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Abstract. In this paper for a vector bundle (v.b.) (E, p,M), we show that
there are two splitting theorems for TE at the presence of a connection.
In spite of natural difficulties with non-Banach modeled v.b.’s, we gener-
alize these theorems for a wide class of Fréchet v.b.’s i.e. those which can
be considered as projective limits of Banach v.b.’s. Afterward using the
concept of parallelism we propose an alternative way of studying ordinary
differential equations on Banach v.b.’s as well as a suitable basis for fur-
ther steps. Notwithstanding of the lack of a general solvability-uniqueness
theorem for differential equations on non-Banach modeled v.b.’s, we will
prove an interesting result for the category of our discussing v.b.’s. For
the case of the tangent bundle of a projective system of manifolds as a
corollary we observe that according to [1], the connection may be replaced
with an equivalence structure like a dissection, Christoffel structure, spray
or a Hessian Structure. These splitting theorems have applications in the
study of the geometry of bundle of accelerations.
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1 Introduction

The study of Fréchet manifolds was the subject of investigation for many authors due
to interaction of this field with modern differential geometry and theoretical physics.
(see for example [2], [3], [7], [12], [16], [17], and [20].) In the study of Mathemat-
ical Physics one often encounters with manifolds and spaces which are obtained as
projective limits. Some of these fields are the loop quantization of Gauge theories as
quantum gravity, the 2D Yang-Mills theory [4], [5], and string theory [21]. Moreover
projective systems of manifolds arise in other areas of differential geometry like the
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study of group of diffeomorphisms and the geometry of infinite jets ([18], [23], [22],
[25]).

At the second section we introduce our notation for v.b.’s and manifolds. All
the maps, for the sake of simplicity, are assumed to be smooth but less degrees of
differentiability may be assumed. In section 3 we state two main theorems for a
Banach v.b. π : E −→ M which propose two ways of slitting of TE at the presence of
a connection. We used the nominating of tensorial splitting and Dombrowski splitting
due to the fact that in the case of E = TM similar theorems are proved in [11] and [15].
Afterward the notion of parallelism on v.b.’s is introduced and the local equations are
determined. In fact we propose an alternative way of studying ordinary differential
equations on Banach v.b.’s which serves as a suitable basis for the further steps i.e.
ordinary differential equations on non-Banach v.b.’s.

Section 4 is devoted to the study of non-Banach v.b.’s and manifolds. There
are two main problems with these geometric objects. The first is the pathological
structure of GL(F) i.e. the general linear group of a Fréchet space. In fact if F is
non-Banach, GL(F) does not admit a reasonable topological group structure (see [12].
[14]). As we know when we are engaged with v.b.’s with fibres of type F, the transition
functions take their values in GL(F) and we fail to have the important geometric
objects like v.b’s, tangent bundles and frame bundles [10]. The other obstacle is the
lack of a general solvability-uniqueness theorem for ordinary differential equations on
non-Banach manifolds and even spaces. As we will see, both of these overcome if we
restrict ourselves to the category of those Fréchet v.b.’s which may be considered as
projective limits of Banach v.b.’s.

As a corollary we prove that for the second order tangent bundle, TTM of a
projective limit manifold M there are two different splittings at the presence of a
linear connection. Afterward using [1] we prove that the linear connection can be
substituted with a Christoffel structure, spray, dissection or a Hessian structure. (In
[15] these splitting theorems are proved for Banach manifolds and at the presence of
a spray.) Finally flat connection on the Banach and Fréchet model spaces, and the
canonical direct connection on Banach and Fréchet Lie groups are used to construct
our introduced splittings on their double tangent bundles.

2 Preliminaries

Let p : E −→ M be a smooth Banach vector bundle with fibres of type E and B as
the model space of M (both Banach spaces). According to [27] a connection on a
smooth vector bundle p : E −→ M is a smooth splitting of the short exact sequence
of bundles on E;

(2.1) 0 −→ V E
i−→ TE

p̃−→ p∗TM −→ 0

where V E is the vertical sub-bundle of E, i is the inclusion map, p∗(TM) ⊂ E×TM
is the pullback bundle induced by the projection p : E −→ M and p̃ is defined by the
tangent map Tp : TE −→ TM .

Since V E is isomorphic to p∗E, there is a canonical isomorphism r : V E −→ E.
The connection map D : TE −→ E is defined to be D = rv where v is the left
splitting of (2.1).
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The connection map D is fibre preserving for both vector bundle structures of TE,
i.e. πE : TE −→ E and TP : TE −→ TM , and fibre linear for the first mentioned
structure. If D is also fibre linear for the second indicated structure, then D is called
a linear connection on E.

