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Abstract. The differential geometric study of the tensor product immer-
sion of two Riemannian immersions was initiated by Chen in [2]. In this
paper we consider the tensor product immersion of an arbitrary curve in
Rm and an arbitrary curve in Rn. We are particularly interested when
such a tensor product immersion produces a minimal surface in Euclidean
space. In case that m = 2 and n = 2 or n = 3 this question was previously
studied in [7] and [1]. Here in the present paper we obtain the general
classification result, and at the same time correct some small errors in the
results of [1].
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1 Introduction

Among all submanifolds, minimal submanifolds and in particular minimal surfaces in
euclidean space 3-space are the most widely studied. As minimal surfaces in the three
dimensional euclidean space are by now well understood, two possible generalisations
are nowadays widely studied, namely the study of minimal surfaces in more general
3-dimensional spaces like the Heisenberg group see a.o. [5] or [8] or the study of
minimal surfaces in higher dimensional euclidean spaces. An easy way of constructing
examples of surfaces is using the notion of tensor product immersions. The systematic
study of the tensor product immersion of two Riemmannian immersions was initiated
by Chen in [2]. Let f : M → Rn and g : N → Rm be two isometric immersions
of Riemannian manifolds M and N respectively, then the tensor product immersion
f ⊗ g : M ×N → Rnm is defined by

(f ⊗ g)(p, q) = f(p)⊗ g(q).

Here we represent an element of Rnm as a matrix with n rows and m columns. Hence
f(p)⊗ g(q) = A, where A = [aij ] = [(f(p))ig(q)j ] = f(p) tg(q).

Regarding elements of Rnm as matrices, we see that the natural metric on Rnm

can be expressed using matrix multiplication by
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〈A,B〉 = trace (A tB) = trace ( tAB) =
n∑

i=1

m∑

j=1

aijbij .

Necessary and sufficient conditions for (f ⊗ g) to be an immersion were derived in [2].
In this paper we are in particular interested in the tensor product immersion of

an arbitrary curve α : I → Rn with an arbitrary curve β : J → Rm. We want to
investigate when the tensor product surface of these two curves defines a minimal
surface. We will prove the following theorem:

Theorem 1.1. Let α : I → Rn and β : J → Rm be curves such that the tensor
product α⊗β is a regular surface. Then the tensor product α⊗β is a minimal surface
if and only if, if necessary after interchanging α and β, one of the following conditions
hold:

(i) α is an open part of a straight line through the origin, β is contained in a plane
through the origin and consequently α⊗ β is an open part of a plane,

(ii) β is congruent to an open part of a hyperbola centered at the origin and α is
congruent to an open part of a circle centered at the origin.

For n = 2 and m = 2 this theorem was obtained in [7], whereas for m = 2
and n = 3 the above problem was investigated in [1]. In Theorem 2.1 of [1], 6 cases
occurred. However, case (5) by an orthogonal transformation reduces to case (3),
whereas case (6) (as is explained in a remark at the end of the paper) can only occur
for a specific parameter in which case it reduces by an orthogonal transformation to
(4). Furthermore also the extra condition on α was omitted in Theorem 2.1 of [1].

Finally we want to remark that properties of tensor products of spherical curves
were investigated in [6] in order to obtain explicit examples of Willmore surfaces.

The paper is organised as follows. In the next section we recall some basic proper-
ties about the tensor product of vectors which will then be used in Section 3 in order
to prove the main theorem.

2 Preliminaries

As explained in the introduction, we denote the tensor product of u ⊗ v of a vector
u ∈ Rn and a vector v ∈ Rm, as the matrix given by u⊗ v = u tv. Then we have the
following lemmas:

Lemma 2.1. Let O1 (resp. O2) be an orthogonal transformation of Rn (resp. Rm).
Then the application H : Rn×m → Rn×m : A 7→ O1A

tO2 is an orthogonal transfor-
mation of Rnm = Rn×m.

Proof. As for a matrix A ∈ Rn×m we have that

〈O1A
tO2, O1A

tO2〉 = trace(O1A
tO2O2

tA tO1) = trace(O1A
tA tO1) = 〈O1A, O1A〉

and
〈O1A,O1A〉 = trace( tA tO1O1A) = 〈A,A〉,

we conclude that H preserves the scalar product and hence H is an isometry.
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Lemma 2.2. Let u, ū ∈ Rn and v, v̄ ∈ Rm. Then 〈u⊗ v, ū⊗ v̄〉 = 〈u, ū〉〈v, v̄〉.
Proof. We remark that the usual metric on Rn is given by

〈u, ū〉 =
n∑

i=1

uiūi = tuū = trace(u tū).

