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Abstract. Many science and engineering problems can be formulated as
optimization problems that are governed by contact distributions (multi-
time Pfaff evolution systems) and by cost functionals expressed as multiple
integrals or curvilinear integrals. Our paper discuss the contact distribu-
tion constrained optimization problems, focussing on a nonholonomic ap-
proach of multitime maximum principle. This principle extends the work
of Pontryaguin in the ODEs case to include the case of normal PDEs or,
more general, the distribution case.

In Section 1 a multitime maximum principle for the case of multiple inte-
gral functionals is stated and proved. Section 2 is devoted to the multitime
maximum principle for the case of curvilinear integral functionals. Section
3 deals with a multitime maximum principle approach of variational cal-
culus in the case of nonintegrability.

M.S.C. 2000: 93C20, 93C35, 49K20, 49J20, 53C44.
Key words: multitime maximum principle, multiple or curvilinear integral func-
tional, contact distribution constrained optimization.

1 Contact distribution constrained optimization
problem with multiple integral functional

Because of their size, complexity, and infinite dimensional nature, the PDE constraints
often present significant challenges for optimization principles [1]-[6]. In this context,
the papers [9]-[20] formulated a holonomic multitime maximum principle by a scheme
which mimics those applied to single-time maximum principle [7], [8]. Some topics in
[21]-[23] can be involved in this theory.

Any normal PDE generates a contact distribution. This kind of (holonomic or
nonholonomic) distributions are very important in differential geometry and analytical
mechanics. Extending our point of view in [19], let us analyze a multitime optimal
control problem based on a multiple integral cost functional and a contact distribution
constraint:

∗Balkan Journal of Geometry and Its Applications, Vol.14, No.2, 2009, pp. 101-116.
c© Balkan Society of Geometers, Geometry Balkan Press 2009.



102 Constantin Udrişte

max
u(·),xt0

I(u(·)) =
∫

Ω0,t0

X(t, x(t), u(t))ω (1)

subject to

dxi(t) = Xi
α(t, x(t), u(t))dtα, i = 1, ..., n; α = 1, ..., m, (2)

u(t) ∈ U , ∀t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 . (3)

Ingredients: t = (tα) ∈ Rm
+ is the multi-parameter of evolution or multitime; ω =

dt1∧...∧dtm is the volume form in Rm
+ ; Ω0,t0 is the parallelepiped fixed by the diagonal

opposite points 0 = (0, ..., 0) and t0 = (t10, ..., t
m
0 ) which is equivalent to the closed

interval 0 ≤ t ≤ t0 via the product order on Rm
+ ; x : Ω0,t0 → Rn, x(t) = (xi(t)) is a C1

state vector; u : Ω0,t0 → U ⊂ Rk, u(t) = (ua(t)), a = 1, ..., k is a continuous control
vector; the running cost X(t, x(t), u(t))ω is a C1 Lagrange m-form; Xi

α(t, x(t), u(t))
are C1 vector fields; the Pfaff equations (2) define a contact distribution.

Introducing a costate variable tensor or Lagrange multiplier tensor p = pα
i (t)

∂

∂tα
⊗

dxi, and the (m− 1)-forms ωλ =
∂

∂tλ
cω, we build a new Lagrange m-form

L(t, x(t), u(t), p(t)) = X(t, x(t), u(t))ω + pλ
i (t)[Xi

α(t, x(t), u(t))dtα − dxi(t)] ∧ ωλ.

The contact distribution constrained optimization problem (1)-(3) can be changed
into another optimization problem

max
u(·),xt0

∫

Ω0,t0

L(t, x(t), u(t), p(t))

subject to

u(t) ∈ U , p(t) ∈ P, ∀t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 ,

where the set P will be defined later. The control Hamiltonian m-form

H(t, x(t), u(t), p(t)) = X(t, x(t), u(t))ω + pλ
i (t)Xi

α(t, x(t), u(t))dtα ∧ ωλ

= (X(t, x(t), u(t)) + pα
i (t)Xi

α(t, x(t), u(t)))ω = H1(t, x(t), u(t), p(t))ω,

i.e.,
H = L + pλ

i (t)dxi(t) ∧ ωλ (modified Legendrian duality),

permits to rewrite this new problem as

max
u(·),xt0

∫

Ω0,t0

[H(t, x(t), u(t), p(t))− pλ
i (t)dxi(t) ∧ ωλ]

subject to

u(t) ∈ U , p(t) ∈ P, ∀t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 .