Let Φ = (φ, φ̄) : E|U −→ φ(U)×E be a local trivialization where (U, Φ) is a chart
of M and assume that Ψ = ((ψ, ψ̄), V ) is another local trivialization with U∩V 6= f¡ .
Then Ψ ◦ Φ−1(x, v) = ((ψ ◦ φ−1)(x), GΨΦ(x)v) where GΨΦ : U ∩ V −→ GL(E,E) is
smooth and for any x ∈ U ∩ V , GΨΦ(x) is a toplinear isomorphism. The canonical
induced trivialization for TE takes the form

T (Ψ ◦ Φ−1)(x, ξ, y, η) =
(
(ψ ◦ φ−1)(x), GΨΦ(x)ξ, T (ψ ◦ φ−1)(x)y,(2.2)

GΨΦ(x)η + TGΨΦ(x)(y, ξ)
)
.

for (x, ξ, y, η) ∈ φ(U)× E× B× E. By these means on (Φ, U), D has the form

DΦ(x, ξ, y, η) = (x, η + ωΦ(x, y)ξ)

where DΦ = Φ ◦D ◦TΨ−1 and ωΦ : φ(U)×E −→ L(B,E) is smooth and is called the
local form of the connection D.
If D is a linear connection on π : E −→ M , then for the local forms we have ωΦ :
φ(U) :−→ L(E, L(B;E)). Using (2.2) and the fact DΨ ◦ T (Ψ ◦Φ−1) = (Ψ ◦Φ−1) ◦DΦ

we see that

DΨ ◦ T (Ψ ◦ Φ−1)(x, ξ, y, η) =
(
(ψ ◦ φ−1)(x), GΨΦ(x)η + TGΨΦ(x)(y, ξ)

+ ωΨ((ψ ◦ φ−1)(x))[T (ψ ◦ φ−1)(x)y,GΨΦ(x)ξ]
)
.

On the other hand,

(Ψ ◦ Φ−1) ◦DΦ(x, ξ, y, η) =
(
(ψ ◦ φ−1)(x), GΨΦ(η + ωΦ(x)[y, ξ])

)
.

Comparing the second components of the above equalities for different charts of M
yields the following well known local compatibility condition
(2.3)

GΨΦ(ωΦ(x)[y, ξ]) = TGΨΦ(x)(y, ξ) + ωΨ((ψ ◦ φ−1)(x))[T (ψ ◦ φ−1)(x)y, GΨΦ(x)ξ].

For the manifold let πM : TM −→ M be its tangent bundle and TM =
⋃

x∈M TxM
where TxM consists of all equivalent classes of the form [c, x] such that

c ∈ Cx = {c : (−ε, ε) −→ M ; ε > 0, c smooth and c(0) = x},

with the equivalence relation c1 ∼x c2 iff c′1(0) = c′2(0) for c1, c2 ∈ Cx. If A =
{(Uα, φα); α ∈ I} is an atlas for M , then consider the atlases B = {(π−1

M (Uα),Φα); α ∈
I} and C = {(π−1

TM (π−1(Uα)), Φ̃α); α ∈ I} for TM and T (TM) respectively.
A connection on a manifold M is a connection on its tangent bundle i.e. a v.b.

morphism D : T (TM) −→ TM with the local representation;

Dα : ψα(Uα)× E× E× E −→ ψα(Uα)× E
(y, u, v, w) 7−→ (y, w + ωα(y, u)v)
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where Dα = ϕα ◦ ϕ̃−1
α and ωα : ψα(Uα) × E −→ L(E,E), α ∈ I, are the local forms

of D. The connection D is linear if {ωα}α∈I are linear with respect to the second
variable. Moreover we can fully determine a linear connection by the family of its
Christoffel symbols defined by;

Γα : ψα(Uα) −→ L(E,L(E,E)); α ∈ I.

Using (2.3) we see that the compatibility condition for Christoffel symbols are

(2.4) σ′αβ(x)(Γβ(x)[v, z]) = Γα(σαβ(x))[σ′αβ(x)(v), σ′αβ(x)(z)] + σ′′αβ(x)(v, z),

where (x, v, z) ∈ ψα(Uα)× E× E.

3 Splitting theorems for Banach manifolds

Suppose that p : E −→ M is a Banach vector bundle and (U,Φ) a local trivialization
on it i.e. E|U ' φ(U)× E. Then there is a canonical diffeomorphism between TE|U
and φ(U)×E×B×E. Now define the map (κ1, κ2) : TE −→ p∗TM ⊕ p∗E locally by

κ1Φ : (φ(U)× E)× B× E −→ (φ(U)× E)× B
(x, ξ, y, η) 7−→ (x, ξ, y)

and

κ2Φ : (φ(U)× E)× B× E −→ (φ(U)× E)× E
(x, ξ, y, η) 7−→ (x, ξ, η + ωΦ(x)[y, ξ]).

