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Abstract. Recall that the usual Einstein metrics are those for which
the first Ricci contraction of the covariant Riemann curvature tensor is
proportional to the metric. Assuming the same type of restrictions but
instead on the different contractions of Thorpe tensors, one gets several
natural generalizations of Einstein’s condition. In this paper, we study
some properties of these classes of metrics.
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1 Introduction

Let (M, g) be a Riemannian manifold of dimension n and R be its Riemann covariant
curvature tensor. For each even integer 2p, 2 ≤ 2p ≤ n, J. A. Thorpe [9] introduced a
generalization of the Gauss-Kronecker curvature tensor as follows: For each m ∈ M
and for ui, vj tangent vectors at m we set

R2p(u1, ..., u2p, v1, ..., v2p) =
2−p

(2p)!

∑

α,β∈S2p

ε(α)ε(β)R(uα(1), uα(2), vβ(1), vβ(2))...

...R(uα(2p−1), uα(2p), vβ(2p−1), vβ(2p)),

where S2p denotes the group of permutations of {1, ..., 2p} and, for α ∈ S2p, ε(α) is
the signature of α. In particular, R2 is the Riemann covariant curvature tensor R.
If the dimension n is even, Rn(e1, ..., en, e1, ..., en) is the Gauss-Bonnet integrand of
(M, g), {e1, ..., en} being an orthonormal basis of TmM .

It is evident that the tensor R2p is alternating in the first (2p)-variables, alternating
in the last (2p) variables, and is invariant under the operation of interchanging the
first 2p variables with the last 2p. Hence it is a symmetric (2p, 2p) double form. Using
the exterior product of double forms, the tensors R2p can be written in the following
compact form [3, 8, 5],

R2p =
2p

(2p)!
Rp,
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where Rp denotes the exterior product of R with itself p times. The full Ricci con-
traction of R2p is, up to a constant, the (2p)-th Gauss-Bonnet curvature of (M, g)
[6, 5]. For 0 < k < 2p, we shall say that a metric is (k, p)-Einstein if the kth Ricci
contraction of its Thorpe curvature tensor R2p is proportional to g2p−k. This condi-
tion generalizes the usual Einstein condition obtained for p = k = 1, and it implies
that the metric is 2p-Einstein in the sens of [6]. In particular, in the compact case the
(k, p)-Einstein metrics are for any k critical metrics of the total 2p-th Gauss-Bonnet
curvature functional once restricted to metrics of unit volume [6].

The paper is divided into three parts. In the first one, we recall some useful
facts about double forms and by the way we complete and improve two results of
[5]. These results are then used in the second part where we study some geometric
properties of (k, p)-Einstein metrics. We emphasize in the second part the special
class of (1, p)-Einstein manifolds, these manifolds behave in many directions like the
usual 4-dimensional Einstein manifolds. In the last part, we discuss and generalize
a related but more subtle generalization of Einstein metrics suggested by a work of
Thorpe.

2 Preliminaries

Let (M, g) be a smooth Riemannian manifold of dimension n. A double form of degree
p is a section of the bundle Dp,p = Λ∗pM ⊗ Λ∗pM where Λ∗pM denotes the bundle
of differential forms of degree p on M . Double forms are abundant in Riemannian
geometry: the metric, Ricci and Einstein tensors are symmetric double forms of degree
1, The Riemann curvature tensor, Weyl curvature tensor are symmetric double forms
of order two, Gauss-Kronecker and Weitzenböck curvature tensors are examples of
symmetric double forms of higher order.

The usual exterior product of differential forms extends in a natural way way to
double forms. The resulting product is some times called Kulkarni-Nomizu product of
double forms. In particular, k

2 times the exterior product of the metric with itself k
2g2

is the curvature tensor of a Riemannian manifold of constant curvature k, the repeated
products of the Riemann curvature tensor RR...R = Rq determine the generalized
Gauss-Kronecker tensors defined above. If we denote by E(r,r) the trace free double
forms of order r, then we have the following orthogonal decomposition of the bundle
D(p,p) for 1 ≤ p ≤ n:

(2.1) Dp,p = Ep,p ⊕ gEp−1,p−1 ⊕ g2Ep−2,p−2 ⊕ ...⊕ gpE0,0.

