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Abstract. Recently we studied a certain second order differential equation
which leads to the definition of some coordinate systems on Finsler man-
ifolds. Here we consider two kinds of these coordinate systems and study
connection dependence effect. More precisely we prove that the existence of
such a coordinate system on a Finsler manifold endowed with a Berwald
connection, reduces the Finsler structure to a locally Minkowskian one.
Next, in the case of Cartan connection it is proved that existence of an spe-
cial case of this coordinate system implies that the underlying Finsler man-
ifold be isometric into sphere. Meanwhile some results on totally geodesic
and umbilical hypersurfaces are obtained.
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1 Introduction

Coordinate systems play an essential role in the study of global differential geometry,
particularly the Riemannian adapted coordinate system appears often in the study
of a Riemannian manifold (M, g), see for instance Tashiro work [13] . In Physics, this
coordinate system is closely connected to the study of collineations in General Rela-
tivity [8]. This coordinate system is also appeared in the study of pseudo-Riemannian
manifolds, in form of a certain conformal transformation, see for example [7] and
[9]. In Finsler geometry this coordinate system plays somehow a parallel role to the
normal coordinate system on Riemannian geometry and leads to a classification of
complete Finsler manifolds [2]. For the study of conformal vector fields on tangent
bundle of Finsler manifolds, one can refer to [4].

Hence, it might be interesting and useful to study in this paper more tidily this
coordinate system and find effect of different Finsler connections. More precisely, we
prove the following theorems.

Theorem 1: Let (M, g) be a Finsler manifold endowed with a Berwald connection.
If there is an adapted coordinate system on M , then (M, g) is a locally Minkowskian
space.

∗Balkan Journal of Geometry and Its Applications, Vol.14, No.1, 2009, pp. 21-29.
c© Balkan Society of Geometers, Geometry Balkan Press 2009.



22 Behroz Bidabad

Indeed when we use an adapted coordinate system the role of Cartan connection
is essential and can not be replaced by that of Berwald connection.

In particular we define a restricted adapted coordinate system what is called here
special adapted coordinate system. In the case of Cartan connection we have the fol-
lowing result for special adapted coordinate system.

Theorem 3: Let (M, g) be a complete connected Finsler manifold of dimension
n ≥ 2 endowed with a Cartan connection. If there is a special adapted coordinate
system on M , then (M, g) is isometric to an n-sphere with a certain Finsler metric
form.

Meanwhile in Theorem 2, some necessary conditions for the related level sets, to
be totally geodesic or umbilical is obtained. For our purpose, we adopt very often the
notations of [3] and [1].

2 Preliminaries

Let M be a real n-dimensional manifold of class C∞. We denote by TM → M
the bundle of tangent vectors and by π : TM0 → M the fiber bundle of non-zero
tangent vectors. A Finsler structure on M is a function F : TM → [0,∞), with
the following properties: (I) F is differentiable (C∞) on TM0; (II) F is positively
homogeneous of degree one in y, i.e. F (x, λy) = λF (x, y),∀λ > 0, where we denote an
element of TM by (x, y). (III) The Hessian matrix of F 2 is positive definite on TM0;
(gij) :=

(
1
2

[
∂2

∂yi∂yj F 2
])

. A Finsler manifold is a pair of a differentiable manifold M

and a Finsler structure F on M . The tensor field g = (gij) is called the Fundamental
Finsler tensor or Finsler metric tensor. Here, we denote a Finsler manifold by (M, g).

Let VvTM = kerπv
∗ be the set of the vectors tangent to the fiber through v ∈ TM0.

Then a vertical vector bundle on M is defined by V TM :=
⋃

v∈T M0
VvTM . A non-

linear connection or a horizontal distribution on TM0 is a complementary distribu-
tion HTM for V TM on TTM0. Therefore we have the decomposition TTM0 =
V TM ⊕ HTM. HTM is a vector bundle completely determined by the non-linear
differentiable functions N j

i (x, y) on TM , called coefficients of the non-linear connec-
tion. Let HTM be a non-linear connection on TM and ∇ a linear connection on
V TM , then the pair (HTM,∇) is called a Finsler connection on the manifold M .
Using the local coordinates (xi, yi) on TM we have the local field of frames { ∂

∂xi
, ∂

∂yi
}

on TTM . It is well known that we can choose a local field of frames { δ
δxi

, ∂
∂yi
} adapted

to the above decomposition, that is, δ
δxi

∈ Γ(HTM) and ∂
∂yi

∈ Γ(V TM) set of vector

fields on HTM and V TM respectively, where δ
δxi

:= ∂
∂xi

− N j
i

∂
∂yj

, and we use the
Einstein summation convention.