Suppose that there exists a continuous control û(t) defined over the parallelepiped
Ω0,t0 , with û(t) ∈ IntU , which is an optimum point in the previous problem. Now
consider a variation u(t, ε) = û(t) + εh(t), where h is an arbitrary continuous vector
function. Since û(t) ∈ IntU and a continuous function over a compact set Ω0,t0 is
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bounded, there exists a number εh > 0 such that u(t, ε) = û(t)+ εh(t) ∈ IntU , ∀|ε| <
εh. This ε is used in our variational arguments.

Define the contact distribution corresponding to the control variable u(t, ε), i.e.,

dxi(t, ε) = Xi
α(t, x(t, ε), u(t, ε))dtα,∀t ∈ Ω0,t0

and x(0, ε) = x0. For |ε| < εh, we define the function

I(ε) =
∫

Ω0,t0

X(t, x(t, ε), u(t, ε))ω.

On the other hand, the control û(t) must be optimal. Therefore I(ε) ≤ I(0), ∀|ε| < εh.
For any continuous tensor function

p = (pα
i ) : Ω0,t0 → Rnm,

we have ∫

Ω0,t0

pλ
i (t)[Xi

α(t, x(t, ε), u(t, ε))dtα − dxi(t, ε)] ∧ ωλ = 0.

Necessarily, we must use the Lagrange m-form which includes the variations

L(t, x(t, ε), u(t, ε), p(t)) = X(t, x(t, ε), u(t, ε))ω

+pλ
i (t)[Xi

α(t, x(t, ε), u(t, ε))dtα − dxi(t, ε)] ∧ ωλ

and the associated function

I(ε) =
∫

Ω0,t0

L(t, x(t, ε), u(t, ε), p(t)).

Suppose that the costate variable p is of class C1. Also we introduce the control
Hamiltonian m-form

H(t, x(t, ε), u(t, ε), p(t)) = X(t, x(t, ε), u(t, ε))ω + pλ
i (t)Xi

α(t, x(t, ε), u(t, ε))dtα ∧ ωλ

corresponding to the variation. Then we rewrite

I(ε) =
∫

Ω0,t0

[H(t, x(t, ε), u(t, ε), p(t))− pλ
i (t)dxi(t, ε) ∧ ωλ].

To evaluate the multiple integral
∫

Ω0,t0

pλ
i (t)dxi(t, ε) ∧ ωλ,

we integrate by parts, via the formula

d(pλ
i xiωλ) = (xidpλ

i + pλ
i dxi) ∧ ωλ,

obtaining
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∫

Ω0,t0

pλ
i (t)dxi(t, ε) ∧ ωλ =

∫

Ω0,t0

d(pλ
i (t)xi(t, ε)ωλ)−

∫

Ω0,t0

dpλ
i (t)xi(t, ε) ∧ ωλ.

Now we apply the Stokes integral formula
∫

Ω0,t0

d(pλ
i (t)xi(t, ε)ωλ) =

∫

∂Ω0,t0

δαβpα
i (t)xi(t, ε)nβ(t)dσ,

where (nβ(t)) is the unit normal vector to the boundary ∂Ω0,t0 . Substituting, we find

I(ε) =
∫

Ω0,t0

[H(t, x(t, ε), u(t, ε), p(t)) + dpλ
j (t)xj(t, ε) ∧ ωλ]

−
∫

∂Ω0,t0

δαβpα
i (t)xi(t, ε)nβ(t)dσ.

Differentiating with respect to ε, it follows

I ′(ε) =
∫

Ω0,t0

[Hxj (t, x(t, ε), u(t, ε), p(t)) + dpλ
j (t) ∧ ωλ]xj

ε(t, ε)

+
∫

Ω0,t0

Hua(t, x(t, ε), u(t, ε), p(t))ha(t)−
∫

∂Ω0,t0

δαβpα
i (t)xi

ε(t, ε)n
β(t)dσ.

