(ANX, P̄Y ),(2.11)
ḡ(hl(X, ξ), ξ) = 0 , A∗ξξ = 0.(2.12)

In general, the induced connection ∇ on M is not metric connection. Since ∇̄ is a
metric connection, by using (2.3) we get

(2.13) (∇Xg)(Y, Z) = ḡ(hl(X, Y ), Z) + ḡ(hl(X, Z), Y ).

However, it is important to note that ∇? is a metric connection on S(TM). From now
on, we briefly denote (M, g, S(TM), S(TM⊥)) by M in this paper.

Definition 2.1 [5] Let M̄ be an indefinite Hermitian manifold and M be a real
lightlike submanifold of M̄. Then M is called CR-lightlike submanifold if the following
conditions are fulfilled:

(A) J̄RadTM is a distribution on M such that

RadTM ∩ J̄RadTM = {0}.

(B) There exist vector bundles S(TM), S(TM⊥), ltr(TM), D0 and D′ over M such
that

S(TM) = {J̄RadTM ⊕D′} ⊥ Do; J̄(Do) = Do, J̄(D′) = L1 ⊥ L2

where Do is non-degenerate distribution on M , L1 and L2 are vector subbundles
of ltr(TM) and S(TM⊥).
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3. Slant lightlike submanifolds

We start with the following lemmas which will be useful for later.

Lemma 3.1. Let M be an r− lightlike submanifold of an indefinite Hermitian
manifold M̄ of index 2q. Suppose that J̄RadTM is a distribution on M such that
RadTM ∩ J̄RadTM = {0}. Then J̄ ltr(TM) is subbundle of the screen distribution
S(TM) and J̄RadTM ∩ J̄ ltr(TM) = {0}

Proof. Since by hypothesis J̄RadTM is a distribution on M such that J̄RadTM∩
RadTM = {0}, we have J̄RadTM ⊂ S(TM). Now we claim that ltr(TM) is not
invariant with respect to J̄ . Let us suppose that ltr(TM) is invariant with respect to J̄ .
Choose ξ ∈ Γ(RadTM) and N ∈ Γ(ltr(TM)) such that ḡ(N, ξ) = 1. Then from (0.1)
we have 1 = ḡ(ξ,N) = ḡ(J̄ξ, J̄N) = 0 due to J̄ξ ∈ Γ(S(TM)) and J̄N ∈ Γ(ltr(TM)).
This is a contradiction, so ltr(TM) is not invariant with respect to J̄ . Also J̄N does
not belong to S(TM⊥), since S(TM⊥) is orthogonal to S(TM), ḡ(J̄N, J̄ξ) must be
zero, but from (0.1) we have ḡ(J̄N, J̄ξ) = ḡ(N, ξ) 6= 0 for some ξ ∈ Γ(RadTM),
this is again a contradiction. Thus we conclude J̄ ltr(TM) is a distribution on M.
Moreover,J̄N does not belong to RadTM . Indeed, if J̄N ∈ Γ(RadTM), we would have
J̄2N = −N ∈ Γ(J̄RadTM), but this is impossible. Similarly, J̄N does not belong to
J̄RadTM. Thus we conclude that J̄ ltr(TM) ⊂ S(TM) and J̄RadTM ∩ J̄ ltr(TM) =
{0}. ¤

Remark 1. Lemma 3.1 shows that behavior of the lightlike transversal bundle
ltr(TM) is exactly same as the radical distribution RadTM, Thus, for this case L1

has to be ltr(TM) in the definition 2.1 of a CR-lightlike submanifold.

Lemma 3.2. Under the hypothesis of Lemma 3.1, if r = q, then any complemen-
tary distribution to J̄(RadTM)⊕ J̄ ltr(TM) in S(TM) is Riemannian.