Let (M, g(x, y)) be a Finsler manifold then a Finsler connection is called a metric
Finsler connection if g is parallel with respect to ∇. According to the Miron terminol-
ogy [10] this is equivalent to say that g is both horizontally and vertically metric. The
Cartan connection is a metric Finsler connection for which the Deflection , horizontal
and vertical torsion tensor fields vanish.
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Let (M, g) be an n-dimensional Finsler manifold and TM → M the bundle of its
tangent vectors. A global approach to the general Finsler connection, Cartan covariant
derivatives and its applications is given in [5] and [6].

Let ρ : M → [0,∞) be a scalar function on M and consider the following second
order differential equation

(2.1) ∇H∇Hρ = φg,

where ∇H is the Cartan horizontal covariant derivative and φ is a function of x alone,
then we say that Eq. (2.1) has a solution ρ. The connected component of a regular
hypersurface defined by ρ = constant, is called a level set of ρ. We denote by gradρ
the gradient vector field of ρ which is locally written in the form gradρ = ρi ∂

∂xi , where
ρi = gijρj , ρj = ∂ρ

∂xj and i, j, ... run over the range 1, ..., n. The partial derivatives ρj

are defined on the manifold M while ρi the components of gradρ may be defined on
its slit tangent bundle TM0. Hence, gradρ can be considered as a section of π∗TM →
TM0, the pulled-back tangent bundle over TM0, and its trajectories lie on TM0.

One can easily verify that the canonical projection of the trajectories of the vector
field gradρ are geodesic arcs on M [2]. Therefore, once a non-trivial solution of (2.1)
exist on M , we can choose a local coordinates (u1 = t, u2, ..., un) such that t is the
parameter of the geodesic containing the projection of a trajectory of the vector field
gradρ and also the level sets of ρ are given by t =constant. These geodesics are called
t-geodesics. Since in this local coordinates, the level sets of ρ are given by t =constant,
ρ may be considered as a function of t only. In the sequel we will refer to these level sets
or hyper-surfaces as t-levels and this local coordinate system as adapted coordinates.
The parameter t may be regarded as the arc-length parameter of t-geodesics.

Let (M, g) be a Finsler manifold and ρ a non-trivial solution of Eq. (2.1) on M .
Then in an adapted coordinates, components of the Finsler metric tensor g are given
by gα1 = g1α = 0, where here and every where in this paper, the Greek indices
α, β, γ, ... run over the range 2, 3, ..., n.

If g(gradρ, gradρ) = 0 in some points of M , then M possesses some interesting
properties. A point o of (M, g) is called a critical point of ρ if the vector field gradρ
vanishes at o, or equivalently if ρ′(o) = 0. All other points are called ordinary points
of ρ on M .

Let ρ : M → [0,∞) be a scalar function on M . If there is a non-trivial solution of

(2.2) ∇H∇Hρ + C2ρg = 0,

where ∇H is the Cartan horizontal covariant derivative, then we say that there is an
special adapted coordinate system on M . In fact in Eq. (2.1) we assume φ = −C2ρ,
where C is a constant.