Evaluating at ε = 0, we find

I ′(0) =
∫

Ω0,t0

[Hxj (t, x(t), û(t), p(t)) + dpλ
j (t) ∧ ωλ]xj

ε(t, 0)

+
∫

Ω0,t0

Hua(t, x(t), û(t), p(t))ha(t)−
∫

∂Ω0,t0

δαβpα
i (t)xi

ε(t, 0)nβ(t)dσ.

where x(t) is the state variable corresponding to the optimal control û(t).
We need I ′(0) = 0 for all h(t) = (ha(t)). On the other hand, the functions xi

ε(t, 0)
are involved in the Cauchy-Pfaff problem

dxi
ε(t, 0) = Xαxj (t, x(t, 0), u(t))xj

ε(t, 0)dtα + Xαua(t, x(t, 0), u(t))ha(t)dtα,

t ∈ Ω0,t0 , xε(0, 0) = 0

and hence they depend on h(t). To overpass this confusion, we define P as the set of
solutions of the boundary value problem

div pj(t) = −H1xj (t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 , (4)

δαβpα
j (t)nβ(t)|

∂Ω0,t0
= 0 (orthogonality or tangency).

Therefore
H1ua(t, x(t), û(t), p(t)) = 0, ∀t ∈ Ω0,t0 . (5)

Moreover
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dxj(t) =
∂H1

∂pα
j

(t, x(t), û(t), p(t))dtα, ∀t ∈ Ω0,t0 , x(0) = x0. (6)

Remarks. (i) The algebraic system (5) describes the critical points of the Hamil-
tonian m-form with respect to the control variable. (ii) The PDEs (4), the contact
distribution (6) and the condition (5) are Euler-Lagrange distributions associated to
the new Lagrangian. (iii) Any ODE or PDE, written in the normal form, generates a
contact distribution.

Summarizing the previous reasonings we obtain a multitime maximum principle
similar to the single-time Pontryaguin maximum principle.

Theorem 1. (Multitime maximum principle; necessary conditions) Sup-
pose that the problem of maximizing the functional (1) subject to the contact distribu-
tion constraint (2) and to the conditions (3), with X, Xi

α of class C1, has an interior
solution û(t) ∈ U which determines the contact distribution (2). Then there exists a
C1 costate p(t) = (pα

i (t)) defined over Ω0,t0 such that the relations (4), (5), (6) hold.
Theorem 2. (Sufficient conditions) Consider the problem of maximizing the

functional (1) subject to the contact distribution constraint (2) and to the conditions
(3), with X, Xi

α of class C1. Suppose that an interior solution û(t) ∈ U and the
corresponding contact distribution (2) satisfy the relations (4), (5), (6). If for the
resulting costate variable p(t) = (pα

i (t)) the control Hamiltonian H(t, x, u, p) is jointly
concave in (x, u) for all t ∈ Ω0,t0 , then û(t) and the corresponding contact distribution
achieve the unique global maximum of (1).

Proof. Let us have in mind that we must maximize the functional (1) subject to
the evolution system (2) and the conditions (3). We fix a pair (x̂, û), where û is a
candidate optimal control and x̂ is a candidate optimal state. Calling Î the values of
the functional for (x̂, û), let us prove that

Î − I =
∫

Ω0,t0

(X̂ −X)ω ≥ 0,

where the strict inequality holds under strict concavity. Denoting Ĥ = H(x̂, p̂, û) and
H = H(x, p̂, u), we find

Î − I =
∫

Ω0,t0

(
(Ĥ − p̂λ

i dx̂i ∧ ωλ)− (H − p̂λ
i dxi ∧ ωλ)

)
.

Integrating by parts, we obtain

Î − I =
∫

Ω0,t0

(
(Ĥ + x̂idp̂λ

i ∧ ωλ)− (H + xidp̂λ
i ∧ ωλ)

)

+
∫

∂Ω0,t0

(δαβ p̂α
i (t)xi(t)nβ(t)− δαβ p̂α

i (t)x̂i(t)nβ(t))dσ.

Taking into account that any admissible sheet has the same initial and terminal
conditions as the optimal sheet, we derive

Î − I =
∫

Ω0,t0

(
(Ĥ −H) + (x̂i − xi)dp̂λ

i ∧ ωλ

)
.
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The definition of concavity implies
∫

Ω0,t0

(
(Ĥ −H) + (x̂i − xi)dp̂λ

i ∧ ωλ

)

≥
∫

Ω0,t0

(
(x̂i − xi)(

∂Ĥ

∂xi
+

∂p̂α
i

∂tα
ω) + (ûa − ua)

∂Ĥ

∂ua

)
= 0.

This last equality follows from that all ”̂ ” variables satisfy the conditions of the
multitime maximum principle. In this way, Î − I ≥ 0.

