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Abstract. This paper interrelates the performance criteria involving path
independent curvilinear integrals, the multitime maximum principle, the
multitime Hamilton-Jacobi-Bellman PDEs and the multitime dynamic
programming, to study the linear-quadratic regulator problems and to
characterize the optimal control by means of multitime variant of the Ric-
cati PDE that may be viewed as a feedback law.

Section 1 recalls the theory of an optimal control problem with curvi-
linear integral cost functional, the notion of maximum value function
and the multitime Hamilton-Jacobi-Bellman PDEs. It explains also the
connections between dynamic programming and the multitime maximum
principle. Section 2 solves the linear-quadratic regulator problem via mul-
titime maximum principle. Section 3 describes the linear-quadratic regu-
lator problem via multitime Hamilton-Jacobi-Bellman PDEs.
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1 Multitime optimal control problem and
Hamilton-Jacobi-Bellman PDEs

We introduce a multitime dynamic programming method based on multitime Hamilton-
Jacobi-Bellman PDEs. These PDEs are equivalent to multitime Hamilton PDEs sys-
tem and the multitime maximum principle.

1.1 Optimal control problem with running cost and
terminal cost

The cost functionals of mechanical work type are very important for applications, but
few researchers refer to them. In spite of mathematical difficulties, a systematic study
of this kind of functionals was realized recently by our research group [9]-[21].
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A multitime optimal control problem, where the cost functional is the sum between
a path independent curvilinear integral and a function of the final event, and the
evolution PDE is an m-flow, has the form [20]

max
u(·)

P (u(·)) =
∫

Γ0,t0

X0
α(t, x(t), u(t))dtα + g(x(t0))

subject to

∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n; α = 1, ...,m,

u(t) ∈ U , t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 .

This problem requires the following data: the multitime (multi-parameter of evolu-
tion) t = (tα) ∈ Rm

+ ; an arbitrary C1 curve Γ0,t0 joining the diagonal opposite points
0 = (0, ..., 0) and t0 = (t10, ..., t

m
0 ) in the parallelepiped Ω0,t0 = [0, t0] (multi-time

interval) in Rm
+ ; a C2 state vector x : Ω0,t0 → Rn, x(t) = (xi(t)); a C1 control vector

u : Ω0,t0 → U ⊂ Rk, u(t) = (ua(t)), a = 1, ..., k; a running cost X0
α(t, x(t), u(t))dtα as

a nonautonomous closed (completely integrable) Lagrangian 1-form, i.e., it satisfies
DβX0

α = DαX0
β (Dα is the total derivative operator) or

(
∂X0

α

∂ua
δγ
β −

∂X0
β

∂ua
δγ
α

)
∂ua

∂tγ
= Xi

α

∂X0
β

∂xi
−Xi

β

∂X0
α

∂xi
+

∂X0
β

∂tα
− ∂X0

α

∂tβ
;

the terminal cost functional g(x(t0)); the C1 vector fields Xα = (Xi
α) satisfying the

complete integrability conditions (m-flow type problem), i.e., DβXα = DαXβ or
(

∂Xα

∂ua
δγ
β −

∂Xβ

∂ua
δγ
α

)
∂ua

∂tγ
= [Xα, Xβ ] +

∂Xβ

∂tα
− ∂Xα

∂tβ
,

where [Xα, Xβ ] means the bracket of vector fields. Some of the previous hypothesis se-
lect the set of all admissible controls (satisfying the complete integrability conditions,
eventually a.e.)

U =
{

u : Rm
+ → U

∣∣ DβX0
α = DαX0

β , DβXα = DαXβ , a.e.
}

.

The previous PDE evolution system is equivalent to the path-independent curvi-
linear integral equation

x(t) = x(0) +
∫

γ0,t

Xα(s, x(s), u(s))dsα,

where γ0,t is an arbitrary piecewise C1 curve joining the opposite diagonal points 0
and t of the parallelepiped Ω0,t = [0, t] ⊂ Ω0,t0 = [0, t0].

