Dirac operators over the flat 3-torus

J. Fabian Meier

Abstract. We determine spectrum and eigenspaces of some families of $\mathrm{Spin}^{\mathbb{C}}$ Dirac operators over the flat 3-torus. Our method relies on projections onto appropriate 2-tori on which we use complex geometry.

Furthermore we investigate those families by means of spectral sections (in the sense of Melrose/Piazza). Our aim is to give a hands-on approach to this concept. First we calculate the relevant indices with the help of spectral flows. Then we define the concept of a $system\ of\ infinitesimal\ spectral\ sections$ which allows us to classify spectral sections for small parameters R up to equivalence in K-theory. We undertake these classifications for the families of operators mentioned above.

Our aim is therefore twofold: On the one hand we want to understand the behavior of $\mathrm{Spin}^{\mathbb{C}}$ Dirac operators over a 3-torus, especially for situations which are induced from a 4-manifold with boundary T^3 . This has prospective applications in generalized Seiberg-Witten theory. On the other hand we want to make the term "spectral section", for which one normally only knows existence results, more concrete by giving a detailed description in a special situation.

M.S.C. 2010: 47A10, 58C40, 58J30.

Key words: Spinc Dirac operator; 3-torus; spectral section.

1 Introduction

In the study of smooth 4-manifolds, especially in the context of (generalized) Seiberg-Witten theory, it would be nice to understand Spin^C Dirac operators which are induced on the boundary of a compact 4-manifold.

Manifolds with boundary T^3 where already studied in this context by [5]. But for generalized Seiberg-Witten theories, also families of operators in non-trivial Spin^{\mathbb{C}} structures become important. Therefore, we undertake a detailed study for some of these families. We now describe the object of investigation:

For every $\operatorname{Spin}^{\mathbb{C}}$ structure on $T^3 = \mathbb{R}^3/\mathbb{Z}^3$ we analyse the family of Dirac operators given by connections $\nabla^K + \mathbf{i}\alpha$; here ∇^K is a fixed background connection (to be

Balkan Journal of Geometry and Its Applications, Vol.17, No.1, 2012, pp. 78-87.

[©] Balkan Society of Geometers, Geometry Balkan Press 2012.

constructed below) for an appropriate line bundle K and α comes from the parameter space of closed one-forms.

Our first aim is to determine the spectrum and an orthogonal eigenbasis for these operators. Our strategy is as follows:

- 1. We write the 3-torus as S^1 bundle over a 2-torus (determined by the $\mathrm{Spin}^{\mathbb{C}}$ structure).
- 2. We equip the 2-torus with a complex structure and choose appropriate holomorphic line bundles.
- 3. We use complex geometry and methods from [1].
- 4. We combine the calculated terms with exponential functions to get the desired result.

The calculations above will help us to access our second aim: The construction of spectral sections.

For a lattice $\ell \subset H^1(T^3; \mathbb{Z}) \subset H^1(T^3; \mathbb{R})$ look at the family of operators parametrized by $B = (\ell \otimes \mathbb{R})/\ell$. Since we know the concrete spectrum we can calculate all spectral flows in this torus which gives us direct access to the index in $K^1(B)$. By [4, section 2] the vanishing of this index corresponds to the existence of spectral sections.

For small parameters R we give a classification of all spectral sections up to equivalence in K-theory.

Remark 1.1. If $\iota: T^3 \hookrightarrow M$ is the boundary of a $\operatorname{Spin}^{\mathbb{C}}$ 4-manifold M and ℓ is chosen to be a subset of $\iota^*(H^1(M;\mathbb{Z}))$, then one can show that our family of operators is a boundary family in the sense of [4]; this guarantees the existence of spectral sections in this case but does not lead to concrete constructions of them.

2 Definitions

We take $T^3 := \mathbb{R}^3/\mathbb{Z}^3$ to be the flat 3-torus. We identify the first and second cohomology groups with each other by the Hodge star operation. Both of them will be identified with \mathbb{Z}^3 or \mathbb{R}^3 through the standard (positively oriented) basis dx_1, dx_2, dx_3 of $T\mathbb{R}^3$.

The trivial Spin structure induces a $\mathrm{Spin}^{\mathbb{C}}$ structure with associated bundle $\underline{\mathbb{H}} = T^3 \times \mathbb{H}$. Here $\mathbb{H} = \mathrm{span}\{e_0, e_1, e_2, e_3\}$ denotes the space of quaternions. It is considered as a complex vector space by left multiplication with $\mathbf{i} = e_1$ and as a left-quaternionic vector space by inverse right multiplication.