Theorem 3. (Sufficient conditions) Consider the problem of maximizing the
functional (1) subject to the contact distribution constraint (2) and to the conditions
(3), with X, Xi

α of class C1. Suppose that an interior solution û(t) ∈ U and the cor-
responding contact distribution satisfy the relations (4), (5), (6). Giving the resulting
costate variable p(t) = (pα

i (t)), we define M(t, x, p) = H(t, x, û(t), p). If M(t, x, p) is
concave in x for all t ∈ Ω0,t0 , then û(t) and the corresponding contact distribution
achieve the unique global maximum of (1).

Remark. The Theorems 2 and 3 can be extended immediately to incave func-
tionals.

Examples. 1) We consider the problem

max
u(·), x1

I(u(·)) = −
∫

Ω0,1

(x(t) + u1(t)2 + u2(t)2)dt1 ∧ dt2

subject to

dx(t) = uα(t)dtα, α = 1, 2, x(0, 0) = 0, x(1, 1) = x1 = free.

This problem means to find an optimal control u = (u1, u2) to bring the (PDE)
dynamical system from the origin x(0, 0) = 0 at two-time t1 = 0, t2 = 0 to a terminal
point x(1, 1) = x1, which is unspecified, at two-time t1 = 1, t2 = 1, such as to
maximize the objective functional. The control Hamiltonian 2-form is

H(x(t), u(t), p(t)) = −(x(t) + u1(t)2 + u2(t)2)dt1 ∧ dt2 + pλ(t)(uα(t)dtα) ∧ ωλ

= −(x(t) + u1(t)2 + u2(t)2)dt1 ∧ dt2 + pα(t)uα(t)dt1 ∧ dt2

= H1(x(t), u(t), p(t))dt1 ∧ dt2.

Since
∂H1

∂uα
= −2uα + pα,

∂2H1

∂u2
α

= −2 < 0,
∂2H1

∂uα∂uβ
= 0,

the critical point pα = 2uα is a maximum point. Then the PDE
∂pα

∂tα
= −∂H1

∂x
reduces

to
∂p1

∂t1
+

∂p2

∂t2
= 1. Under the transversality condition

p1(t)n1(t) + p2(t)n2(t)|∂Ω0,1
= 0,

this PDE has an infinity of solutions.
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Consequently the optimal control u(t) = (u1(t), u2(t)) is solution of PDE
∂u1

∂t1
+

∂u2

∂t2
= 1 satisfying the boundary conditions u1(0, t2) = u1(1, t2) = 0, u2(t1, 0) =

u2(t1, 1) = 0.
Case 1. If the Pfaff equation dx(t) = uα(t)dtα is completely integrable, i.e.,

∂u1

∂t2
=

∂u2

∂t1
, then the components of the optimal control are harmonic functions.

Also the dynamical system dx = u1(t)dt1 + u2(t)dt2, equivalent to the PDE system
∂x

∂tα
(t) = uα(t), gives x(t)− x(0) =

∫

Γ0,t

u1(s)ds1 + u2(s)ds2.

Case 2. If the Pfaff equation dx(t) = uα(t)dtα is not completely integrable, then

x(t)− x(0) =
∫

Γ0,t

u1(s)ds1 + u2(s)ds2 depends on the path Γ0,t : sα = sα(τ), i.e.,

∂x

∂tα
(t(τ))− uα(t(τ)) = µα(τ), µα(τ)

dtα

dτ
(τ) = 0.

2) We consider the problem

max
u(·), x1

I(u(·)) = −1
2
x(1, 1)2 − 1

2

∫

Ω0,1

(u1(t)2 + u2(t)2)dt1 ∧ dt2

subject to

dx(t) = −uα(t)dtα, α = 1, 2, x(0, 0) = 1.

This problem means to find an optimal control u = (u1, u2) to bring the (PDE)
dynamical system from the point x(0, 0) = 1 at two-time t1 = 0, t2 = 0 to a terminal
point x(1, 1) = x1, at two-time t1 = 1, t2 = 1, such as to maximize the objective
functional. The control Hamiltonian 2-form is defined by

H1(x(t), u(t), p(t)) = −1
2
(u1(t)2 + u2(t)2)− pα(t)uα(t).

Since
∂H1

∂uα
= −uα − pα,

∂2H1

∂u2
α

= −1 < 0,
∂2H1

∂uα∂uβ
= 0,

the critical point pα = −uα is a maximum point. Then the PDE
∂pα

∂tα
= −∂H

∂x
= 0

reduces to
∂p1

∂t1
+

∂p2

∂t2
= 0. The transversality condition implies

p1(t)n1(t) + p2(t)n2(t)|∂Ω0,1
= 0.