Theorem 3.1. Let p : E −→ M be a Banach v.b. and D a linear connection on it.
Then (κ1, κ2) : TE −→ π∗TM ⊕ π∗E (Whitney sum) defines a v.b.-isomorphism.

Proof. Clearly κ is a vector bundle morphism. Moreover (κ1, κ2) is smooth and linear
on fibres and locally is a bijection. Let (U, Φ) and (V, Ψ) be local trivializations of p
with U ∩ V 6= ∅. Then

(κ1Ψ, κ2Ψ) ◦ T (Ψ ◦ Φ−1)(x, ξ, y, η)

= (κ1Ψ, κ2Ψ)
(
(ψ ◦ φ−1)(x), GΨΦ(x)ξ, T (ψ ◦ φ−1)(x)y

,GΨΦ(x)η + TGΨΦ(x)(y, ξ)
)

=
(
(ψ ◦ φ−1)(x), GΨΦ(x)ξ, T (ψ ◦ φ−1)(x)y

)
⊕

(
(ψ ◦ φ−1)(x), GΨΦ(x)ξ

,GΨΦ(x)η + TGΨΦ(x)(y, ξ) + ωΨ((ψ ◦ φ−1)(x))[T (ψ ◦ φ−1)(x)y,GΨΦ(x)ξ]
)

∗=
(
(ψ ◦ φ−1)(x), GΨΦ(x)ξ, T (ψ ◦ φ−1)(x)y

)
⊕

(
(ψ ◦ φ−1)(x), GΨΦ(x)ξ

,GΨΦ(x)η + GΨΦ(ωΦ(x)[y, ξ])
)

= (Ψ ◦ Φ−1) ◦ (κ1Φ, κ2Φ)(x, ξ, y, η)

i.e. (κ1, κ2) defines a v.b.-isomorphism. (In * we used the equality 2.3) ¤
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The next useful theorem proposes another splitting for TE. Note that in the
case of E = TM this theorem splits TTM to three copies of TM . In fact this is
a generalization of Dombrowski’s splitting theorem [11] for Banach vector bundles.
In [11] the theorem is proved for E = TM with M finite dimensional and this is
developed by Lang for Banach manifolds [15].

Theorem 3.2. Let p : E −→ M be a Banach vector bundle with a connection D on
it. Then the map

(πE , Tp, κ2) : TE −→ E ⊕ TM ⊕ E

locally defined by (x, ξ, y, η) 7−→ (x, ξ) ⊕ (x, y) ⊕ (x, η + ω(x)(y, ξ)), is a fibre bundle
isomorphism.

Proof. It can be easily checked that the map is a fibre bundle morphism and a local
bijection. Moreover the compatibility condition ,similar to the previous theorem,
yields that these local isomorphisms are compatible and consequently the bundles are
isomorphic. ¤

3.1 Parallelism and ordinary differential equations on Banach
vector bundles

If A is a section of π : E −→ M and X a vector field on M , then the covariant
derivative DXA is defined to be D ◦TA ◦X. Let α : (−ε, ε) −→ M . Denote the basic
section of TR by ∂ : t 7−→ (t, 1) and put α′(t) = Tα(∂(t)).

For a curve c in E we say that c is parallel along α if π ◦ c = α and D ◦ c′ = 0. If
(U,Φ) is a local trivialization for p then D ◦ c′ = 0 locally means that

DU

(
(φ ◦ α)(t), (φ̄ ◦ c)(t), (φ ◦ α)′(t), (φ̄ ◦ c)′(t) =(

(φ ◦ α)(t), (φ̄ ◦ c)′(t) + ωφ((φ ◦ α)(t))[(φ ◦ α)′(t), (φ̄ ◦ c)(t)] = 0(3.1)

where c(t) is considered as c(t) = (α(t), c(t)).
In the case of E = TM where we consider the canonical lift of the curve α, the above
equation takes the familiar form

(φ ◦ α)′′(t) + ωφ((φ ◦ α)(t))[(φ ◦ α)′(t), (φ ◦ α)′(t)] = 0

which is the autoparallel (geodesic when D is a metric connection) equation on M .
Here we state the following theorem which is a direct consequence of the existence

and uniqueness theorem for solution of ordinary differential equations on Banach
manifolds.

Theorem 3.3. Let p : E −→ M be a Banach vector bundle and D be a connection
on it. Then for a curve α in M and ξ ∈ Eα(0) there exists a unique parallel curve c
(in E) along α with c(0) = ξ.