Now the Spin^{\mathbb{C}} structures can be canonically identified with elements $\hat{k} \in H^2(T^3; \mathbb{Z})$ (for a general explanation of Spin^{\mathbb{C}} structures and their associated bundles see e.g. [6]). For every such element we choose a Hermitian line bundle K with $c_1(K) = \hat{k}$ and a unitary background connection ∇^K ; possible choices and constructions will be detailed in the subsequent sections. Then the Spin^{\mathbb{C}} structure \hat{k} has the associated bundle $\mathbb{H} \otimes K$.

For each K and closed one-form α we get a $\mathrm{Spin}^{\mathbb{C}}$ Dirac operator

$$\mathcal{D}_{\alpha}^{K}:\Gamma(\underline{\mathbb{H}}\otimes K)\to(\underline{\mathbb{H}}\otimes K)$$

for the connection $\nabla^K + i\alpha$.

These operators will be analysed in the subsequent sections.

3 Spectrum and Eigenbasis

We distinguish two main cases.

3.1 Nontrivial $Spin^{\mathbb{C}}$ structure

We write $\hat{k} = h \cdot k$ with $k \in \mathbb{Z}^3$ and maximal $h \in \mathbb{Z}^+$. Let W be the plane in \mathbb{R}^3 orthogonal to k and π_k the orthogonal projection. By taking quotients we get a map $\pi_{\overline{k}}: T^3 \to T_\Lambda := W/\Lambda$ with $\Lambda = \pi_k(\mathbb{Z}^3)$.

Let w_1, w_2 be the basis of a fundamental parallelogram in Λ . We take $c^i \in [0, 1)$, i = 1, 2, with $w_i - c^i \cdot k \in \mathbb{Z}^3$.

Lemma 3.1. The map $\pi_{\overline{k}}: T^3 \to T_{\Lambda}$ determines a trivial \mathbb{R}/\mathbb{Z} -bundle with trivialization:

(3.1)
$$T^{3} \xrightarrow{\pi_{\overline{k}} \times \operatorname{tri}} T_{\Lambda} \times \mathbb{R}/\mathbb{Z}$$

$$\left[\chi_{1}w_{1} + \chi_{2}w_{2} + \chi k\right] \mapsto \left(\left[\chi_{1}w_{1} + \chi_{2}w_{2}\right], \left[c^{1}\chi_{1} + c^{2}\chi_{2} + \chi\right]\right).$$

Proof. Direct calculation.

We give T_{Λ} the induced metric and orientation and choose a Hermitian line bundle L over it with $c_1(L) = h$ (in the standard identification of $H^2(T_{\Lambda}; \mathbb{Z})$ with \mathbb{Z}). Furthermore, we equip the bundle with an arbitrary unitary connection ∇^L .

Definition 3.1. We define $K := \pi_{\overline{k}}^{-1}(L)$ and $\nabla^K := \pi_{\overline{k}}^{-1}(\nabla^L)$. Then we have $c_1(K) = \hat{k}$.

3.1.1 Working on T_{Λ}

We now look at the corresponding problem on T_{Λ} . For each (positive) Chern class h, we have an associated bundle $\underline{\mathbb{H}} \otimes L$ over T_{Λ} . Then each closed one-form α_{Λ} over T_{Λ} defines a Dirac operator

$$\mathcal{D}_{\alpha_{\Lambda}}^{L}:\Gamma(\underline{\mathbb{H}}\otimes L)\to (\underline{\mathbb{H}}\otimes L).$$

We give W an arbitrary complex structure and scale everything so that we work on $\mathbb{C}/\{1,\tau\}$ with im $\tau > 0$. Now we can equip L with a holomorphic structure; we choose it so that $\nabla^L + i\alpha_{\Lambda}$ becomes the Chern connection of the holomorphic bundle.

This specifies a problem for twisted Dirac operators on a Riemann surface. We use the results of [1, section 5.2], where the eigenspaces of $\mathcal{D}_{\alpha_{\Lambda}}^{L}$ are described in terms of holomorphic sections.

The eigenspaces can be made explicit using theta functions. A detailed discussion of all calculations and identifications can be found in [3, section 2.c]. The result is the following:

Lemma 3.2. We can explicitly construct a basis of orthogonal eigensections σ_m , $m \in \mathbb{Z}$, for $\mathcal{D}_{\alpha_{\Lambda}}^L$ with respective eigenvalues

$$\mu_m := \operatorname{sgn} m \sqrt{2\pi h \|k\| \left\lfloor \frac{|m|}{h} \right\rfloor}.$$

The eigenvalues are independent of α_{Λ} .