Consequently the optimal control u(t) = (u1(t), u2(t)) is solution of PDE
∂u1

∂t1
+

∂u2

∂t2
= 0 satisfying the boundary conditions u1(0, t2) = u1(1, t2) = 0, u2(t1, 0) =

u2(t1, 1) = 0.
Case 1. If the Pfaff equation dx(t) = −uα(t)dtα is completely integrable, i.e.,

∂u1

∂t2
=

∂u2

∂t1
, then the components of the optimal control are harmonic functions.
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Also the dynamical system dx = −u1(t)dt1− u2(t)dt2, equivalent to the PDE system
∂x

∂tα
(t) = −uα(t), gives x(t)− x(0) = −

∫

Γ0,t

u1(s)ds1 + u2(s)ds2.

Case 2. If the Pfaff equation dx(t) = −uα(t)dtα is not completely integrable, then

x(t)− x(0) = −
∫

Γ0,t

u1(s)ds1 + u2(s)ds2 depends on the path tα = tα(τ), i.e.,

∂x

∂tα
(t(τ)) + uα(t(τ)) = µα(τ), µα(τ)

dtα

dτ
(τ) = 0.

2 Contact distribution constrained optimization
problem with curvilinear integral cost functional

The cost functionals of mechanical work type are very important for applications
[10]-[20]. Extending our point of view in [19], let us analyze a multi-time optimal con-
trol problem formulated using as cost functional a curvilinear integral and a contact
distribution constraint:

max
u(·),xt0

J(u(·)) =
∫

Γ0,t0

X0
α(t, x(t), u(t))dtα (7)

subject to

dxi(t) = Xi
α(t, x(t), u(t))dtα, i = 1, ..., n; α = 1, ..., m, (8)

u(t) ∈ U , ∀t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 . (9)

Ingredients: t = (tα) ∈ Rm
+ is the multi-parameter of evolution or multitime; Γ0,t0

is a C1 curve joining the diagonal opposite points 0 = (0, ..., 0) and t0 = (t10, ..., t
m
0 )

in Ω0,t0 ; x : Ω0,t0 → Rn, x(t) = (xi(t)) is a C2 state vector; u : Ω0,t0 → U ⊂
Rk, u(t) = (ua(t)), a = 1, ..., k is a continuous control vector; the running cost
η = X0

α(t, x(t), u(t))dtα is a nonautonomous Lagrangian 1-form; the vector fields
Xi

α(t, x(t), u(t)) are of class C1; the Pfaff equations (8) define a contact distribution.
Introducing a costate 1-form or Lagrange multiplier 1-form p = pi(t)dxi, we obtain

a new Lagrange 1-form

L(t, x(t), u(t), p(t)) = X0
α(t, x(t), u(t))dtα + pi(t)[Xi

α(t, x(t), u(t))dtα − dxi(t)].

The contact distribution constrained optimization problem (7)-(9) can be replaced by
another optimization problem

max
u(·), xt0

∫

Γ0,t0

L(t, x(t), u(t), p(t))

subject to

u(t) ∈ U , p(t) ∈ P, ∀t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 ,

where the set P will be defined later. If we use the control Hamiltonian 1-form

H(t, x(t), u(t), p(t)) = X0
α(t, x(t), u(t))dtα + pi(t)Xi

α(t, x(t), u(t))dtα,
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H = L + pidxi (modified Legendrian duality),

we can rewrite

max
u(·),xt0

∫

Γ0,t0

[H(t, x(t), u(t), p(t))− pi(t)dxi(t)]

subject to

u(t) ∈ U , p(t) ∈ P, ∀t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 .

Suppose that there exists a continuous control û(t) defined over Ω0,t0 with û(t) ∈
IntU which is optimum in the previous problem. Now consider a variation u(t, ε) =
û(t) + εh(t), where h is an arbitrary continuous vector function. Since û(t) ∈ IntU
and a continuous function over a compact set Ω0,t0 is bounded, there exists a number
εh > 0 such that u(t, ε) = û(t) + εh(t) ∈ IntU , ∀|ε| < εh. This ε is used in the next
variational arguments.

Let us consider an arbitrary vector function h(t) and define the contact distribution
corresponding to the control variable u(t, ε), i.e.,

dxi(t, ε) = Xi
α(t, x(t, ε), u(t, ε))dtα,∀t ∈ Ω0,t0 , x(0, ε) = x0.