4 The Fréchet case

In the sequel we introduce our notations about a special class of Fréchet manifolds
(v.b.’s) which are obtained as projective limits of Banach manifolds (v.b.’s). Suppose
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that {(M i, ϕji)}i,j∈N is a projective system of Banach manifolds with the limit M =
lim←−M i such that M i is modeled on the Banach space Bi and {Bi, ρji}i∈N also form a
projective system of Banach spaces.

Furthermore let for each x = (x)i∈N ∈ M there exists a projective system of local
charts {(U i, ψi)}i∈N such that xi ∈ U i and U = lim←−U i is open in M .

The vector bundle structure of TM for a Fréchet manifold M links to pathological
structure of general linear group GL(F) and this causes troubles. It is shown in [12]
that by considering the generalized topological Lie group

H0(F) = {(li)i∈N ∈
∏

i∈I

GL(Ei) : lim←− li exists}

rather than GL(F) this obstacle can be solved. Moreover as we will see in the rest
of this paper, the problems related to the lack of a general solvability for differential
equations on Fréchet manifolds will overcome with the introduced technique.

Suppose that for any i ∈ N, (Ei, pi,M i) is a Banach v.b. on M i with the fibres of
type Ei where {Ei, λji}i,j∈N forms also a projective system of Banach spaces. With
these notations we state the following definition;

Definition 4.1. The system {(Ei, f ji)}i∈N is called a strong projective system of
Banach v.b.’s on {(M i, ϕji)}i∈N if for any (xi)i∈N, there exists a projective system of
trivializations (U i, τ i) (where τ i : pi−1(U i) −→ U i ×Ei are local diffeomorphisms) of
(Ei, pi,M i), such that xi ∈ M i, U = lim←−U i is open in M and (ϕji×λji)◦τ j = τ i◦f ji

for all i, j ∈ N with j ≥ i.

Remark 4.2. If {M i, ϕji}i∈N is a projective system of Banach manifolds, then
{TM i, }i∈N, {TTM i}i∈N and {T 2M i}i∈N form strong systems of Banach v.b.’s. (see
[9] and [12]). Hence we have concrete examples for our definition.

Remark 4.3. Galanis in [14] defined the strong system of Banach v.b.’s in a same
way. The difference is in the base manifolds. More precisely in [14] the base manifold
in all v.b.’s is a fixed Banach manifold M . Note that in the case that one needs to
study the natural bundles over a projective system of manifolds, as we will see, the
base manifold is not fixed and hence we stated our definition with a slight modification.
A similar theorem is proved in [14] but with a fixed base manifold.

Proposition 4.4. Let {(Ei, pi,M i)}i∈N be a strong projective system of Banach vec-
tor bundles. Then (lim←−Ei, lim←− pi, lim←−M i) is a Fréchet vector bundle.

Proof. We claim that E = lim←−Ei is a differentiable manifold modeled on lim←−B
i×lim←−E

i

where {(Bi, ρji)}i∈N is the projective system of model spaces of the base manifolds.
Let e = (ei)i∈N ∈ E then x = (xi = pi(ei))i∈N belongs to M = lim←−M i since for j ≥ i;

ϕji(xj) = ϕji ◦ pj(ej) = pi ◦ f ji(ej) = pi(ei) = xi.

Since the projective system is strong then for x ∈ M there exists a projective system
of trivializations {(U i, τ i)}i∈N such that xi ∈ U i and ϕji×λji ◦ τ j = τ i ◦f ji for j ≥ i.
Define the projective system of charts {(V i,Φi)}i∈N for {Ei}i∈N to be V i = pi−1(U i)
and Φi = ((φi × idEi) ◦ τ i for any i ∈ N.
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It may be checked that these charts form a projective system with the limit (V =
lim←−V i, Φ = lim←−Φi).

The equality ϕji ◦ pj = pi ◦ f ji yields that p = lim←− pi can be defined and p locally
is the projection on the first component i.e. pr1 ◦Φ = p. Also the last equality yields
that for any x ∈ M , Φ|p−1(x) = lim←−Φ|pi−1(xi) exists and is a linear isomorphism. Due
to the pathological structure of GL(E) we restrict ourselves to an appropriate subset
of GL(E) say it H0(E). More precisely H0(E) is the projective limit of Banach Lie
groups H0

i (Ei) where

H0
i (Ei) = {(f1, ..., fi) ∈

i∏

j=1

Ej ; λjk ◦ fj = fk ◦ λjk fork ≤ j ≤ i}

and consequently H0(E) becomes a generalized Fréchet Lie group [13].
To see the differentiability of transition functions consider the projective limit

