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Abstract. We consider fractional isoperimetric problems of calculus of
variations with double integrals via the recent modified Riemann–Liouville
approach. A necessary optimality condition of Euler–Lagrange type, in
the form of a multitime fractional PDE, is proved, as well as a sufficient
condition and fractional natural boundary conditions.
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1 Introduction

The calculus of variations was born in 1697 with the solution to the brachistochrone
problem (see, e.g., [40]). It is a very active research area in the XXI century (see,
e.g., [7, 13, 21–23]). Motivated by the study of several natural phenomena in such
areas as aerodynamics, economics, medicine, environmental engineering, and biology,
there has been a recent increase of interest in the study of problems of the calculus
of variations and optimal control where the cost is a multiple integral functional with
several independent time variables. The reader interested in the area of multitime
calculus of variations and multitime optimal control is referred to [24,27,31–35,37–39]
and references therein.

Fractional calculus, i.e., the calculus of non-integer order derivatives, has its ori-
gin also in the 1600s. During three centuries the theory of fractional derivatives of
real or complex order developed as a pure theoretical field of mathematics, useful
only for mathematicians. In the last few decades, however, fractional differentiation
proved very useful in various fields of applied sciences and engineering: physics (clas-
sic and quantum mechanics, thermodynamics, etc.), chemistry, biology, economics,
engineering, signal and image processing, and control theory [8, 14,18,25,26,28].

The calculus of variations and the fractional calculus are connected since the
XIX century. Indeed, in 1823 Niels Henrik Abel applied the fractional calculus in
the solution of an integral equation that arises in the formulation of the tautochrone
problem. This problem, sometimes also called the isochrone problem, is that of finding
the shape of a frictionless wire lying in a vertical plane such that the time of a bead
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placed on the wire slides to the lowest point of the wire in the same time regardless
of where the bead is placed. It turns out that the cycloid is the isochrone as well
as the brachistochrone curve, solving simultaneously the brachistochrone problem of
the calculus of variations and Abel’s fractional problem [1]. It is however in the XX
century that both areas are joined in a unique research field: the fractional calculus
of variations.

The Fractional Calculus of Variations (FCV) was born in 1996-97 with the proof,
by Riewe, of the Euler-Lagrange fractional differential equations [29, 30]. Nowadays,
FCV is subject of strong current research – see, e.g., [2–6, 11, 20]. The first works on
FCV were developed using fractional derivatives in the sense of Riemann–Liouville [2].
Later, problems of FCV with Grunwald–Letnikow, Caputo, Riesz and Jumarie frac-
tional operators, among others, were considered [3, 9, 12, 20]. The literature on FCV
is now vast. However, most results refer to the single time case. Results for multi-
time FCV are scarce, and reduce to those in [3, 10, 36]. Here we develop further the
theory of multitime fractional calculus of variations, by considering fractional isoperi-
metric problems with two independent time variables. Previous results on fractional
isoperimetric problems are for the single time case only [4, 5]. In our paper we study
isoperimetric problems for variational functionals with double integrals involving frac-
tional partial derivatives.

The paper is organized as follows. In Section 2 we recall some basic definitions of
multidimensional fractional calculus. Our results are stated and proved in Section 3.
The main results of the paper include natural boundary conditions (Theorem 3.5)
and a necessary optimality condition (Theorem 3.4) that becomes sufficient under
appropriate convexity assumptions (Theorem 3.6).

2 Preliminaries

In this section we fix notations by collecting the definitions of fractional derivatives
and integrals in the modified Riemann–Liouville sense. For more information on the
subject we refer the reader to [3, 15–17,19].

Definition 2.1 (The Jumarie fractional derivative [17]). Let f be a continuous
function in the interval [a, b] and α ∈ (0, 1). The operator defined by

(2.1) f (α)(x) =
1

Γ(1− α)
d

dx

x∫

a

(x− t)−α(f(t)− f(a))dt

is called the Jumarie fractional derivative of order α.

Let us consider continuous functions f = f(x1, . . . , xn) defined on

R =
n∏

i=1

[ai, bi] ⊂ Rn.

Definition 2.2 (The fractional volume integral [3]). For α ∈ (0, 1) the fractional
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volume integral of f over the whole domain R is given by

Iα
Rf = αn

b1∫

a1

. . .

bn∫

an

f(t1, . . . , tn)(b1 − t1)α−1 . . . (bn − tn)α−1dtn . . . dt1.