The following proposition is a direct consequence of corollary 2.4 in [5].

Proposition 2.1. If n < 2p, then

(2.2) Dp,p = g2p−nDn−p,n−p

In particular, if ω =
∑p

i=0 giωp−i ∈ Dp,p is the decomposition of a double form ω
following the orthogonal splitting (2.1), then

(2.3) ωk = 0 for n− p < k ≤ p.
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Proof. Straightforward. Just set j = 2p− n and discuss following the cases where
j is even or odd using corollary 2.4 of [5]. ¤
Remark. For a given double form ω of order p, we evaluated in theorem 3.7 of [5],
the components ωk with respect to the orthogonal splitting (2.1). The author forgot
to include in the assumptions of that formula the condition n ≥ 2p. This condition is
necessary as if not some coefficients will vanish in the proof. Also, it is clear that the
coefficients (n− 2k)! and (n− p− k)! in the final formula are undefined if we do not
assume n ≥ 2p.
However, if n < 2p, the previous proposition asserts that ω is divisible by some power
of the metric g and hence some components vanish as above, the other components
can be determined by applying theorem 3.7 to the quotient double form.

The following proposition improves lemma 5.7 of [5] and its proof below completes a
missing part in the proof of the same lemma.

Proposition 2.2. Let ω =
∑p

i=0 giωp−i be a double form of order p and 1 ≤ k < p.
Then ckω is proportional to the metric gp−k if and only if

ωr = 0 for 1 ≤ r ≤ p− k.

Proof. Formula (12) in [5] shows that

ckω =
p∑

i=k

αikgi−kωp−i,

where αi0 = 1 for 0 ≤ i ≤ p. For 1 ≤ k ≤ i ≤ p we have

αik =
i!

(i− k)!

j=k∏

j=1

(n− 2p + i + j).

Remark that all the coefficients αik are nonnegative for 0 ≤ k ≤ i ≤ p, furthermore,
αik = 0 if and only if 2p > n and i < 2p− n. In such a case we do have ωp−i = 0 by
proposition 2.1.
Now, suppose ωr = 0 for 1 ≤ r ≤ p− k, then ωp−i = 0 for k ≤ i ≤ p− 1 and therefore
ckω = αipg

p−kω0 is proportional to the metric.
Conversely, suppose ckω is proportional to the metric gp−k, then αikωp−i = 0 for
k ≤ i ≤ p − 1. If αik = 0 then 2p > n and i < 2p − n so that ωp−i = 0. In case
αik 6= 0, we have ωp−i = 0.
So in both cases, we have ωp−i = 0 for k ≤ i ≤ p− 1, that is ωr = 0 for 1 ≤ r ≤ p−k.
¤

3 Generalized Einstein metrics

Recall that a Riemannian manifold is said to be Einstein if the first contraction of its
Riemann curvature tensor R is proportional to the metric, that is cR = λg. Einstein
metrics are also known to be the critical metrics of the total scalar curvature func-
tional once restricted to metrics of unit volume. The gradient of the above functional
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is the Einstein tensor.
In [6], we considered the critical metrics of the total Gauss-Bonnet curvature func-
tionals once restricted to metrics with unit volume. The resulting metrics are called
(2k)-Einstein and are characterized by the condition that the contraction of order
(2k − 1) of Thorpe’s tensor Rk is proportional to the metric, that is

(3.1) c2k−1Rk = λg.

Special classes of the previous metrics are defined by:

Definition 3.1. Let 0 < p < 2q < n, we say that a Riemannian n-manifold is (p, q)-
Einstein if the p-th contraction of Thorpe’s tensor of order q is proportional to the
metric g2k−p, that is

(3.2) cpRq = λg2q−p.

We recover the usual Einstein manifolds for p = q = 1 and the previous (2q)-
Einstein condition for p = 2q − 1.
Applying (2q − p− 1) contractions to the previous equation (3.2) we get

c2q−1Rq =
(2q − p)!(n− 1)!