trivializations (U, τ) and (V, τ̄) of p : E −→ E with x ∈ U ∩ V . Then we see that
λji ◦ τ̄ j ◦ τ j−1|xj = τ̄ i ◦ τ i−1|xj ◦ λji and consequently (τ̄1 ◦ τ1−1|x1 , ..., τ̄ i ◦ τ i−1|xj )
belongs to H0

i (Ei) for any i ∈ N. By using the canonical linear map

ε : H0(E) −→ L(E)
(fi)i∈N 7−→ lim←− fi

we conclude that TU∩V : U ∩ V −→ GL(E) : (xi)i∈N 7−→ ε ◦ (τ i|xi) is smooth in the
sense of [16] and [17]. ¤

Now we state a slight modified version of Proposition 2.1 of [14] to introduce
projective limit of connections.

Proposition 4.5. Let (lim←−Ei = E, lim←− pi = p, lim←−M i = M) be an strong P.L.B.
v.b.’s. If {Di}i∈N is a projective system of connections (possibly nonlinear) on this
system, then lim←−Di is a connection on p : E −→ M with the local component {ωU}
given by ωU (x) = lim←−ωi

Ui(xi) where x = (xi)i∈N ∈ U = lim←−U i and ωi
Ui is the

corresponding local components of Di for any i ∈ N.

Proof. The proof follows from the previous theorem and section 2 of [14]. ¤

Lemma 4.6. Let {(Ei, pi, M i)}i∈N be a strong system of Banach v.b.’s, then {pi∗TM i⊕
pi∗Ei} also forms a strong system of Banach v.b.’s with the limit isomorphic to
p∗TM ⊕ p∗E.

Proof. First we show that {pi∗Ei}i∈N is a P.L.B. v.b.’s with the limit isomorphic to
P ∗E. For j ≥ i define

gji : pj∗Ej −→ pi∗Ei

(xj , ej , dj) 7−→ (f ji(xj , ej), f ji(xj , dj))

where (xj , ej , dj) := ((xj , ej), (xj , dj)) ∈ pj∗Ej . (We will use these notations during
the proof alternatively.) Clearly gik ◦ gji = gjk for j ≥ i ≥ k, and this ensures us
that {pi∗Ei, gji}i,j∈N forms a projective system. Let {(U i, τ i)}i∈N be a system of
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trivializations for the system {(Ei, pi,M i)}i∈N. Then the corresponding systems for
{(pi∗Ei, pi∗(pi) := pi∗, Ei)}i∈N is {(pi−1(U i), τ i∗)}i∈N where

τ i∗ : pi∗−1
(pi−1

(U i)) −→ pi−1
(U i)× Ei; (ei, ēi) 7−→ (τ i(ei), τ i(ēi))

(If we intend to work with pi∗TM i, like the second part of the proof, we can choose
the trivializations on pi : Ei −→ M i with domains contained in domains of charts of
M i and the corresponding natural induced maps.)
Let e ∈ E. As it is shown in prop. 4.4, (xi) = (pi(ei)) ∈ M and consequently there
exists a projective system of trivializations, say {(U i, τ i)}i∈N, such that (ϕji × λji) ◦
τ j = τ i ◦ f ji for j ≥ i. Therefore

(f ji × λji) ◦ τ j∗(xj , ej , dj) =
(
(ϕji × λji) ◦ τ j(xj , ej), (ϕji × λji) ◦ τ j(xj , dj)

)

=
(
τ i ◦ f ji(xj , ej), τ i ◦ f ji(xj , dj)

)
= τ i∗ ◦ gji(xj , ej , dj).

Hence {(pi∗Ei, pi∗, Ei)}i∈N is a strong system of Banach v.b.’s and prop. 3.4. guar-
antees that (p∗E = lim←− pi∗Ei, p∗ = lim←− pi∗, E = lim←−Ei) is a Fréchet v.b.

As it is shown in [12] for the projective system {M i}i∈N, {TM i}i∈N forms a
(strong) system of v.b.’s with the limit TM isomorphic to lim←−TM i. Using the first
part of this lemma with a modification (as stated above), {(pi∗TM i, pi∗ , Ei)}i∈N is
also a strong system of v.b.’s with the limit (p∗TM, p∗(πM ), E).

After a direct calculation and just writing the steps of the proof for p∗E and p∗TM
together, we see that {pi∗Ei ⊕ pi∗TM i}i∈N also satisfies the conditions of prop 4.4
and hence the proof is complete. ¤

To be more familiar with projective limit manifolds techniques, we state a direct
proof for the case of E = TM in appendix.