Proof. Let dim(M̄) = m + n and dim(M) = m. Lemma 3.1 implies that
J̄ ltr(TM) ⊕ J̄RadTM ⊂ S(TM). We denote the complementary distribution to
J̄ ltr(TM) ⊕ J̄RadTM in S(TM) by D′. Then we have a local quasi orthonormal
field of frames on M̄ along M

{ξi, Ni, J̄ξi, J̄Ni, Xα, Wa}, i ∈ {1, ..., r}, α ∈ {3r + 1, ...,m}, a ∈ {r + 1, ..., n},

where {ξi} and {Ni} are lightlike basis of RadTM and ltr(TM), respectively and
J̄ξi, J̄Ni, {Xα} and {Wa} are orthonormal basis of S(TM) and S(TM⊥), respec-
tively. From the basis {ξ1, ..., ξr, J̄ξ1, ..., J̄ξr, J̄N1, ..., J̄Nr, N1, ..., Nr} of ltr(TM) ⊕
RadTM⊕J̄RadTM⊕J̄ ltr(TM), we can construct an orthonormal basis {U1, ..., U2r, V1, ..., V2r}
as follows
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U1 = 1√
2
(ξ1 + N1) U2 = 1√

2
(ξ1 −N1)

U3 = 1√
2
(ξ2 + N2) U4 = 1√

2
(ξ2 −N2)

... ...

... ...
U2r−1 = 1√

2
(ξr + Nr) U2r = 1√

2
(ξr −Nr)

V1 = 1√
2
(J̄ξ1 + J̄N1) V2 = 1√

2
(J̄ξ1 − J̄N1)

V3 = 1√
2
(J̄ξ2 + J̄N2) V4 = 1√

2
(J̄ξ2 − J̄N2)

... ...

... ...
V2r−1 = 1√

2
(J̄ξr + J̄Nr) V2r = 1√

2
(J̄ξr − J̄Nr).

Hence, Span{ξi, Ni, J̄ξi, J̄Ni} is a non-degenerate space of constant index 2r. Thus
we conclude that RadTM ⊕ J̄RadTM ⊕ ltr(TM)⊕ J̄ ltr(TM) is non-degenerate and
of constant index 2r on M̄. Since

index(TM̄) = index(RadTM ⊕ ltr(TM)) + index(J̄RadTM ⊕ J̄ ltr(TM)
+ index(D′ ⊥ S(TM⊥))

we have 2q = 2r + index(D′ ⊥ S(TM⊥)). Thus, if r = q, then D′ ⊥ S(TM⊥) is
Riemannian, i.e., index(D′ ⊥ (S(TM)⊥)) = 0. Hence D′ is Riemannian. ¤

Remark 2. As mentioned in the introduction, the purpose of this paper is to
introduce the notion of slant lightlike submanifolds. To define this notion, one needs
to consider angle between two vector fields. As we can see from section 2, a lightlike
submanifold has two (radical and screen) distributions:. The radical distribution is to-
tally lightlike and therefore it is not possible to define angle between two vector fields
of radical distribution. On the other hand, the screen distribution is non-degenerate.
Although there are some definitions for angle between two vector fields in Lorentzian
vector space (See: [9], Proposition 30, P:144 ), that is not appropriate for our goal,
because a manifold with metric of Lorentz signature cannot admit an almost Hermi-
tian structure (See: [7], Theorem VIII.3, P: 184). Thus one way to define slant notion
is choose a Riemannian screen distribution on lightlike submanifold, for which we use
Lemma 3.2.

Definition 3.1 Let M be a q− lightlike submanifold of an indefinite Hermitian
manifold M̄ of index 2q. Then we say that M is a slant lightlike submanifold of M̄ if
the following conditions are satisfied:

(A) RadTM is a distribution on M such that

(3.1) J̄RadTM ∩RadTM = {0}.

(B) For each non-zero vector field tangent to D at x ∈ U ⊂ M , the angle θ(X)
between J̄X and the vector space Dx is constant, that is, it is independent of
the choice of x ∈ U ⊂ M and X ∈ Dx, where D is complementary distribution
to J̄RadTM ⊕ J̄ ltr(TM) in the screen distribution S(TM).