Therefore we find that

〈u⊗ v, ū⊗ v̄〉 = trace(u⊗ v) t(ū⊗ v̄) = trace(u tv t(ū tv̄)) = trace(u tvv̄ tū)

= trace(u〈v, v̄〉 tū) = 〈v, v̄〉 trace(u tū) = 〈v, v̄〉〈u, ū〉.

3 Minimal tensor product surfaces

From now on we will assume that α : I → Rn : t 7→ α(t), where α(t) = (α1, . . . , αn)
and β : J → Rm : s 7→ β(s) = (β1(s), . . . , βm(s)) are two curves in Euclidean space
such that their tensor product defines an immersion of I × J into Rnm = Rn×m.

Hence we have that α⊗β(t, s) = t(α1(t), . . . , αn(t))(β1, . . . , βm(s). Note now that

O1α⊗O2β = O1α
tβ tO2 = 〈(α⊗ β),

where O1 and O2 are respectively orthogonal transformations of Rn and Rm. Con-
sequently from Lemma 1 we have that α ⊗ β and O1α ⊗ O2β are related by an
isometry. This shows that we still have the freedom to change the curves α and β by
an orthogonal transformation.

Similarly from the expression of the tensor product, (α⊗ β) = (λα⊗ 1
λβ), we see

that we can also multiply the curve α by an arbitrary non zero constant, provided we
divide the curve β by the same non zero constant.

We now write f(t, s) = α⊗β(t, s). A straightforward computation then gives that

ft = ∂f
∂t = α′(t)⊗ β(s) fs = ∂f

∂s = α(t)⊗ β′(s).

It then follows that the components of the induced metric are respectively given by

g11 = 〈ft, ft〉 = ‖β‖2‖α′‖2
g12 = 〈ft, fs〉 = 〈β, β′〉〈α, α′〉,
g22 = 〈fs, fs〉 = ‖β′‖2‖α‖2.

Note that f defines an immersion if and only if g11g22 − g2
12 6= 0. Note that by

the Cauchy-Schwartz inequality we have that g11g22 − g2
12 ≥ 0. It also follows that in

order to have an immersion, we have to exclude the points such that either

1. ‖α(t0)‖ = 0 or ‖α′(t0)‖ = 0,

2. ‖β(s0)‖ = 0 or ‖β′(s0)‖ = 0,

3. the vectors α′(t0) and α(t0) as well as the vectors β′(s0) and β(s0) are dependent.
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Using the Gram-Schmidt orthonormalisation procedure we also find that e1 =
1√
g11

ft and e2 = 1√
g11(g11g22−g2

12)
(g11fs − g12ft) form an orthonormal basis of the

tangent space.
We now introduce some more notation. Let i, j ∈ {1, . . . , n}, with i 6= j and

a, b ∈ R. We denote by vij(a, b) the vector v = t(v1, . . . , vn) of Rn given by

vk = 0, k 6= i, k 6= j

vi = a

vj = b.

Similarly for p, q ∈ {1, . . . ,m}, p 6= q and a, b ∈ R we define wpq(a, b) ∈ Rm.
We now define vectors of Rnm by

n1
ijpq = vij(−αj , αi)⊗ wpq(−βq, βp) n2

ijpq = vij(−α′j , α
′
i)⊗ wpq(−β′q, β

′
p).

Then we have

〈n1
ijpq, ft〉 = (−αjα

′
i + αiα

′
j)(−βpβq + βqβp) = 0

〈n1
ijpq, fs〉 = (−αjαi + αiαj)(−β′pβq + β′qβp) = 0

〈n2
ijpq, fs〉 = (−α′jαi + α′iαj)(−β′pβ

′
q + β′qβ

′
p) = 0

〈n2
ijpq, ft〉 = (−α′jα

′
i + α′iα

′
j)(−βpβ

′
q + βqβ

′
p) = 0

Consequently we have that the vectors n1
ijpq and n2

ijpq, i, j ∈ {1, . . . , n}, with i 6= j,
and p, q ∈ {1, . . . , m}, with p 6= q are normal vectors.

We then have the following lemmas.

Lemma 3.1. Let α : I → Rn and β : J → Rm be curves such that the tensor product
of α and β is a regular surface. Then the tensor product f = α ⊗ β is a minimal
surface if and only if g22ftt + g11fss − 2g12fts is a tangent vector.