(n− 2q + p)!
λg,

that is the (2q)-Einstein condition above. Therefore we have for all p with 0 < p < 2q:

(p, q)-Einstein ⇒ (2q)-Einstein.

In particular, the (p, q)-Einstein metrics are all critical metrics for the total Gauss-
Bonnet curvature functional of order 2q once restricted to metrics with unit volume.
Also, Schur’s theorem in [6] implies that the function λ in (3.2) is then a constant.
It is evident that for all p ≥ 1, (p, q)-Einstein implies (p+1, q)-Einstein. In particular,
the metrics with constant q-sectional curvature (that is the sectional curvature of Rq

is constant) are (p, q)-Einstein for all p.
On the other hand, the (p, q)-Einstein condition neither implies nor is implied by the
(p, q + 1)-condition as shown by the following examples:
Let M be a 3-dimensional non-Einstein Riemannian manifold and T k be the k-
dimensional flat torus, k ≥ 1, then the Riemann curvature tensor R of the Riemannian
product N = M × T k satisfies Rq = 0 for q ≥ 2. In particular, N is (p, q)-Einstein
for all p ≥ 0 and q ≥ 2 but it is not (1, 1)-Einstein.
On the other hand, let M be a 4-dimensional Ricci-flat but not flat manifold (for
example a K3 surface endowed with the Calabi-Yau metric), then the Riemannian
product N = M×T k is (1, 1)-Einstein but not (q, 2)-Einstein for any q with 0 ≤ q ≤ 3.

It results directly from theorem 5.6 of [5] and the previous proposition the following:

Theorem 3.2. Let 0 < p < 2q. The following statements are equivalent for a
Riemannian manifold (M, g) of dimension n ≥ p + 2q:

1. The manifold (M, g) is (p, q)-Einstein.
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2. The divergence free tensor R(p,q) = ∗ gn−2q−p

(n−2q−p)!R
q is proportional to the metric

gp.

3. The components ωr of Rq (with respect to the orthogonal splitting (2.1) for
Thorpe’s tensor Rq) vanish for 1 ≤ r ≤ 2q − p.

The divergence free tensor R(p,q) used in the second part of the previous propo-
sition (which is nothing but the (p, q)-curvature tensor [6]) generalizes the Einstein
tensor obtained for p = q = 1.
It results from the second part of the above proposition that

Corollary 3.3. For a (p + 2q)-dimensional manifold, being (p, q)-Einstein is equiv-
alent to constant q-sectional curvature.

Recall that constant q-sectional curvature means that the sectional curvature of
Thorpe’s tensor R2q is constant.
The previous result is the analogous of the fact that in dimension 3, Einstein manifolds
are those with constant sectional curvature.
The last part of the previous theorem generalizes a well known characterization of
Einstein manifolds (p = q = 1) by the vanishing of the component ω1 in the orthogonal
decomposition for the Riemann curvature tensor R.

Using generalized Avez-type formulas we proved in [4] the following

Theorem 3.4 ([4]). Let (M, g) be a Riemannian manifold of even dimension n =
2k + 2. Suppose the metric g is (2k− 2, k)-Einstein then the Gauss-Bonnet integrand
hn of (M, g) equals

hn =
hn−2

n(n− 1)
Scal.

In particular,

χ(M) = chn−2

∫

M

Scal dvol.

Where c is a positive constant, hn−2 is a constant : the (2k− 2, k)-Einstein constant.
Precisely it is determined by the condition c2k−2Rk = (n−2)!hn−2

2n(n−1) g2, and Scal denotes
as usual the scalar curvature.

The previous theorem shows that for a (2k− 2, k)-Einstein manifold of dimension
2k + 2 with hn−2 6= 0, the integral of the scalar curvature is a topological invariant
like in the two dimensional case.

Using the same formulas one can prove the following:

Theorem 3.5. Let (M, g) be a conformally flat 2k-Einstein manifold of even dimen-
sion dimension n = 2k + 2 ≥ 4. Then the Gauss-Bonnet integrand hn of (M, g)
equals

hn =
hn−2

n(n− 1)
Scal.