For |ε| < εh, we define the function

J(ε) =
∫

Γ0,t0

X0
α(t, x(t, ε), u(t, ε))dtα.

On the other hand, the control û(t) is supposed to be optimal. Therefore J(ε) ≤
J(0), ∀|ε| < εh.

For any continuous 1-form p = (pi) : Ω0,t0 → Rn, we have
∫

Γ0,t0

pi(t)[Xi
α(t, x(t, ε), u(t, ε))dtα − dxi(t, ε)] = 0.

The variations determine the Lagrange 1-form

L(t, x(t, ε), u(t, ε), p(t)) = X0
α(t, x(t, ε), u(t, ε))dtα

+pi(t)[Xi
α(t, x(t, ε), u(t, ε))dtα − dxi(t, ε)]

and the function
J(ε) =

∫

Γ0,t0

L(t, x(t, ε), u(t, ε), p(t)).

Suppose that the costate p is of class C1. Also we introduce the control Hamilto-
nian 1-form

H(t, x(t, ε), u(t, ε), p(t)) = X0
α(t, x(t, ε), u(t, ε))dtα + pi(t)Xi

α(t, x(t, ε), u(t, ε))dtα.

Then we rewrite

J(ε) =
∫

Γ0,t0

[H(t, x(t, ε), u(t, ε), p(t))− pi(t)dxi(t, ε)].
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To evaluate the curvilinear integral
∫

Γ0,t0

pi(t)dxi(t, ε),

we integrate by parts, via
d(pix

i) = xidpi + pidxi,

obtaining
∫

Γ0,t0

pi(t)dxi(t, ε) = (pi(t)xi(t, ε))|t00 −
∫

Γ0,t0

xi(t, ε)dpi(t).

Substituting, we get the function

J(ε) =
∫

Γ0,t0

[H(t, x(t, ε), u(t, ε), p(t)) + dpj(t)xj(t, ε)]− (pi(t)xi(t, ε))|t00 .

It follows
J ′(ε) =

∫

Γ0,t0

[Hxj (t, x(t, ε), u(t, ε), p(t)) + dpj(t)]xj
ε(t, ε)

+
∫

Γ0,t0

Hua(t, x(t, ε), u(t, ε), p(t))ha(t)− pi(t0)xi
ε(t0, ε) + pi(0)xi

ε(0, ε).

Evaluating at ε = 0, we find

J ′(0) =
∫

Γ0,t0

[Hxj (t, x(t), û(t), p(t)) + dpj(t)]xj
ε(t, 0)

+
∫

Γ0,t0

Hua(t, x(t), û(t), p(t))ha(t)− pi(t0)xi
ε(t0, 0),

where x(t) is the state variable corresponding to the optimal control û(t). We need
J ′(0) = 0 for all h(t) = (ha(t)). Therefore we are forced to define P via the contact
distribution terminal value problem

dpj(t) = − ∂H

∂xj
(t, x(t), û(t), p(t)), ∀t ∈ Γ0,t0 ; pj(t0) = 0. (10)

Consequently
Hua(t, x(t), û(t), p(t)) = 0, ∀t ∈ Γ0,t0 . (11)

Moreover
dxj(t) =

∂H

∂pj
(t, x(t), û(t), p(t)), ∀t ∈ Γ0,t0 ; x(0) = x0. (12)

Remarks. (i) The algebraic system (11) describes the common critical points of
the functions Hα with respect to the control variable. (ii) The contact distributions
(10), (12) and the relation (11) are Euler-Lagrange distributions associated to the
new Lagrangian 1-form.

Summarizing, we obtain a new variant of multitime maximum principle.
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Theorem 4. (Simplified multitime maximum principle; necessary con-
ditions) Suppose that the problem of maximizing the functional (7) subject to the
contact distribution constraint (8) and to the conditions (9), with X0

α, Xi
α of class C1,

has an interior solution û(t) ∈ U which determines the contact distribution (8). Then
there exists a C1 costate p(t) = (pi(t)) defined over Γ0,t0 such that the relations (10),
(11), (12) hold.

Theorem 5. (Sufficient conditions) Consider the problem of maximizing the
functional (7) subject to the contact distribution constraint (8) and to the conditions
(9), with X0

α, Xi
α of class C1. Suppose that an interior solution û(t) ∈ U and the

corresponding contact distribution satisfy the relations (10), (11), (12). If for the
resulting costate variable p(t) = (pi(t)) the control Hamiltonian 1-form H(t, x, u, p)
is jointly concave in (x, u) for all t ∈ Γ0,t0 , then û(t) and the corresponding contact
distribution achieve the unique global maximum of (7).