It is possible to show that in the multitime optimal control problems it is enough
to use increasing curves.

Definition. A piecewise C1 curve γ0,t0 : sα = sα(τ), τ ∈ [τ0, τ1], s(τ0) =
0, s(τ1) = t0 is called increasing if the tangent vector (ṡα) satisfies (ṡα) ≥ 0, where
the equality is true only at isolated points.
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If we use the control Hamiltonian 1-form

Hα(t, x(t), u(t), p(t)) = X0
α(t, x(t), u(t)) + pi(t)Xi

α(t, x(t), u(t)),

we can formulate the simplified multitime maximum principle [20].
Theorem 1. Suppose that the previous problem, with X0

α, Xi
α of class C1, has an

interior solution û(t) ∈ U which determines the m-sheet of state variable x(t). Then
there exists a C1 costate p(t) = (pi(t)) defined over Ω0,t0 such that the relations

∂pj

∂tα
(t) = −∂Hα

∂xj
(t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 ; pj(t0) = 0

∂xj

∂tα
(t) =

∂Hα

∂pj
(t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 ; x(0) = x0

and
Hαua(t, x(t), û(t), p(t)) = 0, ∀t ∈ Ω0,t0

hold.

1.2 Maximum value functions and multitime Hamilton-Jacobi-
Bellman PDEs

Let us analyze the previous optimal control problem from Bellman point of view. We
vary the starting multitime and the initial points (all possible choices of starting times
and all possible initial points); for convenience, let say, t ∈ Ω0,t0 , x ∈ Rn. We obtain
a family of similar problems

∂xi

∂sα
(s) = Xi

α(s, x(s), u(s)), x(t) = x, s ∈ Ωt,t0 ⊂ Rm
+

with the terminal cost

Px,t(u(·)) =
∫

Γt,t0

X0
α(s, x(s), u(s))dsα + g(x(t0)).

Suppose the cost defines the maximum value function

v(x, t) = max
u(·)∈U

Px,t(u(·)), x ∈ Rn, t ∈ Ω0,t0 ,

which satisfies the terminal condition v(x, t0) = g(x). If the maximum value function
v(x, t) satisfies some regularity conditions, then it is solution of special nonlinear PDEs
system.

Theorem 2. Suppose v(x, t) is a C2 function. Then it is the solution of the
multitime Hamilton-Jacobi-Bellman PDEs system

(mtHJB)
∂v

∂tβ
(x, t) + max

u∈U

{
∂v

∂xi
(x, t)Xi

β(t, x, u) + X0
β(t, x, u)

}
= 0

with the terminal condition
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(t0) v(x, t0) = g(x), x ∈ Rn.

The proof of this Theorem will be given in a furthercoming paper.
Remarks. 1) The (mtHJB) PDEs system is in fact of the form

∂v

∂tβ
(x, t) + Hβ

(
t, x,

∂v

∂x
(x, t)

)
= 0, x ∈ Rn, t ∈ Ω0,t0 ,

where Hβ = pi(t)Xi
β(t, x, u) + X0

β(t, x, u) is the control Hamiltonian 1-form.
2) Since the initial evolution PDE system is completely integrable, the (mtHJB)

system is completely integrable.
3) Complementary results regarding the Hamilton-Jacobi-Bellman PDEs system

can be found in [1]-[8]. Also, some ideas from [22]-[24] can be involved in this theory.

1.3 Connections between dynamic programming and
the multitime maximum principle

We start with the multitime evolutionary dynamics

(PDE)
∂xi

∂sα
(s) = Xi

α(s, x(s), u(s)), t ≤ s ≤ t0

and the cost functional

(P ) Px,t(u(·)) =
∫

γt,t0

X0
β(s, x(s), u(s))dsβ + g(x(t0)).

Suppose the cost produces the maximum value function

v(x, t) = max
u(·)∈U

Px,t(u(·)).