In particular,

χ(M) = chn−2

∫

M

Scal dvol.
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Where c is a positive constant, hn−2 is a constant : the 2k-th Einstein constant.
Precisely it is determined by the condition c2k−1Rk = (n−2)(n−3)!hn−2

n g, and Scal is
the scalar curvature.

Proof. Recall that for a conformally flat metric we have R = Ag where A is the
Schouten tensor. On the other hand, for a 2k Einstein metric we have c2k−1Rk = λg

with λ = (n−2)hn−2
n . These two facts together with the generalized Avez type formula

of [4] show that

h2k+2 =(2k − 1)〈λg,A〉 − 〈λg, cR〉+ h2kh2

=(2k − 1)λcA− λc2R + h2kh2

=
(n− 2k)(n− 2k − 1)

n(n− 1)
h2kh2.

This completes the proof of the theorem. ¤
We bring the attention of the reader to a recent work of Lima and Santos [7] where
they prove interesting results about the moduli space of 2k Einstein structures.

Hyper 2k-Einstein metrics.
For q fixed, the (1, q)-Einstein condition is the strongest among all the other (p, q)

conditions. In the rest of this section we shall emphasize some properties of this par-
ticular condition.

Definition 3.6. Let 0 < 2q < n, we shall say that a Riemannian n-manifold is
hyper (2q)-Einstein if the first contraction of Thorpe’s tensor Rq is proportional to
the metric g2q−1, that is a (1, q)-Einstein manifold.

The next proposition provides topological and geometrical obstructions to the
existence of hyper (2q)-Einstein metrics:

Theorem 3.7. Let k ≥ 1 and (M, g) be a hyper (2k)-Einstein manifold of dimension
n ≥ 4k. Then the Gauss-Bonnet curvature h4k of (M, g) is nonnegative. Furthermore,
h4k ≡ 0 if and only if (M, g) is k-flat.
In particular, a compact hyper (2k)-Einstein manifold of dimension n = 4k has its
Euler-Poincaré characteristic nonnegative. Furthermore, it is zero if and only if the
metric is k-flat.

Recall that k-flat means that the sectional curvature of Rk is identically zero. The
previous proposition generalizes a well known obstruction to the existence of Einstein
metrics in dimension four due to Berger.

Proof. For a hyper (2k)-Einstein metric, the components Rq
r vanish for 1 ≤ r ≤ 2k−1

by the previous proposition. Next, for n ≥ 4k, the generalized Avez formula, see
corollary 6.5 in [5], shows that

(3.3) h4k =
1

(n− 4k)!
{
n!||Rk

0 ||2 + (n− 2k)!||Rk
2k||2

}
.
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Where Rk
i denotes the component of Rk with respect to the orthogonal decomposition

(2.1). In particular, h4k ≥ 0 and it vanishes if and only if Rk
i = 0 for all 0 ≤ i ≤ 2k,

that is Rk ≡ 0.
If n = 4k, then hn is up to a positive constant the Gauss-Bonnet integrand. This
completes the proof. ¤

A double form ω is said to be harmonic if it is closed and co-closed that is Dω = δω =
0. Where D is the second Bianchi map (or equivalently, the vector valued exterior
derivative) and δ = cD̃ + D̃c its ”formal adjoint”, D̃ being the adjoint second Bianchi
map, see [3, 6].

Proposition 3.8. Let k ≥ 1, then for a hyper (2k)-Einstein manifold, Thorpe’s
curvature tensor Rk is a harmonic double form.

Proof. Since R satisfies the second Bianchi identity then DRk = 0. On the other
hand,

δRk = (cD̃ + D̃c)Rk = D̃(cRk) = D̃(λg2k−1) = 0.

¤
The converse in the previous proposition is not generally true. One needs to impose
extra conditions on the manifold, similar to the ones in [2], in order to ensure the
generalized Einstein condition.

For n ≥ 4k, following [3, 8], an n-dimensional Riemannian manifold is said to be
k-conformally flat if Thorpe’s tensor Rk is divisible by the metric g. Equivalently, the
component (Rk)2k of Rk with respect to the orthogonal splitting (2.1) vanishes. The
proof of the following proposition is straightforward if one uses theorem 3.2

Proposition 3.9. A hyper (2k)-Einstein manifold which is k-conformally flat has
constant k-sectional curvature.

