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Abstract. The geometry of the mechanical ball-plate problem is discussed
and some of its geometrical properties are pointed out.
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1 Introduction

The matrix Lie groups arise naturally in engineering, physics or biology usually as
the configuration space of some concrete mechanical problems and then their corre-
sponding dynamics leads naturally to a set of differential equations on the ambient
matrix Lie group. For instance, this is the case of electrical networks used for power
conversion modeled on the orthogonal group SO(n) and extensively studied by Wood
[16], the control tower problem from air traffic, modeled on the special euclidian group
SE(3) and extensively studied by Montgomery, Sastry and Walsh [14], the underwa-
ter vehicle dynamics modeled on the special euclidian group SE(3) and studied by
Leonard [8], the molecular motion in the context of coherent control of quantum dy-
namics modeled on the complex unitary group U(n) and studied by Dahleh, Pierce,
Rabitz and Ramakrishna [4], and the spacecraft dynamics modeled on the special
othogonal group SO(3) and extensively studied by Leonard [8] and Puta [12].

The goal of our paper is to add at this list a new example, namely the ball-plate
problem and to point out some of its geometrical and dynamical properties.

2 The geometrical picture of the problem

Let us consider the following well-known kinematics problem: a ball rolls without
slipping between two horizontal plates separated by the distance equal to the diameter
of the ball. It is assumed that the lower plate is fixed and that the ball is rolled through
the horizontal movement of the upper plate. The problem is to transfer the ball from
a given initial position and a given orientation to a prescribed final position and final

orientation along a path which minimizes the functional
∫ T

0

‖V (t)‖2 dt, among all
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possible pathes which satisfy these boundary condition. V (t) denotes the the velocity
of the moving plate and T is the time transfer. For convenience we have chosen the
components of velocity of the center of the ball as the control functions, rather than
the components of the velocity of the moving plate and we have also assume that the
radius of the ball is 1. Then the velocity of the moving plate is twice the velocity
of the center of the ball. The problem can be also formulated as an optimal control
problem on a Lie group. This way of looking at the ball-plate problem was pointed
out by Jurdjevic ([6]). More exactly we have: let G = R2 × SO(3) be regarded as an
5-dimensional Lie group with the group operation given by:

(a1, R1) · (a2, R2) = (a1 + a2, R1R2) ,

for any (ai, Ri) ∈ G, i = 1, 2. Its Lie algebra G is R2 × so(3) with bracket operation
given by

[(a,A) , (b,B)] = (0, AB −BA) , ∀ (a,A) , (b,B) ∈ R2 × so(3).

Since so(3) can be identified with R3 via the canonical map:

∧ :




a1

a2

a3


 ∈ R3 7→




0 −a3 a2

a3 0 −a1

−a2 a1 0


 ∈ so (3) ,

we can conclude that R2 × so(3) can be identified with R5. Moreover, let: e1 =
(1, 0)t, (0, 1)t and

E1 =




0 0 0
0 0 −1
0 1 0


 , E2 =




0 0 1
0 0 0
−1 0 0


 , E3 =




0 −1 0
1 0 0
0 0 0




be respectively the canonical bases of R2 and respectively so(3). Then:

A1 = (0, 0, 1, 0, 0)t, A2 = (0, 0, 0, 1, 0)t, A3 = (0, 0, 0, 0, 1)t,

A4 = (1, 0, 0, 0, 0)t, A5 = (0, 1, 0, 0, 0)t

is the corresponding basis of R5. Following Jurdjevic ([6]), the dynamics of the ball-
plate can be described by the following left invariant system on R2 × SO(3) :

(2.1)
.

X = X [u1 (A4 −A2) + u2 (A5 + A1)] .

Using the following Table:

[.,.] A1 A2 A3 A4 A5

A1 0 A3 −A2 0 0
A2 −A3 0 A1 0 0
A3 A2 −A1 0 0 0
A4 0 0 0 0 0
A5 0 0 0 0 0

we can conclude that the system (2.1) is controllable and is a single bracket one.
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3 An optimal control problem for the system (2.1)

In this section we will present an optimal control problem for the controllable system
(2.1). Despite the classic optimization problems solved by Pontryaguin maximum
principle, for instance like [9] or [10], this kind of problems are solved by Krishnaprasad
Theorem, see [7].

Proposition 3.1. ([13]) Let J be the cost function given by:

J (u1, u2) =
1
2

∫ tf

0

(
u2

1 + u2
2

)
dt.

Then the controls which minimize J and steer the system from X = X0 at t = 0 to
X = Xf at t = tf are given by u1 = x4 − x2, u2 = x1 + x5, where xi are the
solutions of the SODE:

(3.1)





.
x1 = −x3 (x2 − x4)
.

x2 = x3 (x1 + x5)
.

x3 = −x2x5 − x1x4
.

x4 = 0
.

x5 = 0

It is not hard to see that the equations (3.1) can be put in the equivalent form:

(3.2)





.
x1 = x3 (k − x2)
.

x2 = x3 (x1 + l)
.

x3 = −lx2 − kx1

where x4 = k, x5 = l.