Theorem 4.7. Under the assumptions as in the previous lemma, let {Di}i∈N be a
projective system of linear connections with the limit D = lim←−Di. Then the map
(κ1, κ2) = lim←−(κi

1, κ
i
2) : TE −→ p∗TM ⊕ p∗E is a v.b diffeomorphism.

Proof. For any i ∈ N, Di is a linear connection on the Banach v.b. pi : Ei −→ M i.
Then by theorem 3.1, (κi

1, κ
i
2) is a vector bundle isomorphism . On the other hand

for any j ≥ i,

(ϕji × λji × λji) ◦ κj
2(x

j , ξj , yj , ηj) = (ϕji(x), λji(ηj) + λjiωj(xj)[yj , ξj ])
= (xi, ηi + ωi(xi)[yi, ξi]) = κi

2 ◦ (ϕji × λji × ρji × λji)(xj , ξj , yj , ηj)

where {λji}i,j∈N are the connecting morphisms of {Ei}i∈N. In a similar way (ϕji ×
λji × ρji) ◦ κj

1 = κi
1 ◦ (ϕji × λji × ρji × λji), that is{(κi

1, κ
i
2)}i∈N forms a projective

system of maps with the limit (κ1, κ2) = (lim←−κi
1, lim←−κi

2). This map is locally given
by

(κ1, κ2)(xi, ξi, yi, ηi)i∈N 7−→
(
(xi, ξi, yi)⊕ (xi, ξi, ηi + ωi(xi)[yi, ξi])

)
i∈N.

Since (κ1, κ2) is the projective limit of v.b.-diffeomorphisms, it is a generalized v.b.-
diffeomorphism. ¤
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One can consider the previous assumptions and prove the following theorem for
the case of projective limit v.b.’s.

Theorem 4.8. The projective limit map (πE , Tp, κ2) : TE −→ E ⊕ TM ⊕ E exists
and is a fibre bundle diffeomorphism.

4.1 Double tangent bundles

Let {M i}i∈N be a projective system of manifolds with the limit M = lim←−M i and
D = lim←−Di be a linear connection on it. Then we have the following generalizations
of tensorial and Dombrowski’s splitting theorems for Fréchet manifolds.

Theorem 4.9. Two morphisms (κ1, κ2) : TTM −→ π∗MTM ⊕ π∗MTM and
(πTM , TπM , κ2) : TTM −→ TM ⊕ TM ⊕ TM exist and are v.b. and fibre bundle
diffeomorphisms respectively.

Remark 4.10. According to [1], the linear connection can be replaced with a Christof-
fel structure, spray, Hessian structure or a dissection. Note that these structures must
be locally associated with bilinear symmetric maps. (For a detailed study in the case
of second order structures on Fréchet manifolds see [1]).

4.2 Parallelism and ordinary differential equations on Fréchet
vector bundles

Let α = lim←−αi be a curve in M such that for any i ∈ N, αi : (−ε, ε) :−→ M i is
a smooth curve. In spite of the lack of a general solvability-uniqueness theorem for
non-Banach manifolds and even spaces we have the following Theorem.

Theorem 4.11. Let (Ei, pi,M i)i∈N be a strong system of Banach v.b.’s and D =
lim←−Di be a projective limit connection on it. Then for the curve α in M and ξ =
(ξi)i∈N ∈ Eα(0) there exists a unique curve c along α in E which is parallel with
respect to D and c(0) = ξ.

Proof. For any i ∈ N, Di is a connection on pi : Ei −→ M i and αi is a curve in M i.
According to 3.3, for ξi ∈ Eαi(0) there exists a unique curve ci in Ei with ci(0) = ξi

and

(4.1) (φ̄i ◦ ci)′(t) + ωi
Ui((φi ◦ αi(t)))[(φi ◦ αi)′(t), (φ̄i ◦ ci)(t)] = 0

for any local trivialization (U i,Φi). For j ≥ i, we claim that f ji ◦ cj = ci and
consequently c = lim←− ci exists as a curve in E.

(φ̄i ◦ f ji ◦ cj)′(t) + ωi
Ui((φi ◦ αi)(t))[(φi ◦ αi)′(t), (φ̄i ◦ f ji ◦ cj)(t)]

= (λji ◦ φ̄j ◦ cj)′(t) + ωi
Ui((φi ◦ αi)(t))[(φi ◦ αi)′(t), (λji ◦ φ̄j ◦ cj)(t)]

= λji ◦ (φ̄j ◦ cj)′(t) + ωi
Ui((φi ◦ αi)(t))[(φi ◦ αi)′(t), λji ◦ (φ̄j ◦ cj)(t)]

= λji ◦ (
(φ̄j ◦ cj)′(t) + ωj

Uj ((φj ◦ αj)(t))[(φj ◦ αj)′(t), (φ̄j ◦ cj)(t)]
)

= 0.