Definition 2.3 (Fractional partial derivatives [3]). Let xi ∈ [ai, bi], i = 1, . . . , n,
and α ∈ (0, 1). The operator aiD

α
xi

[i] defined by

ai
Dα

xi
[i]f(x1, . . . , xn) =

1
Γ(1− α)

∂

∂xi

xi∫

ai

(xi − t)−α
[
f(x1, . . . , xi−1, t, xi+1, . . . , xn)

− f(x1, . . . , xi−1, ai, xi+1, . . . , xn)
]
dt

is called the ith fractional partial derivative of order α, i = 1, . . . , n.

Remark 2.1. The Jumarie fractional derivative [15,17] given by (2.1) can be obtained
by putting n = 1 in Definition 2.3:

aDα
x [1]f(x) =

1
Γ(1− α)

d

dx

x∫

a

(x− t)−α(f(t)− f(a))dt = f (α)(x).

Definition 2.4 (The fractional line integral [3]). Let R = [a, b] × [c, d]. The
fractional line integral on ∂R is defined by

Iα
∂Rf = Iα

∂R[1]f + Iα
∂R[2]f,

where

Iα
∂R[1]f = α

b∫

a

[f(t, c)− f(t, d)] (b− t)α−1dt

and

Iα
∂R[2]f = α

d∫

c

[f(b, t)− f(a, t)] (d− t)α−1dt.

3 Main Results

Let us consider functions u = u(x, y). We assume that the domain of functions u
contain the rectangle R = [a, b]× [c, d] and are continuous on R. Moreover, functions
u under our consideration are such that the fractional partial derivatives aDα

x [1]u
and cD

α
y [2]u are continuous on R, α ∈ (0, 1). We investigate the following fractional

problem of the calculus of variations: to minimize a given functional

(3.1) J [u(·, ·)] = α2

b∫

a

d∫

c

f
(
x, y, u,a Dα

x [1]u,c Dα
y [2]u

)
(b− x)α−1(d− y)α−1dydx
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when subject to an isoperimetric constraint

(3.2) α2

b∫

a

d∫

c

g
(
x, y, u,a Dα

x [1]u,c Dα
y [2]u

)
(b− x)α−1(d− y)α−1dydx = K

and a boundary condition

(3.3) u(x, y)|∂R = ψ(x, y).

We are assuming that ψ is some given function, K is a constant, and f and g are
at least of class of C1. Moreover, we assume that ∂4f and ∂4g have continuous
fractional partial derivatives aDα

x [1]; and ∂5f and ∂5g have continuous fractional
partial derivatives cD

α
y [2]. Along the work, we denote by ∂if and ∂ig the standard

partial derivatives of f and g with respect to their ith argument, i = 1, . . . , 5.

Definition 3.1. A continuous function u = u(x, y) that satisfies the given isoperimet-
ric constraint (3.2) and boundary condition (3.3), is said to be admissible for problem
(3.1)-(3.3).

Remark 3.1. Contrary to the classical setting of the calculus of variations, where
admissible functions are necessarily differentiable, here we are considering our varia-
tional problem (3.1)-(3.3) on the set of continuous curves u (without assuming differ-
entiability of u). Indeed, the modified Riemann–Liouville derivatives have the advan-
tage of both the standard Riemann–Liouville and Caputo fractional derivatives: they
are defined for arbitrarily continuous (not necessarily differentiable) functions, like
the standard Riemann–Liouville ones, and the fractional derivative of a constant is
equal to zero, as it happens with the Caputo derivatives.

Definition 3.2 (Local minimizer to (3.1)-(3.3)). An admissible function u =
u(x, y) is said to be a local minimizer to problem (3.1)-(3.3) if there exists some γ > 0
such that for all admissible functions û with ‖û− u‖1,∞ < γ one has J [û]− J [u] ≥ 0,
where

‖u‖1,∞ := max
(x,y)∈R

|u(x, y)|+ max
(x,y)∈R

|aDα
x [1]u(x, y)|+ max

(x,y)∈R

∣∣
cD

α
y [2]u(x, y)

∣∣ .