This constant angle θ(X) is called slant angle of the distribution D. A slant lightlike
submanifold is said to be proper if D 6= {0} and θ 6= 0, π

2 .
From the definition 3.1, we have the following decomposition:
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TM = RadTM ⊥ S(TM)(3.2)
= RadTM ⊥ (J̄RadTM ⊕ J̄ ltr(TM)) ⊥ D.(3.3)

Proposition 3.1. There exist no proper slant totally lightlike or isotropic sub-
manifolds in indefinite Hermitian manifolds.

Proof. We suppose that M is totally lightlike submanifold of M̄. Then TM =
RadTM, hence D = {0}. The other assertion follows similarly. ¤

Remark 3. As per Proposition 2.1, Definition 3.1 does not depend on S(TM)
and S(TM⊥), but, it depends on the transformation equations (2.60) in [5, page 165],
with respect to the screen second fundamental forms hs. However, our conclusions of
this paper do not change with respect to a change of hs.

Example 1. Let M̄ = (R8
2, ḡ) be a semi-Riemannian manifold, where R8

2 is semi-
Euclidean space of signature (−,−,+, +, +,+, +, +) with respect to the canonical
basis

{∂ x1, ∂ x2, ∂ x3, ∂ x4, ∂ x5, ∂ x6, ∂ x7, ∂ x8}.
Let M be a submanifold of R8

2 given by

X(u, v, θ, t, s) = (u, v, sin θ, cos θ,−θ sint,−θ cost, u, s).

Then the tangent bundle TM is spanned by

Z1 = ∂ x1 + ∂ x7 Z2 = ∂ x2,

Z3 = cos θ ∂ x3 − sin θ ∂ x4 − sin t ∂ x5 − cos t ∂ x6,

Z4 = −θ cos t ∂ x5 + θ sin t ∂ x6, Z5 = ∂ x8.

It follows that M is 1− lightlike submanifold of R8
2 with RadTM = span{Z1}.

Moreover we obtain J̄RadTM = span{Z2 + Z5} and therefore it is a distribution on
M . Choose D = span{Z3, Z4} which is Riemannian. Then M is a slant distribution
with slant angle π

4 , with the screen transversal bundle S(TM⊥) spanned by

W1 = −cosec θ ∂ x4 + sin t ∂ x5 + cos t ∂ x6

W2 = (2sec θ − cos θ) ∂ x3 + sin θ ∂ x4 + sin t ∂ x5 + cos t ∂ x6

which is also Riemannian. Finally, ltr(TM) is spanned by

N =
1
2
(−∂ x1 + ∂ x7).

Hence we have J̄N = −Z2 + Z5 ∈ Γ(S(TM) and ḡ(J̄N, J̄Z1) = 1. Thus we conclude
that M is a proper slant lightlike submanifold of R8

2.

Proposition 3.2. Slant lightlike submanifolds do not include invariant and screen
real lightlike submanifolds of an indefinite Hermitian manifold.

Proof. Let M be a invariant or screen real lightlike submanifold of an indefinite
Hermitian manifold M̄. Then, since J̄RadTM = RadTM , the first condition of slant
lightlike submanifold is not satisfied which proves our assertion. ¤
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It is known that CR-lightlike submanifolds also do not include invariant and real
lightlike submanifolds [5]. Thus we may expect some relations between CR-lightlike
submanifold and slant lightlike submanifold. Indeed we have the following.

Proposition 3.3 . Let M be a q− lightlike submanifold of an indefinite Kaehler
manifold M̄ of index 2q. Then any coisotropic CR-lightlike submanifold is a slant
lightlike submanifold with θ = 0. In particular, a lightlike real hypersurface of an in-
definite Hermitian manifold M̄ of index 2 is a slant lightlike submanifold with θ = 0.
Moreover, any CR-lightlike submanifold of M̄ with Do = {0} is a slant lightlike sub-
manifold with θ = π

2 .

