
Polyharmonic submanifolds in Euclidean spaces

S. Maeta

Abstract. B.Y. Chen introduced biharmonic submanifolds in Euclidean
spaces and raised the conjecture ”Any biharmonic submanifold is mini-
mal”. In this article, we show some affirmative partial answers of general-
ized Chen’s conjecture. Especially, we show that the triharmonic hyper-
surfaces with constant mean curvature are minimal.
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1 Introduction

Let x : (Mn, g) → EN be an isometric immersion from an n-dimensional Rieman-
nian manifold into an N -dimensional Euclidean space, where g denotes the induced
Riemannian metric on M . Then it is well known that

(1.1) ∆x = nH,

where ∆ is the non-positive Laplace operator, and H the mean curvature vector of
M , respectively. From equation (1.1), M is minimal if and only if x : (M, g) → EN is
a harmonic map. B.Y. Chen introduced biharmonic submanifolds:

Definition 1.1. A submanifold x : M → EN is said to be a biharmonic submanifold
if

4H =
1
n
42 x = 0.

We also note that M is biharmonic if and only if x is a biharmonic map. Further-
more, B.Y. Chen raised the interesting conjecture [2]:

Conjecture 1 Any biharmonic submanifold in EN is minimal.

There are many affirmative partial answers to Conjecture 1. In particular, there
are some complete affirmative answers if M is one of the following:
(a) a curve [7],
(b) a surface in E3 [2],
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(c) a hypersurface in E4 [5, 10].
On the other hand, I. Dimitric showed that any biharmonic submanifold with constant
mean curvature is minimal [7].

We introduce polyharmonic submanifolds for generalized notion of biharmonic
submanifold.

Definition 1.2. A submanifold x : M → EN is said to be a polyharmonic submani-
fold of order k if

4k−1H =
1
n
4k x = 0,

where k is positive integer.

For polyharmonic submanifold of order k, we consider the following problem:

Conjecture 2 Any polyharmonic submanifold of order k is minimal.

Remark 1.3. Polyharmonic submanifolds of order s are automatically polyharmonic
submanifolds of order t (s < t). Especially, biharmonic submanifolds are polyhar-
monic submanifolds of order k (k > 2) (polyharmonic submanifolds of order 2 are
called biharmonic submanifolds). Thus, Conjecture 2 is generalized conjecture of
Conjecture 1.

The author gave a complete affirmative answer for the following case:

Theorem 1.1 ([13]). Any polyharmonic curve parametrized by arc length is straight
line.

In this article we give some affirmative partial answers to Conjecture 2.

The biharmonicity equation is a special case of the following condition:

4H = λH, λ ∈ R.

The study of Euclidean submanifolds with 4H = λH was initiated by Chen in 1988
[3]. It is known that submanifolds in EN with 4H = λH are either biharmonic
(λ = 0) , of 1-type or null 2-type. In particular, all surfaces in E3 with 4H = λH
are of constant mean curvature. Moreover a surface in E3 satisfies 4H = λH if and
only if it is minimal, an open portion of a totally umbilical sphere or an open portion
of a circular cylinder. All hypersurfaces of E4 with 4H = λH are of constant mean
curvature [6].

In Section 2, we introduce notation and fundamental formulas. In Section 3, we
give the necessary and sufficient condition for polyharmonic submanifolds of order k
and show that any triharmonic hypersurface with constant mean curvature is minimal.
Moreover, we show that ”biharmonic submanifolds” and ”polyharmonic submanifolds
with 4H = λH” are equivalent. In Section 4, we consider polyharmonic psudoum-
bilical submanifolds and give several results. One of them recover Dimitric’s result.
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2 Preliminaries

First of all, we recall useful formulas. Let ∇ and D be the Levi-Civita connections
of (M, g) and EN = (RN , 〈 , 〉), respectively. For any vector fields X, Y ∈ X(M), the
Gauss formula

DXY = ∇XY + h(X,Y ),

where h stands for the second fundamental form of M in EN . For any normal vector
field ξ, the Weingarten map Aξ with respect to ξ is given by

DXξ = −AξX +∇⊥Xξ,

where ∇⊥ stands for the normal connection of the normal bundle of M in EN . It is
well known that h and A are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉.

For any x ∈ M , let {e1, · · · , en, en+1, · · · , eN} be an orthonormal basis of EN at x
such that {e1, · · · , en} is an orthonormal basis of TxM . Then, h is decomposed at x

h(X,Y ) = ΣN
α=n+1hα(X, Y )eα.