We make use of the following result proved in [3]:

Lemma 3.2 (Green’s fractional formula [3]). Let h, k, and η be continuous
functions whose domains contain R. Then,

b∫

a

d∫

c

[
h(x, y)aDα

x [1]η(x, y)− k(x, y)cD
α
y [2]η(x, y)

]
(b− x)α−1(d− y)α−1dydx

= −
b∫

a

d∫

c

[
aDα

x [1]h(x, y)−c Dα
y [2]k(x, y)

]
η(x, y)(b− x)α−1(d− y)α−1dydx

+ α! [Iα
∂R[1](hη) + Iα

∂R[2](kη)] .
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Remark 3.3. If η ≡ 0 on ∂R in Lemma 3.2, then

(3.4)

b∫

a

d∫

c

[
h(x, y)aDα

x [1]η(x, y)− k(x, y)cD
α
y [2]η(x, y)

]
(b− x)α−1(d− y)α−1dydx

= −
b∫

a

d∫

c

[
aDα

x [1]h(x, y)−c Dα
y [2]k(x, y)

]
η(x, y)(b− x)α−1(d− y)α−1dydx.

3.1 Necessary Optimality Condition

The next theorem gives a necessary optimality condition for u to be a solution of the
fractional isoperimetric problem defined by (3.1)-(3.3).

Theorem 3.4 (Euler–Lagrange fractional optimality condition to (3.1)-(3.3)).
If u is a local minimizer to problem (3.1)-(3.3), then there exists a nonzero pair of
constants (λ0, λ) such that u satisfies the fractional PDE

(3.5) ∂3H {u} (x, y)−a Dα
x [1]∂4H {u} (x, y)−c Dα

y [2]∂5H {u} (x, y) = 0

for all (x, y) ∈ R, where

H(x, y, u, v, w, λ0, λ) := λ0f(x, y, u, v, w) + λg(x, y, u, v, w)

and, for simplicity of notation, we use the operator {·} defined by

{u} (x, y) :=
(
x, y, u(x, y),a Dα

x [1]u(x, y),c Dα
y [2]u(x, y), λ0, λ

)
.

Proof. Let us define the function

(3.6) ûε(x, y) = u(x, y) + εη(x, y),

where η is such that η ∈ C1(R),

η(x, y)|∂R = 0,

and ε ∈ R. If ε take values sufficiently close to zero, then (3.6) is included into the
first order neighborhood of u, i.e., there exists δ > 0 such that ûε ∈ U1(u, δ), where

U1(u, δ) :=
{

û(x, y) : ‖u− û‖1,∞ < δ
}

.

On the other hand,

û0(x, y) = u,
∂ûε(x, y)

∂ε
= η,

∂aDα
x [1]ûε(x, y)

∂ε
=a Dα

x [1]η,
∂cD

α
y [2]ûε(x, y)

∂ε
=c Dα

y [2]η.

Let

F (ε) = α2

b∫

a

d∫

c

f(x, y, ûε(x, y),a Dα
x [1]ûε(x, y),c Dα

y [2]ûε(x, y))(b−x)α−1(d−y)α−1dydx,
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and

G(ε) = α2

b∫

a

d∫

c

g(x, y, ûε(x, y),a Dα
x [1]ûε(x, y),c Dα

y [2]ûε(x, y))(b−x)α−1(d−y)α−1dydx.

Define the Lagrange function by

L(ε, λ0, λ) = λ0F (ε) + λ (G(ε)−K) .

Then, by the extended Lagrange multiplier rule (see, e.g., [40]), we can choose multi-
pliers λ0 and λ, not both zero, such that

(3.7)
∂L(0, λ0, λ)

∂ε
= λ0

∂F

∂ε

∣∣∣∣
ε=0

+ λ
∂G

∂ε

∣∣∣∣
ε=0

= 0.

The term ∂F
∂ε

∣∣
ε=0

is equal to

α2

b∫

a

d∫

c

{
∂

∂ε

[
f(x, y, ûε,a Dα

x [1]ûε,c Dα
y [2]ûε)(b− x)α−1(d− y)α−1

]}

ε=0

dydx

= α2

b∫

a

d∫

c

∂3f(b− x)α−1(d− y)α−1dydx

+ α2

b∫

a

d∫

c

[
∂4faDα

x [1]η + ∂5fcD
α
y [2]η

]
(b− x)α−1(d− y)α−1dydx.