The costate p in the multitime maximum principle is in fact the gradient with
respect to x of the maximum value function v, taken along an optimal m-sheet.

Theorem 3 (costate and gradient). Suppose u∗(·), x∗(·) is a solution of the
control problem (PDE), (P ). If the maximum value function v is of class C2, then the
costate p∗(·) = (p∗i(·)), which appears in the multitime maximum principles, is given
by

p∗i(s) =
∂v

∂xi
(x∗(s), s), t ≤ s ≤ t0.

The proof of this Theorem will be given in a furthercoming paper.

2 Linear-quadratic regulator problem via multitime
maximum principle

The theory of multitime optimal control is concerned with operating a PDEs dynamic
system at minimum cost. The case where the evolution is described by a set of first
order linear PDEs and the cost is described by a quadratic functional is called the
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linear-quadratic regulator problem. One of the main results is that the solution of the
linear-quadratic regulator problem is based on a feedback controller.

Let us accept that the evolution is given by the multitime linear control system

∂x

∂tα
(t) = Mα(t)x(t) + Nα(t)uα(t),

t = (tα) ∈ Rm
+ ; Mα ∈Mn×n; Nα ∈Mn×k, α = 1, . . . , m,

under the piecewise complete integrability conditions for the system and for its asso-
ciated homogeneous system. The objective is to maximize

P (u(·)) = −1
2
x(t0)T Sx(t0)− 1

2

∫

γ0,t0

(
x(t)T Qα(t)x(t) + uα(t)T R(t)uα(t)

)
dtα,

where T denotes transposition, S is a constant symmetric positive semi-definite ma-
trix, R(t) is a symmetric positive definite matrix, Qα(t) are symmetric positive semi-
definite matrices and

(
x(t)T Qα(t)x(t) + uα(t)T R(t)uα(t)

)
dtα

is a closed 1-form.
The Hamiltonian 1-form is

Hα = −1
2
(x(t)T Qα(t)x(t) + uα(t)T R(t)uα(t)) + p(t)T (Mα(t)x(t) + Nα(t)uα(t)).

Then
∂x

∂tα
(t) =

∂Hα

∂p
= Mα(t)x(t) + Nα(t)uα(t)

∂p

∂tα
(t) = −∇xHα = Qα(t)x(t)−Mα(t)T p(t), p(t0) = Sx(t0)

Hαuβ
= (−R(t)uα(t) + Nα(t)T p(t))δαβ = 0.

It follows
uα(t) = R(t)−1Nα(t)T p(t)

and
∂x

∂tα
(t) = Mα(t)x(t) + Nα(t)R(t)−1Nα(t)T p(t).

We can justify the existence of a quadratic matrix K(t) such that

p(t) = K(t)x(t).

This gives the feed-back control law

u∗α(t) = R(t)−1Nα(t)T K(t)x(t).

We obtain
∂x

∂tα
(t) =

(
Mα(t) + Nα(t)R(t)−1Nα(t)T K(t)

)
x(t).

On the other hand
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∂p

∂tα
(t) =

∂K

∂tα
(t)x(t) + K(t)

∂x

∂tα
(t)

=
(

∂K

∂tα
(t) + K(t)

(
Mα(t) + Nα(t)R(t)−1Nα(t)T K(t)

))
x(t).

But
∂p

∂tα
(t) = (Qα(t)−Mα(t)T K(t))x(t).

Equating, we find

[
∂K

∂tα
(t)+K(t)Nα(t)R(t)−1Nα(t)T K(t)+K(t)Mα(t)+Mα(t)T K(t))−Qα(t)]x(t) = 0

On the other hand x(t) is arbitrary, since this relation holds for arbitrary choice of
initial state x(0) and K(t) does not depend upon the initial state vector. It follows
the Riccati PDEs

∂K

∂tα
(t) + K(t)Nα(t)R(t)−1Nα(t)T K(t) + K(t)Mα(t) + Mα(t)T K(t))−Qα(t) = 0

K(t0) = −S.