Proof. We have that the surface is minimal if and only if, for any orthonormal basis
{e1, e2} we have that h(e1, e1)+h(e2, e2) = 0, where h denotes the second fundamental
form of the immersion. Using the previously constructed orthonormal basis, we find
that this is equivalent with 〈g22ftt + g11fss − 2g12fst, n〉 = 0, for any normal vector
n. This concludes the proof.

Lemma 3.2. Let α : I → Rn and β : J → Rm be curves. Suppose that the tensor
product f = α ⊗ β is a minimal surface then the components of α and β satisfy the
following system of differential equations:

〈α, α′〉〈β, β′〉(β′pβq − β′qβp)(−α′iαj + α′jαi) = 0,(3.1)

(β′′p β′q − β′′q β′p)(αiα
′
j − αjα

′
i) + 〈α,α〉〈β′,β′〉

〈α′,α′〉〈β,β〉 (βpβ
′
q − βqβ

′
p)(α

′′
i α′j − α′′j α′i) = 0.(3.2)

Proof. First we remark that

〈ftt, n
2
ijpq〉 = (−α′′i α′j + α′′j α′i)(−β′qβp + β′pβq), 〈fss, n

1
ijpq〉 = 0,

〈fst, n
1
ijpq〉 = (−α′iαj + α′jαi)(−βqβ

′
p + βpβ

′
q), 〈ftt, n

1
ijpq〉 = 0,

〈fss, n
2
ij〉 = (−αiα

′
j + αjα

′
i)(−β′qβ

′′
p + β′′q β′p), 〈fst, n

2
ij〉 = 0.
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Substituting the above expressions in the previous lemma then completes the
proof.

Now we will show how we can solve the above system of differential equations and
determine the curves α and β explicitly. Remark that if β′pβq−βpβ

′
q = 0, for all indices

p, q ∈ {1, . . . , m}, we have that β′(s) and β(s) are linearly dependent vectors. This
implies that locally β is an open part of a straight line through the origin. Similarly
if αiα

′
j − αjα

′
i = 0, for all indices i and j, we have that α′(t) and α(t) are linearly

dependent vectors. Hence in that case α is an open part of a straight line through the
origin. In order to complete the proof we now consider several cases.

3.1 Case 1

First we assume that neither α nor β are locally contained in a line through the
origin. This implies that there exist indices p and q such that β′pβq − βpβ

′
q 6= 0 and

that there exist indices i and j such that αiα
′
j − αjα

′
i 6= 0. From (3.1) of Lemma

4 this implies that 〈α, α′〉〈β, β′〉 = 0. If necessary after interchanging α and β we
may assume that 〈α, α′〉 = 0. This implies that there exists a constant c such that
〈α, α〉 = c. As we assumed that the surface is regular, we must have that c 6= 0 and
therefore as mentioned before, we can still rescale the curve α (and correspondingly
rescale the curve β). Hence we may assume that

〈α, α〉 = 1.

We also assume that the curve α is arclength parametrised. Taking now the indices p
and q mentioned before, together with arbitrary indices i and j and substituting this
into (3.2) we find that

(3.3) 〈β,β〉(β′′p β′q−β′′q β′p)

〈β′,β′〉(βpβ′q−βqβ′p) (αiα
′
j − αjα

′
i) + (α′′i α′j − α′′j α′i) = 0

Note that the above equation is valid for every value of s and t. So, if we take s0 and
put k = 〈β,β〉(β′′p β′q−β′′q β′p)

〈β′,β′〉(βpβ′q−βqβ′p) (s0), we get that

k(αiα
′
j − αjα

′
i) + (α′′i α′j − α′′j α′i) = 0.

As before the above equations, which are valid for all indices i and j, imply that the
vectors α′′ + kα and α′ are linearly dependent. On the other hand, deriving 〈α, α〉 =
1 = 〈α′, α′〉 we get that those vectors are also mutually orthogonal. Consequently we
must have that

(3.4) α′′ = −kα.

However, as 〈α, α〉 = 1, we have that 〈α′′, α〉 = −〈α′, α′〉 = −1. Combining this with
(3.4) we deduce that k = 1. Hence there exist constant vectors C1 and C2 such that
α(t) = C1 cos t + C2 sin t. As 〈α(t), α(t)〉 = 1, we deduce that 〈C1, C1〉 = 〈C2, C2〉 = 1
and 〈C1, C2〉 = 0. Hence by applying an orthogonal transformation, we may assume
that

α(t) = (cos t, sin t, 0, . . . , 0).
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This shows that α is a circle centered at the origin. Substituting these expressions
into the first equation of Lemma 4 we deduce for arbitrary indices p and q that

〈β, β〉(β′′p β′q − β′′q β′p) = 〈β′, β′〉(βpβ
′
q − βqβ

′
p).