Proof. Let M be a q− lightlike CR-lightlike submanifold of an indefinite Hermitian
manifold M̄. Then, by definition of CR-lightlike submanifold, J̄RadTM is a distribu-
tion on M such that RadTM ∩ J̄RadTM = {0}. If M is coisotropic, then S(TM⊥) =
{0}, thus L2 = 0 Then the complementary distribution to J̄RadTM ⊕ J̄ ltr(TM) is
Do. Lemma 3.2 implies that Do is Riemannian. Since Do is invariant with respect to J̄ ,
it follows that θ = 0. Our second assertion is clear due to a lightlike real hypersurface
of M̄ is coisotropic. Now, if M is CR-lightlike submanifold with Do = {0}, then the
complementary distribution to J̄RadTM ⊕ J̄ ltr(TM) is D′. Since D′ is anti-invariant
with respect to J̄ , it follows that θ = π

2 . Thus proof is complete. ¤

From Proposition 3.3, coisotropic CR-lightlike submanifolds, lightlike real hyper-
surfaces and CR-lightlike submanifolds with Do = {0} are some of the many more
examples of slant lightlike submanifolds.

For any X ∈ Γ(TM) we write

(3.4) J̄X = TX + FX

where TX is the tangential component of J̄X and FX is the transversal component
of J̄X. Similarly, for V ∈ Γ(tr(TM)) we write

(3.5) J̄V = BV + CV

where BV is the tangential component of J̄V and CV is the transversal component
of J̄V. Given a slant lightlike submanifold, we denote by P1, P2, Q1 and Q2 the
projections on the distributions RadTM , J̄RadTM , J̄ ltr(TM) and D, respectively.
Then we can write

(3.6) X = P1X + P2X + Q1X + Q2X

for X ∈ Γ(TM). By applying J̄ to (3.6) we obtain

(3.7) J̄X = J̄P1X + J̄P2X + TQ2X + FQ1X + FQ2X

for X ∈ Γ(TM). By direct calculations we have

J̄P1X ∈ Γ(J̄RadTM) , J̄P2X = TP2X ∈ Γ(RadTM)(3.8)
FP1X = 0, FP2X = 0 , TQ2X ∈ Γ(D), FQ1X ∈ Γ(ltr(TM)).(3.9)
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Moreover, (3.7), (3.8) and (3.9) imply

(3.10) TX = TP1X + TP2X + TQ2X.

Now we prove two characterization theorems for slant lightlike submanifolds.

Theorem 3.1. Let M be a q− lightlike submanifold of an indefinite Hermitian
manifold M̄ of index 2q. Then M is slant lightlike submanifold if and only if the
following conditions are satisfied:

(1) J̄ ltr(TM) is a distribution onM .

(2) There exists a constant λ ∈ [−1, 0] such that

(3.11) (Q2T )2X = λX, ∀X ∈ Γ(TM).

Moreover, in such case, λ = −cos2θ.
Proof. Let M be a q− lightlike submanifold of an indefinite Hermitian manifold M̄

of index 2q. If M is slant lightlike submanifold of M̄, then J̄RadTM is a distribution
on S(TM), thus from Lemma 3.1, it follows that J̄ ltr(TM) is also a distribution on
M and J̄ ltr(TM) ⊂ S(TM). Thus (1) is satisfied. Moreover, the angle between J̄Q2X
and Dx is constant. Hence we have

cosθ(Q2X) =
ḡ(J̄Q2X, TQ2X)
| J̄Q2X || TQ2X | =

−ḡ(Q2X, J̄TQ2X)
| Q2X || TQ2X |

=
−ḡ(Q2X, TQ2TQ2X)
| Q2X || TQ2X | .(3.12)

On the other hand, we have

(3.13) cosθ(Q2X) =
| TQ2X |
| J̄Q2X | .

Thus from (3.12) and (3.13) we get

cos2θ(Q2X) =
−ḡ(Q2X, TQ2TQ2X)

| Q2X |2 .