This PDE can be solved backward in multitime from t0 to 0 with the Kalman matrices
R(t)−1Nα(t)T K(t) stored in order to obtain the feedback control law. The convexity
of each Hα shows that u∗α(t) is a unique maximizer.

The solution K(t) of Riccati PDEs is symmetric since it and the transpose K(t)T

satisfy the same PDE and the same terminal condition. If the matrix S is positive
definite, then the matrix K(t0) is positive definite and K(t) is also positive definite
for each t ∈ [0, t0].

Theorem 4. Suppose the linear regulator problem is formulated for unbounded
uα(t), specified t0, positive semidefinite matrices S, Qα(t), and positive definite matrix
R(t). Then there exists a unique optimal feedback control

u∗α(t) = R(t)−1Nα(t)T K(t)x(t),

where K(t) is the unique solution of the Riccati PDEs satisfying the given boundary
condition.

Remark. Instead the matrix R(t) we can use a set of matrices Rα(t), α = 1, ..., m.

Example. Let us consider the dynamic PDEs system

∂x

∂tα
(t) = −aαx(t)− uα(t), x(0) = x0, α = 1, 2

and the objective functional

P (u(·)) = −1
2

∫

γ0,∞

(
qαx(t)2 + rαuα(t)2

)
dtα, qα, rα > 0, α = 1, 2,

under the complete integrability conditions
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a2u1 = a1u2,
∂u2

∂t1
=

∂u1

∂t2

−q2a1x
2 − q2u1 + r2u2

∂u2

∂t1
= −q1a2x

2 − q1u2 + r1u1
∂u1

∂t2
.

For the maximization, we use the Hamiltonian 1-form (with t omitted)

Hα = −1
2
(qαx2 + rαu2

α) + p(−aαx− uα).

The optimal policy, obtained from
∂Hα

∂uα
= 0, is u∗α = − p

rα
, r1u

∗
1 = r2u

∗
2. Applying

for p(t) = kx(t), k = const > 0, i.e., u∗α = − k

rα
x(t), the Riccati PDEs system is

reduced to an algebraic system

k2 − 2rαaαk − rαqα = 0, α = 1, 2

with the solution

k =
r1q1 − r2q2

r2a2 − r1a1
, (r1q1 − r2q2)(r2a2 − r1a1) > 0.

Writing this solution in the form

k = aαrα + rα

√
a2

α +
qα

rα

and denoting bα =
√

a2
α +

qα

rα
, we obtain

k = (aα + bα)rα, u∗α = −(aα + bα)x(t),
∂x

∂tα
(t) = −bαx(t)

and the optimal solution is

x∗(t) = x0e
−bαtα

, u∗(t) = (aα + bα)x0e
−bαtα

.

Commentary. Consider a country with a foreign debt of x(t) dollars and a re-
payment policy u(t) at ”two time” t = (t1, t2). We can formulate the previous optimal
problem. It follows the optimal repayment policy and the resulting debt which de-
creases at the exponential rate (b1, b2) over two-time.

3 Linear-quadratic regulator problem via multitime
Hamilton-Jacobi-Bellman PDEs

We formulate again a linear-quadratic regulator problem using the matrices

Mα, Qα, S ∈Mn×n; Nα ∈Mn×k; Rα ∈Mr×r,

where Qα, Rα, S are symmetric positive semi-definite matrices and Rα are invertible
(positive definite) matrices. The idea is to minimize the quadratic cost functional
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P (u(·)) =
1
2
x(t0)T Sx(t0) +

1
2

∫

γt,t0

(
x(s)T Qα(s)x(s) + uα(s)T Rα(s)uα(s)

)
dsα,

over the multitime linear dynamics

∂x

∂sα
(s) = Mα(s)x(s) + Nα(s)uα(s), t ≤ s ≤ t0, x(t) = x,

knowing that the complete integrability conditions for the curvilinear integral and
for evolution PDEs are satisfied, and the control values uα are unconstrained, i.e.,
the control parameter values can range over all Rr+m. In other words, we want to
maximize the cost functional