2.1 Finsler Submanifolds.

Let M and M be two differentiable manifolds of dimension m and m+n and let (uα)
and (xi) be the local coordinates on M and M , respectively. We denote by the pairs
(uα, vα) and (xi, yi) consisting of position and direction, the line elements of TM and
TM , where α, β, ... and i, j, ... run over the range 1, ...,m and 1, ..., m+n respectively.
Let f : M → M be a smooth mapping, given by (u1, ..., um) → xi(u1, ..., um), where
i = 1, ..., m + n. The differential or tangent mapping of f is
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f∗ : TuM → TxM,
(uα, vα) → (xi(u), yi(u, v)),

where yi(u, v) = Bi
αvα and Bi

α = ∂xi

∂uα .
If f∗ is injective at every point u of M , that is, rank [Bi

α] = m, then M is called an
immersed submanifold or simply submanifold of M .
Next consider an (m + n)-dimensional Finsler manifold (M, g). The Finsler structure
F induces on TM a Finsler structure F defined by F (u, v) := F (x(u), y(u, v)). Putting
gαβ := 1

2
∂2F

2

∂vα∂vβ , one obtain by direct calculation

(2.3) gαβ(u, v) = gij(x(u), y(u, v))Bij
αβ ,

where Bij
αβ = Bi

αBj
β . Therefore the pair (M, g) is a Finsler manifold, called Finsler

submanifold of (M, g).

2.2 Induced Finsler connections.

Next we consider a Finsler connection (HTM,∇) on the Finsler manifold (M, g) and
look for the induced geometric objects on the Finsler submanifold (M, g). We denote
by h and v the projection morphisms of TTM0 on HTM and V TM respectively.
Then we have the Gauss formula as follows

(2.4) ∇XY v = ∇XY v + B(X,Y v),

where X,Y ∈ Γ(TM0), Y v ∈ Γ(V TM), ∇XY v ∈ Γ(V TM) and B(X,Y v) ∈
Γ(V TM

⊥
). B is a Γ(V TM

⊥
)-valued bilinear mapping on Γ(TM0)×Γ(V TM) called

the second fundamental form of (M, g). It is easy to check that∇ is a linear connection
on the vertical vector bundle V TM of (M, g). Thus (HTM,∇) is a Finsler connection
on (M, g), called the induced Finsler connection. By means of the second fundamental
form B, one defines the horizontal(h)- and vertical (v)- second fundamental forms H
and V of (M, g), by the bilinear mappings

(2.5) H : Γ(HTM)× Γ(HTM) → Γ(V TM
⊥

),
(Xh, Y h) → B(Xh, QY h),

and

(2.6) V : Γ(V TM)× Γ(V TM) → Γ(V TM
⊥

),
(Xv, Y v) → B(Xv, Y v),

respectively, for any X,Y ∈ Γ(TTM), where Q is defined by

Q : Γ(TTM) → Γ(TTM),
X → QX,

that is for X = Xi δ
δxi + Ẋi ∂

∂yi we have QX = Ẋi δ
δxi + Xi ∂

∂yi .
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Let (M, g) be a Finsler submanifold of a Finsler manifold (M, g). Then (M, g) is
called a totally umbilical Finsler submanifold if there exists a smooth function ρ on
M such that on each coordinate neighborhood U ⊂ M we have

hαβ = ρgαβ , ∀α, β,∈ {1, ..., m},
where hαβ is the components of the second fundamental form of (M, g). The h-
totally and v-totally umbilical Finsler submanifolds are defined by replacing the second
fundamental form in the above equation, with h-second and v-second fundamental
forms, respectively.

3 Finsler connections and adapted coordinates

In this section, we study the properties of adapted coordinate system related to the
Berwald and Cartan Finsler connections. Let ρ be a solution of Eq. 2.1, we consider
an adapted coordinate system (ui, U) on M , where U is the open set of all ordinary
points of ρ. We denote by (ui, vi) the line element on TM0 related to this coordinate
system. We have the following proposition.

Lemma 1. [2] Let (M, g) be a Finsler manifold and U the set of all ordinary points
of a non-trivial solution ρ of Eq. 2.1 on M . Then there is a local coordinate system
(ui, U), such that the coefficients of the non-linear connection vanish.

Case (a) Berwald connection and adapted coordinates
Let (M, g) be a Finsler manifold endowed with a Berwald connection, such that there
exists a non-trivial solution ρ of Eq. 2.1 on M . Then we have the following theorem.

Theorem 1. Let (M, g) be a Finsler manifold endowed with a Berwald connection.
If there is an adapted coordinate system on M , then (M, g) is a locally Minkowskian
space.