Since θ(Q2X) is constant on D, we conclude that

(Q2T )2X = λQ2X, λ ∈ [−1, 0]

Furthermore, in this case λ = −cos2 θ(Q2X).

Conversely, suppose that (1) and (2) are satisfied. Then (1) implies that J̄RadTM
is a distribution on M. From Lemma 3.2, it follows that the complementary distri-
bution to J̄RadTM ⊕ J̄ ltr(TM) is a Riemannian distribution. The rest of proof is
clear. ¤

Corollary 3.1. Let M be a slant lightlike submanifold of an indefinite Hermitian
manifold M̄. Then we have



Slant lightlike submanifolds 115

(3.14) g(TQ2X, TQ2Y ) = cos2θg(Q2X, Q2Y )

and

(3.15) g(FQ2X,FQ2Y ) = sin2 θg(Q2X, Q2Y ), ∀X, Y ∈ Γ(TM).

Proof. From (0.1) and (3.4) we have

g(TQ2X,TQ2Y ) = −g(Q2X,T 2Q2Y ), ∀X, Y ∈ Γ(TM).

Then from Theorem 3.1, we obtain (3.14) and (3.15) follows from (3.14). ¤

Theorem 3.2. Let M be a q− lightlike submanifold of an indefinite Hermitian
manifold M̄ of index 2q. Then M is slant lightlike submanifold if and only if the
following conditions are satisfied:

(1) J̄ ltr(TM) is a distribution on M.

(2) There exists a constant µ ∈ [−1, 0] such that

BFQ2X = µQ2X, ∀X ∈ Γ(TM).

In this case µ = −sin2θ, where θ is the slant angle of M and Q2 the projection on D
which is complementary to J̄RadTM ⊕ J̄ ltr(TM).

Proof. It is easy to see that J̄RadTM ∩ J̄ ltr(TM) = {0} and J̄Rad(TM) is a sub-
bundle of S(TM). Moreover, the complementary distribution to J̄ ltr(TM)⊕J̄RadTM
in S(TM) is Riemannian. Furthermore, from the proof of Lemma 3.2 S(TM⊥) is also
Riemannian. Thus condition (A) in the definition of slant lightlike submanifold is
satisfied. On the other hand applying J̄ to (3.7) and using (3.4) and (3.7) we obtain

−X = −P1X − P2X + T 2Q2X + FTQ2X + JFQ1X + BFQ2X + CFQ2X.

Since JFQ1X = −Q1X ∈ Γ(S(TM), taking the tangential parts we have

−X = −P1X − P2X + T 2Q2X −Q1X + BFQ2X.

Then considering (3.6) we get

(3.16) −Q2X = T 2Q2X + BFQ2X.

Now, if M is slant lightlike then from Theorem 3.1 we have T 2Q2X = −cos2 θQ2X.
hence we derive

BFQ2X = −sin2 θ Q2X.

Conversely, suppose that BFQ2X = µQ2X, µ ∈ [−1, 0], then from (3.16) we obtain

T 2Q2X = −(1 + µ)Q2X.

Put −(1 + µ) = λ so that λ ∈ [−1, 0]. Then proof follows from Theorem 3.1. ¤
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4. Minimal slant lightlike submanifolds

A general notion of minimal lightlike submanifold M of a semi-Riemannian manifold
M̄ has been introduced by Bejan-Duggal in [2] as follows:

Definition 4.1. We say that a lightlike submanifold (M, g, S(TM)) isometrically
immersed in a semi-Riemannian manifold (M̄, ḡ) is minimal if:

(i) hs = 0 on Rad(TM) and

(ii) trace h = 0, where trace is written w.r.t. g restricted to S(TM).

In the case 2, the condition (i) is trivial. Moreover, it has been shown in [2] that
above definition is independent of S(TM) and S(TM⊥), but it depends on the choice
of the transversal bundle tr(TM). As in the semi-Riemannian case, any lightlike to-
tally geodesic M is minimal.