Furthermore f ji ◦ cj(0) = f ji(ξj) = ξi. Using 3.3 and the fact that for αi there exists
a unique curve ci with ci(0) = ξi, we conclude that f ji ◦ cj = ci. Hence {ci}i∈N forms
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a projective system of curves and c = lim←− ci is a curve in E = lim←−Ei. On the other
hand p ◦ c = (pi ◦ ci)i∈N = (αi)i∈N = α i.e. c is parallel along α.
Let c1 be another curve in E along α with D ◦ c′1 = 0 and c1(0) = ξ. For any i ∈ N,
ci
1 = λi ◦ c1 satisfies the equation (4.1) and ci

1(0) = ξi.(λi : lim←−Ei −→ Ei is the
canonical projection.) 3.3 yields that ci

1 = c1 and consequently c1 = lim←− ci
1 = lim←− ci =

c. Note that the life-time of the solution maybe trivial i.e. just the origin. To avoid
this we have to assume some Lipschitz condition for the local components as it is
stated in appendix of [1]. ¤

Example 4.12. Splitting of the second order tangent bundle of Lie groups
using the direct connection. Suppose that G is a Banach Lie group with the
model space G. Let µ : G × ð −→ TG be given by µ(m, v) = Teλm(v), where λm

is the left translation on G and ð is the Lie algebra of G. According to [26], there
exists a unique connection DG on G which is (µ, idG)−related to the canonical flat
connection on the trivial bundle E = (G× ð, pr1, G). Locally the Christoffel symbols
ΓG of DG are given by

ΓG
φ (x)(y, ξ) = Dfφ(x)(y, f−1

φ (m)(ξ)); x ∈ φ(U), y, ξ ∈ G
where fφ is the local expression of the isomorphism Teλx : TeG −→ TxG and (U, φ)
chart of G. If G = lim←−Gi is obtained as projective limit of Banach Lie groups and DGi

is the direct connection on Ei = (Gi × ði, pr1, Gi), then DG = lim←−DGi is exactly the
direct connection on E = (lim←−Gi×lim←−ði, pr1, lim←−Gi) [13]. Theorems 3.7 and 3.8 show
that DG determines the following diffeomorphisms (κ1, κ1) : TTG −→ π∗GTG⊕π∗GTG
and (πTG, TπG, κ1) : TTG −→ TG⊕TG⊕TG which locally on the chart (U, φ) have
the form

(κ1, κ1)(x, ξ, y.η) =
(
(x, ξ, y)⊕ (x, ξ, η + Dfφ(x)(y, f−1

φ (m)(ξ)))
)

and

(πTG, TπG, κ1)(x, ξ, y, η) = (x, ξ)⊕ (x, y)⊕ (x, η + Dfφ(x)(y, f−1
φ (m)(ξ))).

Example 4.13. Flat connections. Let M = E with the global chart (E, idE). The
canonical flat connection DC on the trivial bundle E = (M×E, pr1,M) is locally given
by the global Christoffel symbol {ΓC}, where ΓC(x)(ξ) = 0, for any (x, ξ) ∈ E × E.
Let M = F = lim←−Ei and consider it with the global chart (F, idF) = lim←−(Ei, idEi).
Moreover consider the canonical flat connection DC = lim←−DC

i given by the form
ΓC = lim←−ΓC

i on (M × F, pr1,M). Then the diffeomorphisms of theorems 3.7 and 3.8
are given by

(κ1, κ1)(x, ξ, y.η) =
(
(x, ξ, y)⊕ (x, ξ, η)

)
,

(πTG, TπG, κ1)(x, ξ, y, η) = (x, ξ)⊕ (x, y)⊕ (x, η).

5 Appendix

Lemma 5.1. Let {M i}in∈N be a projective system of Banach manifolds and for any
i ∈ N, πi : TM i −→ M i its tangent bundle. Then {π∗i TM i}i∈N also forms a projective
system with the limit isomorphic to π∗TM ≡ lim←−π∗i TM i (set theoretically).
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Proof. For i, j ∈ N with j ≥ i define

pji : π∗j TM j −→ πi ∗ TM i

([α, x]j , [β, x]j) 7−→ ([ϕji ◦ α, ϕji(x)]
i
, [ϕji ◦ β, ϕji(x)]

i
)

where α and β are smooth curves in M j with α(0) = β(0). Clearly pji are well defined
and pik ◦ pji = pjk for j ≥ i ≥ k. Consequently {π∗i TM i, pji}i,j∈N forms a projective
system. Let ϕi : M −→ M i be the canonical projection of M. Define

pi : π∗TM −→ π∗i TM i

([α, x], [β, x]) 7−→ ([ϕi ◦ α,ϕi(x)]
i
, [ϕi ◦ β, ϕi(x)]

i
).