Px,t(u(·)) = −1
2
x(t0)T Sx(t0)

−1
2

∫

γt,t0

(
x(s)T Qα(s)x(s) + uα(s)T Rα(s)uα(s)

)
dsα,

with a normal linear PDEs system as constraint.
To design an optimal control we use the associated dynamic programming problem

and its solution. Denoting

Xα = Mαx + Nαuα, X0
α = −xT Qαx− uT Rαuα, g = −xT Sx,

we build the multitime Hamilton-Jacobi-Bellman PDEs system (mtHJB)

∂v

∂tα
(x, t) + max

u∈Rr+m

{
(∇v)T Nαuα − uT

αRαuα

}
+ (∇v)T Mαx− xT Qαx = 0,

with the terminal condition v(x, t0) = −x(t0)T Sx(t0).
Maximization. Having in mind that each matrix Rα(t) is positive semidefinite,

the maximum
max

u∈Rr+m

{
(∇v)T Nαuα − uT

αRαuα

}

is attained at the point u = (uα), where uα is a critical point of the function

ψα = (∇v)T Nαuα − uT
αRαuα.

Solving the equation
∂ψα

∂uα
= 0, i.e., (∇v)T Nα − uT

αRα = 0, we find

uα =
1
2
R−1

α NT
α∇v.

This is the optimal control, under the hypothesis that there exist the function v
satisfying (mtHJB) PDEs with terminal condition (t0).

Finding the maximum value function. Replacing uα =
1
2
R−1

α NT
α∇v into

(mtHJB) PDEs, we obtain the problem

∂v

∂tα
+

1
4
(∇v)T NαR−1

α NT
α∇v + (∇v)T Mαx− xT Qαx = 0
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v(x, t0) = −xT (t0)Sx(t0).

Let us look for a solution of the form v(x, t) = xT K(t)x, i.e., we try to find a symmetric
n×n matrix of functions K(t) such that v(x, t) is a solution of the problem (mtHJB).

Since
∂v

∂tα
= xT ∂K

∂tα
x and ∇xv = 2K(t)x, the (mtHJB) becomes

xT

(
∂K

∂tα
(t) + K(t)Nα(t)R−1

α (t)NT
α (t)K(t) + 2K(t)Mα(t)−Qα(t)

)
x = 0.

On the other hand,

2xT KMαx = xT KMαx + (xT KMαx)T = xT KMαx + xT MT
α Kx.

Consequently,

xT [
∂K

∂tα
(t) + K(t)Nα(t)R−1

α (t)NT
α (t)K(t) + K(t)Mα(t) + MT

α (t)K(t)−Qα(t)]x = 0.

Identifying after x, we find the multitime Riccati matrix PDEs

∂K

∂tα
(t) + K(t)Nα(t)R−1

α (t)NT
α (t)K(t) + K(t)Mα(t) + MT

α (t)K(t)−Qα(t) = 0.

Since v(x, t0) = xT (t0)K(t0)x(t0) = −xT (t0)Sx(t0), it appears the terminal condition
K(t0) = −S. If this last problem admits a solution K(t), i.e., the Riccati PDEs satisfy
the complete integrability conditions, then we can construct the optimal feedback
control

uα =
1
2
R−1

α NT
α K(t)x(t).

Theorem 5. Suppose the linear regulator problem is formulated for unbounded
uα(t), specified t0, positive semidefinite matrices S, Qα(t), and positive definite ma-
trices Rα(t). Then there exists a unique optimal feed-back control

u∗α(t) = R(t)−1
α Nα(t)T K(t)x(t),

where K(t) is the unique solution of the Riccati PDEs satisfying the given boundary
condition.

It remains to show that the multitime Riccati matrix PDEs does have a solution.
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