The previous proposition generalizes a similar result about usual Einstein confor-
mally flat manifolds obtained for k = 1.

4 Thorpe’s condition

In this section we consider different generalizations of the Einstein condition suggested
by the work of Thorpe [9].
Recall that in dimension four, Einstein metrics are characterized by the invariance
of their curvature tensor under the Hodge star operator in the sense that ∗R = R,
where R is seen as a double form and ∗ is the generalized Hodge star operator [5]. In
higher even dimensions we proved a similar characterization:

Proposition 4.1 ([5]). A Riemannian manifold (M, g) of dimension n = 2p ≥ 4 is
Einstein if and only if its Riemann curvature tensor R satisfies

(4.1) ∗gp−2R = gp−2R.

For (4k)-dimensions, Thorpe considered the following similar condition but on the
generalized Thorpe’s tensor instead, namely ∗Rk = Rk.
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For a (4k)-dimensional compact and oriented Riemannian manifold, he proved that
the previous condition implies

(4.2) χ ≥ (k!)2

(2k)!
|pk|.

Furthermore, χ = 0 if and only if the manifold is k-flat. Where pk denotes the kth

Pontrjagin number of the manifold.
If Rk =

∑2k
i=0 giω2k−i is the decomposition of Rk following the orthogonal splitting

(2.1), then Thorpe’s condition ∗Rk = Rk is equivalent [5] to the vanishing of ωr for r
odd and 1 ≤ r ≤ 2k− 1. This is in turn can be seen to be equivalent to the condition
that crRk is divisible per the metric (that is crRk = gω̄) for r odd and 1 ≤ r ≤ 2k−1.
These restrictions on Rq are guaranteed in arbitrary even dimension n = 2p ≥ 4q if
one assumes the following generalized Thorpe type condition, see theorem 5.8 in [5]

(4.3) ∗gp−2qRq = gp−2qRq.

The previous generalization of Thorpe’s condition forces the Gauss-Bonnet curvature
h4k to be nonnegative in dimensions n ≥ 4k (theorem 6.7 of [5]).

It results from the previous discussion that for a (4k)-dimensional manifold, the hyper
(2k)-Einstein condition is stronger than Thorpe’s condition ∗Rk = Rk. In higher arbi-
trary even dimensions, the (p, q)-Einstein condition implies the generalized Thorpe’s
condition ∗gp−2qRq = gp−2qRq. In particular, theorem 3.7 is then a consequence of
the above result of Thorpe in the special case where n = 4k. Also, theorem 6.7 of [5]
implies the conclusions of theorem 3.7 for even dimensions higher than 4k.
On the other hand Thorpe’s condition and its generalization are actually complicated
expressions once written in terms of the contractions of Rq as it is shown below.
The proof of the following proposition is a direct application of formula (15) of [5]

Proposition 4.2. A Riemannian manifold of dimension n = 2p ≥ 4q satisfies the
generalized Thorpe’s condition (that is ∗gp−2qRq = gp−2qRq) if and only if

(4.4)
2q∑

r=1

(−1)r(p− 2q + 1)!
r!(p− 2q + r)!

gr−1crRq = 0.

In particular, if n = 4q, Thorpe’s condition is equivalent to

(4.5)
2q∑

r=1

(−1)r

(r!)2
gr−1crRq = 0.

Final remarks and open questions

The model spaces for (p, q)-Einstein manifolds are the spaces with constant q-th
Thorpe’s sectional curvature (that is (0, q)-Einstein). It would be then interesting
to classify Riemannian manifolds of constant k-th Thorpe’s sectional curvature.

Another interesting natural question is to generalize Hamilton’s Ricci flow tech-
niques to the various generalized Ricci curvatures introduced here in this paper.
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Finally, we bring the attention of the reader to different generalizations of the
Einstein condition namely quasi-Einstein due first to Chaki and Maity and then gen-
eralized by several authors, see for instance [1] and the references therein.
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