Proposition 3.2. ([13]) The system (3.2) has a Hamilton-Poisson realization with

the phase space R3, the Poisson bracket given by the matrix Π =
( 0 −x3 x2

x3 0 −x1
−x2 x1 0

)
and

the Hamiltonian H given by:

(3.3) H(x1, x2, x3) =
1
2
(k − x2)2 +

1
2
(l + x1)2.

The function C given by:

(3.4) C(x1, x2, x3) =
1
2
(x2

1 + x2
2 + x2

3)

is a Casimir of our configuration. It follows that the phase curves of our system are
the intersections of the elliptic cylinder H = const. with the sphere C = const.

4 Stability problems and periodical orbits

It is not hard to see that the equilibrium states of our dynamics are:

eM
1 = (−l, k, M) ,M ∈ R, and eM

2 =
(
− l

k
M,M, 0

)
,M ∈ R.

About the spectral stability of these equilibrium states we have the following results:
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Proposition 4.1. The equilibrium states eM
1 are spectrally stable for any M ∈ R.

Proposition 4.2. The equilibrium states eM
2 are spectrally stable if one of the fol-

lowing conditions hold true: i) k < 0,M > k; ii) k > 0,M < k.

We can now pass to discuss the nonlinear stability of the equilibrium states
eM
1 ,M ∈ R and eM

2 in the conditions of the above Proposition. Using the energy-
Casimir method [1], we are able to prove the following results:

Proposition 4.3. The equilibrium states eM
1 , M ∈ R∗, l ∈ R∗, k ∈ R∗ are nonlinearly

stable.

Proof. We use the energy-Casimir method (see [1]). Let

Hϕ = H + ϕ(C) =
(k − x2)2

2
+

(l + x1)2

2
+ ϕ

(
1
2
(x2

1 + x2
2 + x2

3)
)

be the energy-Casimir function, where ϕ : R → R is a smooth real valued function
defined on R. Then, the first variation of Hϕ is given by:

δHϕ = (l + x1)δx1 − (k − x2)δx2 + ϕ̇

(
1
2
(x2

1 + x2
2 + x2

3)
)
· (x1δx1 + x2δx2 + x3δx3),

where ϕ̇ = ∂ϕ

∂( 1
2 (x2

1+x2
2+x2

3))
. This equals zero at the equilibrium of interest if and only

if ϕ̇( 1
2 (k2 + M2 + l2)) = 0. The second variation of Hϕ is given by:

δ2Hϕ = (δx1)2 +(δx2)2 +
··
ϕ ·(x1δx1 +x2δx2 +x3δx3)2 +

·
ϕ ·((δx1)2 +(δx2)2 +(δx3)2),

At the equilibrium of interest, the second variation becomes:

δ2Hϕ(−l, k, M) = (δx1)2 + (δx2)2 +
··
ϕ ·(−lδx1 + kδx2 + Mδx3)2.

Choosing ϕ such that ϕ̇( 1
2 (k2 + M2 + l2)) = 0 and ϕ̈( 1

2 (k2 + M2 + l2)) > 0, we
conclude that the second variation of Hϕ at the equilibrium of interest is positive
definite, and thus e1 is nonlinearly stable. ¤

Using the same arguments we are able to prove

Proposition 4.4. The equilibrium states eM
2 are nonlinearly stable if one of the

following conditions holds true: i) k < 0,M < 0,M > k; ii) k > 0,M > 0,M < k.

As consequence, under the conditions of Proposition 4.4, we can prove

Proposition 4.5. Near to eM
2 =

(− l
kM, M, 0

)
, the reduced dynamics has, for each

sufficiently small value of the reduced energy, at least 1-periodic solution whose period
is close to:

2π

√
k

(k −M)(l2 + k2)
.

Proof. We can easily check the following:
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(i) restriction of our dynamics (3.2) to the coadjoint orbit x2
1 + x2

2 + x2
3 = l2+k2

k2 M2

gives rise to a classical Hamiltonian system;

(ii) the matrix of the linear part of the reduced dynamics has purely imaginary
roots. More exactly, λ2,3 = ±i

√
(k −M)(l2 + k2)/k;

(iii) span(∇C(eM
2 )) = V0 = span

{
(− l

k , 1, 0)t
}

, where V0 = ker(A(eM
2 ));

(iv) the smooth function F k−M
M

∈ C∞(R3,R) given by

F k−M
M

(x1, x2, x3) =
1
2
(k − x2)2 +

1
2
(l + x1)2 +

k −M

2M
(x2

1 + x2
2 + x2

3)

has the following properties:

• it is a constant of motion of the dynamics (3.1);

• ∇F k−M
M

(eM
2 ) = 0;

• if k < 0,M < 0,M > k or k > 0, M > 0,M < k then

∇2F k−M
M

(eM
2 )

∣∣∣
W×W

> 0,

where W := ker dC(eM
2 ) = spanR

{
(k

l , 1, 0)t, (0, 0, 1)t
}

.