Theorem 6. (Sufficient conditions) Consider the problem of maximizing the
functional (7) subject to the contact distribution constraint (8) and to the conditions
(9), with X0

α, Xi
α of class C1. Suppose that an interior solution û(t) ∈ U and the corre-

sponding contact distribution satisfy the relations (10), (11), (12). Giving the resulting
costate variable p(t) = (pi(t)), we define the 1-form M(t, x, p) = H(t, x, û(t), p). If
the 1-form M(t, x, p) is concave in x for all t ∈ Γ0,t0 , then û(t) and the corresponding
contact distribution achieve the unique global maximum of (7).

Remark. The Theorems 5 and 6 can be extended immediately to incave func-
tionals.

Example. Let t = (t1, t2) ∈ Ω0,1, where 0 = (0, 0), 1 = (1, 1) are diagonal opposite
points in Ω0,1. Denote by Γ0,1 a piecewise C1 curve joining the points 0 and 1. We
consider the problem

max
u(·), x1

J(u(·)) = −
∫

Γ0,1

(x(t) + uβ(t)2)dtβ

subject to

dx(t) = uα(t)dtα, α = 1, 2, x(0, 0) = 0, x(1, 1) = x1 = free.

This problem means to find an optimal control u = (u1, u2) to bring the Pfaff dynam-
ical system from the origin x(0, 0) = 0 at two-time t1 = 0, t2 = 0 to a terminal point
x(1, 1) = x1, which is unspecified, at two-time t1 = 1, t2 = 1, such as to maximize the
objective functional.

The control Hamiltonian 1-form is

H(x(t), u(t), p(t)) = (−(x(t) + uβ(t)2) + p(t)uβ(t))dtβ .

We accept that it is enough to work with the components

Hβ(x(t), u(t), p(t)) = −(x(t) + uβ(t)2) + p(t)uβ(t).

Since
∂Hβ

∂uβ
= −2uβ + p,

∂2Hβ

∂u2
β

= −2 < 0,
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the critical point u1 = u2 =
p

2
is a maximum point. Then the Pfaff equation dp(t) =

−∂H

∂x
is a completely integrable equation dp(t) = dt1 + dt2. Also, since the point

x(1, 1) = x1 is unspecified, the transversality condition implies p(1) = 0. It follows

the costate p(t) = t1 + t2 − 2, the optimal control û1(t) = û2(t) =
1
2
(t1 + t2 − 2) and

the corresponding evolution

x(t) =
(t1)2 + (t2)2

4
+

t1t2

2
− (t1 + t2).

Remark. In our example, the complete integrability conditions

∂x

∂t1
+ 2u2

∂u2

∂t1
=

∂x

∂t2
+ 2u1

∂u1

∂t2
,

∂u1

∂t2
=

∂u2

∂t1

are satisfied. Consequently, the curve Γ0,1 is arbitrary.

3 Multitime maximum principle approach of
variational calculus

It is well known that the single-time Pontryaguin’s maximum principle is a general-
ization of the Lagrange problem in the single-time variational calculus and that these
problems are equivalent when the control domain is open [7]. Does this property sur-
vive for multitime maximum principle? This problem has a positive answer in the case
of complete integrability conditions [10]-[20], i.e., the multitime maximum principle
motivates the multitime Euler-Lagrange or Hamilton PDEs.

The aim of this Section is to discuss this problem in case of the nonintegrability
of the running cost 1-form and of constraint distribution. For that, suppose that the
evolution system is reduced to a contact distribution system

dxi(t) = ui
α(t)dtα, x(0) = x0, t ∈ Ω0,t0 ⊂ Rm

+ , (CDS)

and the functional is a path dependent curvilinear integral

J(u(·)) =
∫

Γ0,t0

X0
β(x(t), u(t))dtβ , (J)

where Γ0,t0 is a piecewise C1 curve joining the points 0 and t0, the running cost
η = X0

β(x(t), u(t))dtβ is a C1 1-form and u = (ui
γ).