So far we have not yet chosen a parameter for the curve β. In order to simplify the
above equation, we can take a parameter for the curve β such that 〈β, β〉 = 〈β′, β′〉.
Rewriting now the above equation we find that −β′q(β′′p − βp) + β′p(β′′q − βq) = 0.
This can be interpreted as the condition that the vectors β′′ − β and β′ are linearly
dependent. On the other hand deriving 〈β, β〉 = 〈β′, β′〉, we obtain that β′′ − β and
β′ are also mutually orthogonal. So we must have that β′′ = β and hence there exist
constant vectors D1 and D2 such that β(s) = D1e

s + D2e
−s. ¿From 〈β, β〉 = 〈β′, β′〉,

we then deduce that D1 and D2 are orthogonal vectors. Hence by an orthogonal
transformation we may assume that D1 = (a, 0) and D2 = (0, b). Hence the curve α
satisfies

β(s) = (aes, be−s, 0, . . . , 0),

which is the equation of an orthogonal hyperboloid centered at the origin. This com-
pletes the proof in this case.

3.2 Case 2

In this case we assume that at least one of the curves α or β is contained in a straight
line through the origin. In view of the symmetry of the problem we may assume
that β is an open part of a straight line. So by choosing an arc length parameter
for the curve β and by applying an orthogonal transformation we may assume that
β(s) = (s, 0, . . . , 0). So the tensor product immersion is actually contained in a totally
geodesic Rn and given by f(t, s) = s(α1(t), . . . , αn(t)). Note that the image of f

corresponds with the image of g where g(t, s) = s(α1(t)
‖α‖ , . . . , αn(t)

‖α‖ ). Consequently
without loss of generality we may assume that 〈α, α〉 = 1 and 〈α′, α′〉 = 1. Note that
now fss = 0 and fts = 1

sft is always a tangent vector. So in order for the immersion
to be minimal, by Lemma 3.1, we must have that 1

sftt = (α′′1(t), . . . , α′′n(t)) = α′′(t),
is a tangent vector to the immersion. As the tangent space is spanned by α and α′

and we also have that 〈α′′, α′〉 = 0 = 〈α, α′〉 this can only be the case if α′′ and α are
linearly dependent. Consequently there exists a function µ : I → R such that

α′′(t) = µ(t)α(t).

The function µ can be determined by

µ(t) = 〈α′′(t), α(t)〉 = −〈α′(t), α′(t)〉 = −1.

Hence there exist constant vectors such that α(t) = C1 cos t + C2 sin t. As before we
get that 〈C1, C1〉 = 〈C2, C2〉 = 1 and 〈C1, C2〉 = 0. Consequently by an orthogonal
transformation we may assume that α(t) = (cos t, sin t, 0, . . . , 0) and we find that the
image of the tensor product is again an open part of a plane.

Remark 3.1 We look at the complex immersion C → C2 : z 7→ (cos(z), sin(z)).
Writing z = t + is, we get that this corresponds to the map

(t, s) 7→ (cos(t) cosh(s), sin(t) sinh(s), cos(t) sinh(s), sin(t) cosh(s)),
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which is congruent to the tensor product of a circle and a hyperbola (both centered
at the origin). As a complex immersion is always minimal we deduce that this tensor
product is indeed a minimal immersion. Also a plane is trivially minimal. This shows
the converse direction of the main theorem.

As none of the previous examples can be put together in a differentiable way we
conclude the proof of the main theorem.

Remark 3.2 In the previously cited paper [1], one assumed that the normal space
was spanned by the vectors n1

ijpq and n2
ijpq. Although that is true for a generic tensor

product, it is no longer valid if one of the curves is a straight line through the origin.
This explains the missing condition on the curve c1 in their Theorem 2.1. In their final
two cases, as here, they obtain that the curve α satisfies α′′(t) = −kα(t) together with
〈α, α〉 = 〈α′, α′〉 = 1. However they fail to conclude that this is only possible if k = 1
leading in their case to additional (incorrect) solutions for the curve β (sinusoidal
spiral).

Remark 3.3 Of course the same methods can also be applied for studying a tensor
product of a Riemmannian and a Lorentzian curve, as was done in a special case in
[4]. However, similar as in the Riemannian case, also in that case the additional spiral
solutions are incorrect.
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