(3.8)

By (3.4) the last double integral in (3.8) may be transformed as follows:

α2

b∫

a

d∫

c

[
∂4faDα

x [1]η + ∂5fcD
α
y [2]η

]
(b− x)α−1(d− y)α−1dydx

= −α2

b∫

a

d∫

c

[
aDα

x [1]∂4f +c Dα
y [2]∂5f

]
η(b− x)α−1(d− y)α−1dydx.

Hence,

(3.9)
∂F

∂ε

∣∣∣∣
ε=0

= α2

b∫

a

d∫

c

[
∂3f −a Dα

x [1]∂4f −c Dα
y [2]∂5f

]
η(b−x)α−1(d−y)α−1dydx.

Similarly,
(3.10)

∂G

∂ε

∣∣∣∣
ε=0

= α2

b∫

a

d∫

c

[
∂3g −a Dα

x [1]∂4g −c Dα
y [2]∂5g

]
η(b− x)α−1(d− y)α−1dydx.
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Substituting (3.9) and (3.10) into (3.7), it results that

∂L(ε, λ0, λ)
∂ε

= α2

b∫

a

d∫

c

[
λ0

(
∂3f −a Dα

x [1]∂4f −c Dα
y [2]∂5f

)

+ λ
(
∂3g −a Dα

x [1]∂4g −c Dα
y [2]∂5g

)]
η(b− x)α−1(d− y)α−1dydx = 0.

Finally, since η ≡ 0 on ∂R, the fundamental lemma of the calculus of variations (see,
e.g., [24]) implies that

∂3H {u} (x, y)−a Dα
x [1]∂4H {u} (x, y)−c Dα

y [2]∂5H {u} (x, y) = 0.

¤

3.2 Natural Boundary Conditions

In this section we consider problem (3.1)-(3.2), i.e., we consider the case when the
value of function u = u(x, y) is not preassigned on ∂R.

Theorem 3.5 (Fractional natural boundary conditions to (3.1)-(3.2)). If u is a
local minimizer to problem (3.1)-(3.2), then u is a solution of the fractional differential
equation (3.5). Moreover, it satisfies the following conditions:

1. ∂4H {u} (a, y) = 0 for all y ∈ [c, d];

2. ∂4H {u} (b, y) = 0 for all y ∈ [c, d];

3. ∂5H {u} (x, c) = 0 for all x ∈ [a, b];

4. ∂5H {u} (x, d) = 0 for all x ∈ [a, b].

Proof. Since in problem (3.1)-(3.2) no boundary condition is imposed, we do not
require η in the proof o Theorem 3.4 to vanish on ∂R. Therefore, following the proof
of Theorem 3.4, we obtain

(3.11) α2

b∫

a

d∫

c

(∂3H {u} (x, y) +a Dα
x [1]∂4H {u} (x, y)

+cD
α
y [2]∂5H {u} (x, y)

)
η(b− x)α−1(d− y)α−1dydx

+ α! [Iα
∂R[1](∂4H {u} (x, y)η) + Iα

∂R[2](∂5H {u} (x, y)η)] = 0,

where η is an arbitrary continuous function. In particular, the above equation holds
for η ≡ 0 on ∂R. If η(x, y)|∂R = 0, the second member of the sum in (3.11) vanishes
and the fundamental lemma of the calculus of variations (see, e.g., [24]) implies (3.5).
With this result equation (3.11) takes the form

(3.12)

d∫

c

∂4H {u} (b, y)η(b, y)(d− y)α−1dy −
d∫

c

∂4H {u} (a, y)η(a, y)(d− y)α−1dy

−
b∫

a

∂5H {u} (x, c)η(x, c)(b− x)α−1dx−
b∫

a

∂5H {u} (x, d)η(x, d)(b− x)α−1dx = 0.
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Let S1 = ([a, b] × c) ∪ ([a, b] × d) ∪ (b × [c, d]). Since η is an arbitrary function, we
can consider the subclass of functions for which η(x, y)|S1

= 0. For such η, equation
(3.12) reduces to

0 =

d∫

c

∂4H {u} (a, y)η(a, y)(d− y)α−1dy.

By the fundamental lemma of calculus of variations, we obtain that

∂4H {u} (a, y) = 0

for all y ∈ [c, d]. We prove the other natural boundary conditions in a similar way. ¤

3.3 Sufficient Condition

We now prove a sufficient condition that ensures existence of global minimum under
appropriate convexity assumptions.