The associated basic control problem leads necessarily to the multi-time maximum
principle. Therefore, to solve it we need the control Hamiltonian 1-form

H(x, p0, p, u) = (X0
β(x, u) + piu

i
β)dtβ

and the adjoint distribution

dpi(t) = −∂X0
β

∂xi
(x(t), u(t))dtβ . (ADJ)
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Suppose the multitime maximum principle is applicable:

∂

∂ui
γ

H =
∂X0

β

∂ui
γ

dtβ + pidtγ = 0 or pidtγ = −∂X0
β

∂ui
γ

dtβ . (13)

Suppose the functions X0
β are dependent on x (a strong condition!). Then the Pfaff

equations from (ADJ) show that

pi(t) = pi(0)−
∫

Γ0,t

∂X0
β

∂xi
(x(s), u(s))dsβ , (14)

where Γ0,t is a piecewise C1 curve included in the curve Γ0,t0 .

3.1 Euler-Lagrange exterior system

Let η = X0
β(x(t), u(t))dtβ be a C2 1-form. From the relation (13), we find

dpi ∧ dtγ = −d

(
∂X0

β

∂ui
γ

)
∧ dtβ .

Now, using the Pfaff equations (ADJ), we obtain the Euler-Lagrange exterior equa-
tions (

∂X0
λ

∂xi
δγ
β −

∂

∂tλ

(
∂X0

β

∂ui
γ

))
dtλ ∧ dtβ = 0.

Now we change our point of view. From the relations (13) and (14), it follows an
integro-Pfaff equation

−∂X0
β

∂xi
γ

(x(t), u(t))dtβ = pi(0)dtγ − dtγ
∫

Γ0,t

∂X0
λ

∂xi
(x(s), u(s))dsλ.

Giving the parametrization Γ0,t0 : sα = sα(τ), we rewrite

−∂X0
β

∂xi
γ

(x(t(τ)), u(t(τ)))

= δγ
β

(
pi(0)−

∫ τ

0

∂X0
λ

∂xi
(x(s(τ)), u(s(τ)))

dsλ

dτ
(τ)dτ

)
+ µγ

β(τ),

where

µγ
β(τ)

dtβ

dτ
(τ) = 0.

Also
ui

α(t(τ)) = xi
α(t(τ)) + νi

α(τ),

with
νi

α(τ)
dtα

dτ
(τ) = 0.

Suppose that X0
β are functions of class C2. Then we can apply the operator

d

dτ
,

transforming the previous equality into an Euler-Lagrange like ODE system.
Remark. The curve Γ0,t0 can be included in the control. For related theory, see

[5].
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3.2 Conversion to multi-time Hamilton-Pfaff equations
(canonical variables)

Let u(·) be an optimal control, x(·) the optimal evolution, and p(·) be the solution
of (ADJ) which corresponds to u(·) and x(·). The control Hamiltonian 1-form H =
X0

βdtβ + pju
j
βdtβ must satisfy

∂H

∂ui
γ

= pidtγ +
∂X0

β

∂ui
γ

dtβ = 0.

This relation defines the costate p as a moment along the curve Γ0,t. Suppose
that the critical point condition admits a unique solution that satisfies ui

γ(t)dtγ =
ui

γ(x(t), p(t))dtγ = dxi(t). Then, using a path dependent curvilinear integral, we can
write

xi(t) = xi(0) +
∫

Γ0,t

ui
γ(x(s), p(s))dsγ ,

where Γ0,t is a piecewise C1 curve included in the curve Γ0,t0 . On the other hand

∂H

∂pi
=

∂X0
β

∂uj
γ

dtβ
∂uj

γ

∂pi
+ ui

βdtβ + pj

∂uj
β

∂pi
dtβ = ui

βdtβ

or

dxi(t) =
∂H

∂pi
(x(t), p(t), u(t)).

Now, the relation

−∂H

∂xi
= −

(
∂X0

β

∂xi
dtβ +

∂X0
β

∂uj
γ

dtβ
∂uj

γ

∂xi

)
− pj

∂uj
β

∂xi
dtβ

and (ADJ) shows

dpi(t) = −∂H

∂xi
(x(t), p(t), u(t)).

In this way we find the canonical variables x, p and the multitime Hamilton-Pfaff
equations

dxi(t) =
∂H

∂pi
(x(t), p(t)), dpi(t) = −∂H

∂xi
(x(t), p(t)),

along the curve Γ0,t.
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[12] C. Udrişte, I. Ţevy, Multi-Time Euler-Lagrange-Hamilton Theory, WSEAS
Transactions on Mathematics, 6, 6 (2007), 701-709.
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