Since pji ◦ pj = pi then we obtain the mapping

P : π∗TM −→ lim←−π∗i TM i

([α, x], [β, x]) 7−→ ([ϕi ◦ α, ϕi(x)]
i
, [ϕi ◦ β, ϕi(x)]

i
)i∈N.

This is an injection since P ([α, x], [β, x]) = P ([ᾱ, x], [β̄, x]) gives

dϕi(α(0))(α′(0)) = (ϕi ◦ α)
′
(0) = (ϕi ◦ ᾱ)

′
(0) = dϕi(ᾱ(0))(ᾱ′(0)).

Hence α′(0) = ᾱ′(0) and in a similar way β′(0) = β̄′(0). Note that TM ≡ lim←−TM i and
TTM ≡ lim←−TTM i via the canonical system of projections {dϕi}i∈N and {ddϕi}i∈N
respectively. On the other hand P is also surjective since for ,j ≥ i,

([α, x], [β, x]) = ([αi, xi]i, [βi, xi]i)i∈N ∈ lim←−π∗i TM i.

Thus we obtain

[ϕji ◦ αj , ϕji(xj)]
i
= [αi, xi]

i
and [ϕji ◦ βj , ϕji(xj)]

i
= [βi, xi]

i
.

Consequently x = (xi)i∈N ∈ M = lim←−M i and if (U = lim←−U i, Ψ = lim←−ψi) is a
projective limit chart of M through x and (π−1(U) = lim←−π−1(U i), TΨ = lim←−Tψi) is
the corresponding chart of TM , then ρji(ψj ◦αj)(0) = (ψi ◦ϕji ◦αj)(0) = (ψi ◦αi)(0)
and

ρji(ψj ◦ αj)′(0) = ρjilimt−→0
(ψj ◦ αj)(t)− (ψj ◦ αj)(0)

t

= limt−→0
ρji(ψj ◦ αj)(t)− ρji(ψj ◦ αj)(0)

t
= (ψi ◦ αi)′(0)

and also ρji(ψj ◦ β)′(0) = (ψi ◦ βi)′(0).
Consequently u = ((ψi ◦ αi)(0))i∈N, v = ((ψi ◦ αi)′(0))i∈N and w = ((ψi ◦ βi)′(0))i∈N
are elements of E = lim←−E

i. Consider the curves h1(t) = u + tv and h2(t) = u + tw in
E, the corresponding curves to α and β with respect to the chart (U = lim←−U i, Ψ =
lim←−ψi). (in the other words locally define α(t) = Ψ−1 ◦ h1(t) and β = Ψ−1 ◦ h2(t))

Note that (ϕi ◦ α)(0) = (ϕi ◦ β)(0) = xi = αi(0) = βi(0) and

(ϕi ◦ α)′(0) = (ψi−1 ◦ ρi ◦ h1)′(0) = Tψi−1
((ρi ◦ h1)′(0))

= Tψi−1
(ρi(v)) = Tψi−1

((ψi ◦ αi)′(0) = (αi)
′
(0)
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and similarly (ϕi ◦ β)′(0) = (βi)′(0). Hence ϕi ◦α, ϕi ◦ β, αi and βi, respectively, are
equivalent on M i for any i ∈ N i.e. P ([α, x], [β, x]) = ([αi, xi], [βi, xi])i∈N. These help
us to conclude that P is the desired bijection. ¤

Here we state a theorem from [12] without proof.

Theorem 5.2. TM admits an Eréchet type vector bundle structure over M with the
structure group H0(E) where

H0(E) = {(fi)i∈N ∈
∏

i∈N
GL(Ei); lim←− f iexists}.

More precisely H0(E) = lim←−H
0
i (E) where for any i ∈ N

H0
i (E) = {(f1, ..., fi) ∈

i∏

k=1

GL(Ei); ρjk ◦ fj = fk ◦ ρjk for k ≤ j ≤ i}

is a Banach lie group. In an analogous manner {TTM i}i∈N forms a projective system
of manifolds with the limit TTM = lim←−TTM i and the structure group H0(E×E) and
fibres of type E× E.

Using the above theorem it can be checked that π∗TM is a Fréchet vector bundle
on TM with the structure group H0(E).

Study of other types of the connections like [6] may be the subject of interest in
this category with generalized Finsler structures. Also in other branches like [8] and
[19] we may find applications for our theory.

Acknowledgement. Ali Suri expresses his deep gratitude to S.B. Hajjar.
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