Example 2. Let M̄ = R8
2 be a semi-Euclidean space of signature (−,−,+, +,

+,+, +, +) with respect to the canonical basis {∂ x1, ∂ x2, ∂ x3, ∂ x4, ∂ x5, ∂ x6,
∂ x7, ∂ x8}. Consider a complex structure J1 defined by

J1(x1, x2, x3, x4, x5, x6, x7, x8) = (−x2, x1, −x4, x3, −x7 cos α− x6 sinα,

−x8cos α + x5 sinα, x5 cos α + x8 sinα,

x6 cos α− x7 sin α).

for α ∈ (0, π
2 ). Let M be a submanifold of (R8

2, J1) given by

x1 = u1 cosh θ, x2 = u2 cosh θ, x3 = −u3 + u1 sinh θ, x4 = u1 + u3sinh θ

x5 = cos u4 cosh u5, x6 = cos u4 sinhu5, x7 = sin u4 sinhu5

x8 = sin u4 cosh u5

u1 ∈ (0, π
2 ). Then TM is spanned by

Z1 = cosh θ ∂ x1 + sinh θ∂ x3 + ∂ x4

Z2 = cosh θ ∂ x2, Z3 = −∂ x3 + sinh θ ∂ x4

Z4 = −sin u4 cosh u5 ∂x5 − sin u4 sinhu5 ∂x6 + cos u4 sinhu5 ∂x7

+cos u4 cosh u5 ∂x8

Z5 = cos u4 sinh u5 ∂x5 + cos u4 cosh u5 ∂x6 + sin u4 cosh u5 ∂x7

+sin u4 sinhu5 ∂x8.

Hence M is 1− lightlike with RadTM = span{Z1} and J1(RadTM) spanned by
J1Z1 = Z2 + Z3. Thus J1RadTM is a distribution on M. Then it is easy to see that
D = {Z4, Z5} is a slant distribution with respect to J1 with slant angle α. The screen
transversal bundle S(TM⊥) is spanned by

W1 = −cosh u5 ∂ x5 + sinhu5 ∂ x6 + tan u4 sinhu5∂ x7

−tan u4 cosh u5 ∂ x8

W2 = −tan u4 sinhu5 x5 + tan u4 cosh u5 ∂ x6 − cosh u5 ∂ x7

+sinhu5 ∂ x8.
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On the other hand, the lightlike transversal bundle ltr(TM) is spanned by

N = tanh θ sinh θ ∂ x1 + sinh θ x3 + ∂ x4.

Hence J1N = tanh2 θ Z2 +Z3. Thus we conclude that M is a slant lightlike submani-
fold of (R8

2, J1). Now by direct computations, using Gauss and Weingarten formulas,
we have

hl = 0, hs(X, Z1) = hs(X, J1Z1) = 0, hs(X,J1N) = 0, ∀X ∈ Γ(TM),

hs(Z4, Z4) =
cos u4

sinh2 u5 + cosh2 u5
W1, hs(Z5, Z5) =

−cos u4

sinh2 u5 + cosh2 u5
W1.

Hence, the induced connection is a metric connection and M is not totally geodesic,
but, it is a proper minimal slant lightlike submanifold of (R8

2, J1).
Remark 4. We note that the method established in Example 2 can be gener-

alized. Namely, let M be a 1− lightlike submanifold of R8
2, If an integral manifold

Mθ of the distribution D complementary to the distribution J̄RadTM ⊕ J̄ ltr(TM)
in S(TM) is an invariant submanifold of M̄ with respect to Jo defined by

Jo(x1, x2, x3, x4) = (−x3,−x4, x1, x2).

Then M is a slant lightlike submanifold with respect to J1. Thus, there are many
examples of minimal slant lightlike submanifolds of semi-Euclidean space R8

2.

Next, we prove two characterization results for minimal slant lightlike submani-
folds. First we give the following lemma which will be useful later.

Lemma 4.1. Let M be a proper slant lightlike submanifold of an indefinite
Kaehler manifold M̄ such that dim(D) = dim(S(TM⊥). If {e1, ...., em} is a local
orthonormal basis of Γ(D), then {csc θFe1, ..., csc θ Fem} is a orthonormal basis of
S(TM⊥).