Proof. Let’s consider an adapted coordinate system (ui, U) on M . Then from the
L-metrical property of the Berwald connection, we have ∂F

∂ui = vrG
r
i , where F is the

Finsler structure of (M, g) and vr = girv
i. By means of Lemma 1, we get ∂iF = 0,

that is, F depends only on y and by definition, (M, g) is a locally Minkowskian space.

Case (b) Cartan connection and adapted coordinates
As another consequence of the Lemma 1, we have Γ∗i

jk = γi
jk, where Γ∗i

jk are coef-
ficients of the Cartan connection, and γi

jk(u, v) are formal Christoffel symbols. Thus
we have the following proposition.

Lemma 2. Let (M, g) be a Finsler manifold endowed with the Cartan connection.
In the adapted coordinate system the coefficients of Cartan connection reduce to the
formal Christoffel symbols.

Let i = il ∂
∂xl be the unit vector field in the direction of Y and let τ =

√
g(Y, Y )

denotes the length of Y . Then we have

(3.1) ρl = τil, il =
1
τ

ρl.
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Differentiating covariantly1 the first equation of (3.1), and using (2.1), we have

(3.2) (∇H
k τ)il + τ(∇H

k il) = φglk.

Contracting this equation with il, we get

(3.3) ∇H
k τ = φik.

Replacing this equation in (3.2), gives

(3.4) ∇H
k il =

φ

τ
(glk − ikil).

We remark that, the set of ordinary points of ρ is an open set and in the sequel we
shall confine our consideration to the open set U of ordinary points.
Let M(p) be the t-level through an ordinary point p in U ⊂ M . The unit vector field
i is normal to M(p) at any point of M(p). Let’s consider the local coordinates (uα)
in M(p) such that M(p) be expressed by the parametric equations xi = xi(uα) in U ,
where, here and in the sequel the indices i, j, k, ... run over the range 1, 2, ..., n and
α, β, γ, ... run over the range 2, 3, ..., n.

The induced metric tensor gγβ of M(p) is given by gγβ = gijB
i
γBj

β where Bi
γ =

∂γxi and ∂γ = ∂
∂uγ . Then the h-second fundamental form of M defined by hγβ :=

(∇H
γ Bk

β)ik becomes

(3.5) (∇H
γ Bk

β)ik = (∂γBk
β + Γ∗ij

kBi
γBj

β − Γ
∗α
γβBk

α)ik,

where Γ
∗α
γβ are Finsler connection’s coefficients in M with induced metric gγβ and

Γ∗iγ
k = Γ∗ij

kBj
γ . Thus we have

(3.6) ∂βBk
γ + Γ∗ij

kBi
γBj

β − Γ
∗α
γβBk

α = hγβik.

Since Bk
βik = 0, we have

(3.7) hγβ = −(∇H
j ik)Bj

γBk
β .

Substituting (3.4) into this equation, we get

(3.8) hγβ = hgγβ , where h =
−φ

τ
.

When φ(p) = 0, then h = 0 and hence the components of the h-second fundamental
form hγβ vanish. Therefore, the t-level M(p) is h-totally geodesic. When φ(p) 6= 0, by
definition M(p) is h-totally umbilical. Thus we have the following result.

Theorem 2. The level set M(p) is h-totally geodesic if φ(p) = 0, and it is h-totally
umbilical if φ(p) 6= 0.

1Everywhere in this section, by covariant derivative we mean the Cartan horizontal covariant
derivative.
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If we take the last (n − 1) coordinates (uα) of (ui) where α run over the range
2, ..., n; as a local coordinate system in each t-level in U , then Bi

α = ∂αui = δi
α, and

for induced metric tensor gαβ on each t-level M(p), we have

gαβ = gαβ .

Since the components of the unit vector field i are ik = δk
1 in adapted coordinate

system (ui, U), the equation (3.6) for k = 1 reduces to

(3.9) Γ∗1γβ = hγβ = hgγβ .

Using ρl = gilρi and the fact that in this coordinate ρ is a function of u1, (3.1) reduce
to τ = ρ1 = ρ′, where prime denotes the ordinary differentiation with respect to u1.
Thus from (3.3) and (3.8) we get

(3.10) τ = ρ′, φ = ρ′′, h =
−φ

τ
=
−ρ′′

ρ′
.