The mean curvature vector H of M at x is also given by

H(x) = ΣN
α=n+1Hα(x)eα,

where Hα(x) := 1
nΣn

i=1hα(ei, ei). It is well known that the necessary and sufficient
condition for M in EN to be biharmonic, namely, ∆H = 0, is the following ([2, 4]):

(2.1)

{
∆⊥H− Σn

i=1h(AHei, ei) = 0,

n ∇|H|2 + 4 trace A∇⊥H = 0,

where ∆⊥ is the non-positive Laplace operator associated with the normal connection
∇⊥. Similarly, we obtain that the necessary and sufficient condition for M in EN to
satisfy 4H = λH is the following:

(2.2)

{
∆⊥H− Σn

i=1h(AHei, ei) = λH,

n ∇|H|2 + 4 trace A∇⊥H = 0.

3 Polyharmonic hypersurfaces in Euclidean spaces

In this section, we give affirmative partial answers generalized Chen’s conjecture.

First, we give the necessary and sufficient condition for M in EN to be polyhar-
monic submanifolds.

Lemma 3.1. The necessary and sufficient condition for M in EN to be polyharmonic
submanifolds of order k, namely, 4k−1H = Tk + Nk = 0 (Tk is tangental part and
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Nk is normal part), are the following:

Tk =4T Tk−1 −
n∑

j=1

Ah(Tk−1,ej)ej −
n∑

j=1

(∇ej
ANk−1)(ej)−

n∑

j=1

A∇⊥ej
Nk−1

ej

=0,

Nk =
n∑

j=1

h(∇ej
Tk−1, ej) +

n∑

j=1

∇⊥ej
h(Tk−1, ej)−

n∑

j=1

h(Tk−1,∇ej
ej)

+4⊥Nk−1 −
n∑

j=1

h(ANk−1ej , ej) = 0,

where, T0 = 0, N0 = H,4T is the non-positive Laplace operator associated with the
connection ∇ and 4⊥ is the non-positive Laplace operator associated with the normal
connection ∇⊥, respectively.

Proof.

4 Tk−1 = 4T Tk−1 −
n∑

j=1

Ah(Tk−1,ej)ej +
n∑

j=1

h(∇ej Tk−1, ej)

+
n∑

j=1

∇⊥ej
h(Tk−1, ej)−

n∑

j=1

h(Tk−1,∇ej ej),

4Nk−1 = −
n∑

j=1

(∇ej ANk−1)(ej)−
n∑

j=1

A∇⊥ej
Nk−1

ej

+4⊥Nk−1 −
n∑

j=1

h(ANk−1ej , ej). ¤

Especially, the necessary and sufficient condition for M in EN to be polyharmonic
submanifolds of order 3 (triharmonic submanifolds):

Lemma 3.2. The necessary and sufficient condition for M in EN to be triharmonic,
namely, 42H = T3 + N3 = 0, is the following:
(3.1)




T3 = −∑n
j=1(∇ej A4⊥H)(ej)−

∑n
j=1 A∇⊥ej

4⊥Hej

−∑n
j=14T {(∇ej AH)(ej)}+

∑n
i,j=1 Ah(ej ,{(∇ei

AH)(ei)})ej

−∑n
j=14T A∇⊥ej

Hej +
∑n

i,j=1 Ah(ej ,A∇⊥ei
H

ei)ej

+
∑n

i,j=1(∇ej Ah(AHei,ei))(ej) +
∑n

i,j=1 A∇⊥ej
h(AHei,ei)ej = 0.

N3 = 4⊥ 4⊥ H−∑n
j=1 h(A4⊥Hej , ej)−

∑n
i,j=1 h(ej ,∇ej{(∇eiAH)(ei)})

−∑n
i,j=1∇⊥ej

h(ej , {(∇eiAH)(ei)}) +
∑n

i,j=1 h(∇ej ej , {(∇eiAH)(ei)})
−∑n

i,j=1 h(ej ,∇ej{A∇⊥ei
Hei})−

∑n
i,j=1∇⊥ej

h(ej , A∇⊥ei
Hei)

+
∑n

i,j=1 h(∇ej ej , A∇⊥ei
Hei)−

∑n
j=14⊥h(AHej , ej)

+
∑n

i,j=1 h(Ah(AHei,ei)ej , ej) = 0.
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Proof. Using Lemma 3.1, we obtain (3.1). ¤

If M is a hypersurface of En+1 with constant mean curvature, then equations (3.1)
can be denoted simple forms.