Theorem 3.6. Let H(x, y, u, v, w, λ0, λ) = λ0f(x, y, u, v, w) + λg(x, y, u, v, w) be a
convex function of u, v and w. If u(x, y) satisfies (3.5), then for an arbitrary admis-
sible function û(·, ·) the following holds:

J [û(·, ·)] ≥ J [u(·, ·)],

i.e., u(·, ·) minimizes (3.1).

Proof. Define the following function:

µ(x, y) := û(x, y)− u(x, y).

Obviously,

µ(x, y)|∂R = 0.

Since H {û} (x, y) is convex and aDα
x [1], cD

α
y [2] are linear operators, we obtain that

H {û} (x, y)−H {u} (x, y)
≥ (û(x, y)− u(x, y))∂3H {u} (x, y) + (aDα

a [1]û(x, y)−a Dα
x [1]u(x, y)) ∂4H {u} (x, y)

+
(
cD

α
y [2]û(x, y)−c Dα

y [2]u(x, y)
)
∂5H {u} (x, y)

= (û(x, y)− u(x, y))∂3H {u} (x, y) +a Dα
x [1] (û(x, y)− u(x, y)) ∂4H {u} (x, y)

+c Dα
y [2] (û(x, y)− u(x, y)) ∂5H {u} (x, y)

= µ(x, y)∂3H {u} (x, y) +a Dα
x [1]µ(x, y)∂4H {u} (x, y) +c Dα

y [2]µ(x, y)∂5H {u} (x, y),

(3.13)

where the λ0 and λ that appear in {u} (x, y) are constants whose existence is assured
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by Theorem 3.4. Therefore,1

J [û(·, ·)]− J [u(·, ·)]

= α2

b∫

a

d∫

c

f(x, y, û,a Dα
x [1]û,c Dα

y [2]û)(b− x)α−1(d− y)α−1dydx

− α2

b∫

a

d∫

c

f(x, y, u,a Dα
x [1]u,c Dα

y [2]u)(b− x)α−1(d− y)α−1dydx

+ λ0


α2

b∫

a

d∫

c

g(x, y, û,a Dα
x [1]û,c Dα

y [2]û)(b− x)α−1(d− y)α−1dydx−K




− λ0


α2

b∫

a

d∫

c

g(x, y, û,a Dα
x [1]û,c Dα

y [2]u)(b− x)α−1(d− y)α−1dydx−K




= α2

b∫

a

d∫

c

(H {û} −H {u}) (b− x)α−1(d− y)α−1dydx.

Using (3.13) and (3.4), we get

α2

b∫

a

d∫

c

(H {û} −H {u}) (b− x)α−1(d− y)α−1dydx

≥ α2

b∫

a

d∫

c

µ∂3H {u} (b− x)α−1(d− y)α−1dydx

+ α2

b∫

a

d∫

c

(
aDα

x [1]µ∂4H {u}+c Dα
y [2]µ∂5H {u}) (b− x)α−1(d− y)α−1dydx

= α2

b∫

a

d∫

c

µ∂3H {u} (b− x)α−1(d− y)α−1dydx

+ α2

b∫

a

d∫

c

(
aDα

x [1]∂4H {u}+c Dα
y [2]∂5H {u})µ(b− x)α−1(d− y)α−1dydx

= α2

b∫

a

d∫

c

(∂3H {u}+a Dα
x [1]∂4H {u}

+cD
α
y [2]∂5H {u})µ(b− x)α−1(d− y)α−1dydx

= 0.

Thus, J [û(·, ·)] ≥ J [u(·, ·)]. ¤
1From now on we omit, for brevity, the arguments (x, y).
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4 Conclusion

The fractional calculus provides a very useful framework to deal with nonlocal dynam-
ics: if one wants to include memory effects, i.e., the influence of the past on the behav-
ior of the system at present time, then one may use fractional derivatives. The proof
of fractional Euler–Lagrange equations is a subject of strong current study because of
its numerous applications. However, while the single time case is well developed, the
multitime fractional variational theory is in its childhood, and much remains to be
done. In this work we consider a new class of multitime fractional functionals of the
calculus of variations subject to isoperimetric constraints. We prove both necessary
and sufficient optimality conditions via the modified Riemann–Liouville approach.
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[35] C. Udrişte, O. Dogaru and I. Ţevy, Null Lagrangian forms and Euler-Lagrange
PDEs, J. Adv. Math. Stud. 1, 1-2 (2008), 143-156.
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