Proof. Since e1, ...., em is a local orthonormal basis of D and D is Riemannian,
from Corollary 3.1, we obtain

ḡ(csc θFei, csc θFej) = csc2 θ sin2 θ g(ei, ej) = δij ,

which proves the assertion. ¤
Theorem 4.1. Let M be a proper slant lightlike submanifold of an indefinite

Kaehler manifold M̄. Then M is minimal if and only if

traceA∗ξj
|S(TM)= 0, traceAWα |S(TM)= 0

and
ḡ(Dl(X, W ), Y ) = 0, ∀X,Y ∈ Γ(RaDTM),

where {ξj}r
j=1 is a basis of RadTM and {Wα}m

α=1 is a basis of S(TM⊥).

Proof. From Proposition 3.1 in [2], we have hl = 0 on RadTM. Thus M is minimal
if and only if
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r∑

i=1

h(J̄ξi, J̄ξi) +
r∑

i=1

h(J̄Ni, J̄Ni) +
m∑

k=1

h(ek, ek) = 0.

Using (2.10) and (2.6) we obtain

r∑

i=1

h(J̄ξi, J̄ξi) =
r∑

i=1

1
r

r∑

j=1

g(A∗ξj
J̄ξi, J̄ξi)Nj

+
1
m

m∑
α=1

g(AWα J̄ξi, J̄ξi)Wα.(4.1)

In similar way we obtain
r∑

i=1

h(J̄Ni, J̄Ni) =
r∑

i=1

1
r

r∑

j=1

g(A∗ξj
J̄Ni, J̄Ni)Nj

+
1
m

m∑
α=1

g(AWα J̄Ni, J̄Ni)Wα(4.2)

and
m∑

k=1

h(ek, ek) =
m∑

k=1

1
r

r∑

j=1

g(A∗ξj
ek, ek)Nj

+
1
m

m∑
α=1

g(AWαek, ek)Wα.(4.3)

Thus our assertion follows from (4.1), (4.2) and (4.3). ¤
Theorem 4.2. Let M be a proper slant lightlike submanifold of an indefinite

Kaehler manifold M̄ such that dim(D) = dim(S(TM⊥). Then M is minimal if and
only if

traceA∗ξj
|S(TM)= 0, traceAFei |S(TM)= 0

and
ḡ(Dl(X, Fei), Y ) = 0, ∀X,Y ∈ Γ(RadTM)

where {e1, ..., em} is a basis of D.

Proof. From Lemma 4.1, {csc θFe1, ..., csc θ Fem} is a orthonormal basis of
S(TM⊥). Thus we can write

hs(X, X) =
m∑

i=1

Ai csc θFei, ∀X ∈ Γ(TM)

for some functions Ai, i ∈ {1, ...,m}. Hence we obtain

hs(X, X) =
m∑

i=1

csc θg(AFeiX, X)

for X ∈ Γ(J̄RadM ⊕ J̄ ltr(TM) ⊥ D).
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Then the assertion of theorem comes from Theorem 4.1. ¤
Concluding remarks. (a). It is known that a proper slant submanifold of a

Kaehler manifold is even dimensional, but this is not true for our definition of slant
lightlike submanifold. For instance, see two examples of this paper.

(b) We notice that the second fundamental forms and their shape operators
of a non-degenerate submanifold are related by means of the metric tensor field.
Contrary to this we see from (2.3)-(2.7) that in case of lightlike submanifolds
there are interrelations between these geometric objects and those of its screen
distributions. Thus, the geometry of lightlike submanifolds depends on the triplet(
S(TM), S(TM⊥), ltr(TM)

)
. However, it is important to highlight that, as per

Proposition 2.1 of this paper, our results are stable with respect to any change in
the above triplet. Moreover, we have verified that the conclusions of all our results
will not change with the change of any induced object on M .
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