Lemma 3.3. The necessary and sufficient condition for Mn in En+1 with constant
mean curvature to be triharmonic is the following:

(3.2)

{
Hn+1Aen+1(∇|Aen+1 |2) = 0,

Hn+1(−4 |Aen+1 |2 + |Aen+1 |4) = 0.

Proof. First, we calculate the tangential part T3. Computation shows that

m∑

i=1

h(AHei, ei) = Hn+1|Aen+1 |2en+1.

Thus, we have

T3 = Hn+1

m∑

j=1

{2ej(|Aen+1 |2)Aen+1ej + |Aen+1 |2(∇ej Aen+1)(ej)}.

Because of

m∑

j=1

(∇ej Aen+1)(ej) = n∇Hn+1 = 0,

we obtain that

T3 = 2Hn+1Aen+1(∇|Aen+1 |2).

Next, we calculate the normal part N3. Computation shows that

N3 = Hn+1

{−4⊥ (|Aen+1 |2en+1) + |Aen+1 |4en+1

}
.

Because of

4⊥(|Aen+1 |2en+1) = 4(|Aen+1 |2)en+1,

we obtain that

N3 = Hn+1(−4 |Aen+1 |2 + |Aen+1 |4)en+1. ¤

Using this lemma, we give an affirmative partial answer of generalized Chen’s
conjecture.

Theorem 3.4. Any triharmonic hypersurface of En+1 with constant mean curvature
is minimal.
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Proof. From the first equation of (3.2), if Hn+1 = 0, then M is minimal. Thus, we
have Aen+1(∇|Aen+1 |2) = 0. So, we obtain ∇|Aen+1 |2 = 0. Therefore, |Aen+1 |2 is
constant. From the second equation of (3.2), |Aen+1 |2 = 0. Since we can denote
Aen+1ei = µiei, we have H = 1

n

∑n
i=1 µi, and

|Aen+1 |2 =
n∑

i=1

〈Aen+1ei, Aen+1ei〉 =
n∑

i=1

µ2
i = 0.

Thus, µi = 0 for all i = 1, · · · , n. Therefore, M is minimal. ¤

From Theorem 1.1 and Theorem 3.4, we obtain the following:

Corollary 3.5. Any triharmonic submanifold of E3 with constant mean curvature is
minimal.

As for polyharmonic submanifolds, it is easily seen that the polyharmonic sub-
manifolds with 4H = λH and the biharmonic submanifolds are equivalent

Proposition 3.6. The following properties are equivalent:
1) polyharmonic submanifolds with 4H = λH.
2) biharmonic submanifolds.

Proof. It is obvious. ¤

Remark 3.1. For polyharmonic submanifolds with 4H = λH, a surface in E3 [2], a
hypersurface in E4 [5, 10] are minimal.

4 Polyharmonic psudoumbilical submanifolds

In this section, we consider psudoumbilical submanifolds. First, we recall Dimitric’s
result:

Theorem 4.1 ([7]). Let x : Mn → EN be a psudoumbilical submanifold, that is, AH

is proportional to the identity. If 4H = 0 and n 6= 4, then M is minimal.

We shall consider psudoumbilical submanifolds with 4H = λH.

Proposition 4.2. Let M be a psudoumbilical hypersurface of En+1. Then M satisfies
4H = λH if and only if it is minimal or a submanifold with constant mean curvature
satisfying λ = −n|H|2.
Proof. Psudoumbilicity implies Aen+1 = Hn+1I. From the second equation of (2.2),
we have

∇|H|2 = 0.

So |H|2 is constant. From the first equation of (2.2), we have

Hn+1(n|H|2 + λ) = 0.

Therefore, we have that M is minimal or a submanifold with constant mean curvature
satisfying λ = −n|H|2. ¤
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Proposition 4.2 implies the following:

Corollary 4.3. Any biharmonic psudoumbilical hypersurface of En+1 is minimal.

This result includes the case n = 4. Thus, we recovered Dimitric’s theorem 4.1.
Finally, we consider polyharmonic psudoumbilical hypersurfaces with constant mean
curvature.

Proposition 4.4. Any polyharmonic psudoumbilical hypersurface with constant mean
curvature is minimal, namely, if 4kH = 0, then H = 0, for all k (= 1, 2, · · · ).
Proof. Direct computation shows that |Aen+1 |2 = nH2

n+1. Using this and Lemma 3.1,
we have

4H = −Hn+1|AeN+1 |2en+1 = −nH3
n+1en+1.

Furthermore, using Lemma 3.1, we obtain

4kH = (−1)knkH2k+1
n+1 en+1.

Therefore, M is minimal. ¤
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