By replacing h in (3.9) and in according to the Theorem 2, we have ∂gγβ

∂u1 = 2ρ′′

ρ′ gγβ .
Therefore by integrating, the components gγβ are written in the form

(3.11) gγβ = ρ′2fγβ ,

where fγβ are functions of the (n− 1) coordinates uα. Since the metric tensor gγβ is
positive definite, so is the matrix (fγβ). Therefore by choosing an adapted coordinate
system we have the following proposition.

Proposition 1. Let (M, g) be a Finsler manifold endowed with a Cartan connection.
If there is an adapted coordinate system on M , then the metric form of M is given by

(3.12) ds2 = (du1)2 + ρ′2fγβduγduβ .

In what follows we shall sometimes write u for the first coordinate u1 of an adapted
coordinate system. The length of the gradient vector field is constant on each t-level
through an ordinary point, and all points of a t-level are ordinary, that is, ρ′ 6= 0 in
any point of a t-level. Therefore from definition of a t-level, it is a closed submanifold.
Let M be an (n− 1)-dimensional manifold diffeomorphic to a t-level (M(p), gγβ) and
having fγβ as Finsler metric tensor. We can consider fγβ as a positive constant coef-
ficient of Finsler metric gγβ , so fγβ is a Finsler metric. Since the coefficients ρ′2 are
positive constant in every t-level, the Finsler manifold (M, fγβ) and t-levels neighbor-
ing (M(p), gγβ) are locally homothetically diffeomorphic to each other. Therefore the
connection coefficients constructed from fγβ on M have the same expressions Γ

∗α
βγ as

those of the Finsler induced metric gγβ in M(p), see for more details [2].

We notice that, along any geodesic with arc-length u, the equation (2.1) reduces
to an ordinary differential equation

(3.13)
d2ρ

du2
= φ(ρ),
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where φ is a function of ρ and it is differentiable in ρ at ordinary points of ρ.
In equation (2.1) for k = l = 1, we have ∇H

1 ρ1 = δρ1
δu − Γ∗i

11ρi and this equation
in adapted coordinate system is given by ∇H

1 ρ1 = d2ρ
du2 .

Case(c) Cartan connection and special adapted coordinates

Theorem 3. Let (M, g) be a complete connected Finsler manifold of dimension n ≥ 2
endowed with a Cartan connection. If there is a special adapted coordinate system on
M , then (M, g) is isometric to an n-sphere of radius 1/C with a certain Finsler metric
form.

Proof. Let (M, g) be an n-dimensional Finsler manifold which admits a special
adapted coordinate system. That is, there is a non-trivial solution of Eq. (2.2) where
K = C2 > 0 is constant. Along any geodesic with arc-length t, Eq. (2.2) reduces to
the following ordinary differential equation, see for instance [1] or [5].

(3.14)
d2ρ

dt2
+ Kρ = 0.

By a suitable choice of the arc-length t, a solution of Eq. (3.14) is given by

(3.15) ρ(t) = A cos
√

Kt,

and its first derivative is

(3.16) ρ′(t) = −A
√

K sin
√

Kt.

We can see at a glance, that it might appear two critical points corresponding to
t = 0 and t = π√

K
on M , where these points are periodically repeated. Thus ρ has

exactly two critical points on M and by an extension of the Milnor theorem to Finsler
manifolds [1], (M, g) is homeomorphic to an n-sphere. Hence, if ρ is a non-trivial
solution of Eq. (3.14), then it can be written in the following form

(3.17) ρ(t) =
−1√
K

cos
√

Kt , (A =
−1√
K

).

Taking into account Eq. (3.12), the metric form of M becomes

(3.18) ds2 = dt2 + (sin
√

Kt)2ds
2
,

where ds
2

is the metric form of a t-level of ρ given by ds
2

= fγβduγduβ . This is the
polar form of a Finsler metric on a standard sphere of radius 1/

√
K [12]. Therefore,

(M, g) is isometric to an n-sphere of radius 1/C with the Finsler metric form (3.18),
where ds

2
is the metric form of a t-level of ρ given by ds

2
= fγβduγduβ . This completes

the proof of the theorem.

Related results can be found in [11].
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