Then our assertion follows via the Moser-Weinstein theorem with zero eigenvalue
(for details, see [2]). ¤

5 Numerical integration of the equations (3.2)

It is easy to see that, for the equations (3.2), Kahan’s integrator can be written in
the following form:

(5.1)





xn+1
1 − xn

1 = h
2 (kxn+1

3 + kxn
3 − xn+1

3 xn
2 − xn+1

2 xn
3 )

xn+1
2 − xn

2 = h
2 (xn+1

1 xn
3 + xn+1

3 xn
1 + lxn+1

3 + lxn
3 )

xn+1
3 − xn

3 = −h
2 (lxn+1

2 + lxn
2 + kxn+1

1 + kxn
1 )

A long but straightforward computation or alternatively, by using MATHEMATICA,
leads us to:

Proposition 5.1. Kahan’s integrator (5.1) has the following properties:
(i) It is not Poisson preserving.
(ii) It does not preserve the Casimir C (3.4) of our Poisson configuration (R3,Π).
(iii) It does not preserve the Hamiltonian H (3.3) of our system (3.2).

Proof. Indeed, it is easy to see that the factorizations of Hn+1−Hn, (resp. Cn+1−Cn

and JΠnJ t − Πn+1, where J is the Jacobian of the transformation described by the
above integrator) do not vanish, and then our result immediately follows. ¤
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We shall discuss now the numerical integration of the dynamics (3.2) via the Lie-
Trotter integrator, see for details [12], [15]. To begin with, let us observe that the
Hamiltonian vector field XH splits as follows: XH = XH1 + XH2 , where

H1 =
1
2
(l + x1)2, H2 =

1
2
(k − x2)2.

Following [15], we obtain the Lie-Trotter integrator:

(5.2)





xn+1
1 = xn

1 cos(x2(0)− k)t + xn
3 sin(x2(0)− k)t

xn+1
2 = −xn

1 sin(x1(0) + l)t sin(x2(0)− 1)t + xn
2 cos(x1(0) + l)t

+xn
3 sin(x1(0) + l)t · cos(x2(0)− k)t

xn+1
3 = −xn

1 sin(x1(0)− k)t cos(x2(0) + l)t− xn
2 sin(x1(0) + l)t

+xn
3 cos(x2(0)− k)t · cos(x1(0) + l)t

Now, a direct computation or using MATHEMATICA 7 leads us to:

Proposition 5.2. The Lie-Trotter integrator (5.2) has the following properties:
(i) It preserves the Poisson structure Π.
(ii) It preserves the Casimir C of our Poisson configuration (R3,Π).
(iii) It doesn’t preserve the Hamiltonian H of our system (3.2).
(iv) Its restriction to the coadjoint orbit (Ok, ωk), where

Ok = {(x1, x2, x3) ∈ R3|x2
1 + x2

2 + x2
3 = const.}

and ωk is the Kirilov-Kostant-Souriau symplectic structure on Ok gives rise to a
symplectic integrator.

Proof. The items (i), (ii) and (iv) hold because Lie-Trotter is a Poisson integrator.
The last assertion is due to the fact that {H1, H2} 6= 0. ¤

If we compare this method to the 4th-step Runge-Kutta method, we can see that
the Lie-Trotter’s integrator gives us a good approximation of our dynamics. For this
time, Kahan’ s integrator provides a weak approximation.
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Figure 1: Kahan, Lie-Trotter and Runge-Kutta 4th integrator, respectively, for

the equations (3.2) (k = 2, l = 3, x1(0) = x2(0) = x3(0) = 1)
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6 Conclusion

The paper presents the ball-plate problem from the mechanical geometry point
of view. An optimal control problem associated to the ball-plate dynamics is the sub-
ject of the second paragraph. Realizing this system as a Hamilton-Poisson system we
can study it from the standard Hamilton-Poisson geometry points of view. The third
paragraph presents the spectral and nonlinear stability problems and the periodical
orbits. In the last paragraph we have presented a comparison between three numer-
ical integration methods: Runge-Kutta 4th steps, Lie-Trotter algorithm and Kahan
algorithm. This time, the three methods provided different results: Lie-Trotter algo-
rithm’s results are close enough to Runge-Kutta’s one while Kahan’s method gives us
a weak approximation of trajectory movement.
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