3.1.2 An eigenbasis for $(\mathcal{D}_{\alpha}^{K})^{2}$

Remark 3.2. By a standard gauging argument, we can reduce the problem of finding spectrum and eigenspaces from closed one-forms to harmonic one-forms. So from now on we assume $\alpha \in H^1(T^3;\mathbb{R}) \cong \mathbb{R}^3$.

We now look at the map $s_l \circ \text{tri}$, $l \in \mathbb{Z}$, where $s_l : \mathbb{R}/\mathbb{Z} \to S^1$ is defined to be $t \mapsto \exp(2\pi l t)$ and tri is the map from (3.1). Its exterior derivative is given by:

$$d(s_l \circ \operatorname{tri}) = 2\pi i l(s_l \circ \operatorname{tri}) (c^1, c^2, 1).$$

We now want to separate this form into its parallel and orthogonal part with respect to W:

$$d(s_l \circ \operatorname{tri}) = 2\pi i (s_l \circ \operatorname{tri}) \cdot (\omega_{\parallel}^l + \omega_{\perp}^l),$$

In the same way we split $\alpha = \alpha_{\shortparallel} + \alpha_{\perp}$.

We set $\alpha_{\Lambda} := \alpha_{\shortparallel} + 2\pi\omega_{\shortparallel}^{l}$ and use Lemma 3.2 to determine a basis of sections for $\Gamma(\underline{\mathbb{H}}\otimes L)$ which we call σ_{m}^{l} , $m\in\mathbb{Z}$.

The parameter $\omega_{\shortparallel}^l$ becomes necessary for our construction since the bundle $T^3 \to T_{\Lambda}$ is trivial but its metric differs from the orthogonal product $T_{\Lambda} \times S^1$.

We further denote

$$\hat{\sigma}_{l,m}(v) := (s_l \circ \operatorname{tri})(v) \cdot \pi_{\overline{k}}^*(\sigma_m^l)(v).$$

This can be interpreted as a combination of a basis of the Dirac operator over S^1 with bases over T_{Λ} . Let

$$\lambda_l := (2\pi l + \langle k, \alpha \rangle) / ||k||,$$

where \langle , \rangle means the standard scalar product of \mathbb{R}^3 (or, interpreted differently, the evaluation of $k \cup \alpha$ at the orientation class).

Theorem 3.3 (Eigenbasis for $(\mathcal{D}_{\alpha}^{K})^{2}$). The set $\{\hat{\sigma}_{l,m} \mid l, m \in \mathbb{Z}\}$ forms an orthogonal basis of eigensections for $(\mathcal{D}_{\alpha}^{K})^{2}$ with the respective eigenvalues $\lambda_{l}^{2} + \mu_{m}^{2}$.

Proof. Applying \mathcal{D}_{α}^{K} twice and using the definition of ω^{l} , we see that these sections are indeed eigensections for the given eigenvalues. With a standard calculation (see [3, p.45]), we conclude that the set span $\{\hat{\sigma}_{l,m} \mid l,m \in \mathbb{Z}\}$ is dense in the space of L^{2} -sections. The orthogonality can be deduced from the orthogonality of the σ_{m}^{l} by using the fact that a change of α_{\perp} changes the spectrum but fixes σ_{m}^{l} .

3.1.3 An eigenbasis for \mathcal{D}_{α}^{K}

Theorem 3.3 gives a quadratic equation for \mathcal{D}_{α}^{K} . Furthermore, we know that the Dirac operator on T_{Λ} is graded, so the bases σ_{m}^{l} split into $\sigma_{m}^{l+} + \sigma_{m}^{l-}$. Together this leads us to the following denominations

$$\sigma_{l,m}^{\pm} := (s_l \circ \text{tri}) \cdot \left(\left(\lambda_l + \mu_m \pm \sqrt{\lambda_l^2 + \mu_m^2} \right) \pi_{\overline{k}}^* (\sigma_m^{l+}) + \left(-\lambda_l + \mu_m \pm \sqrt{\lambda_l^2 + \mu_m^2} \right) \pi_{\overline{k}}^* (\sigma_m^{l-}) \right)$$

$$\sigma_{l,m}^0 := \hat{\sigma}_{l,m}$$

and

$$\nu_{l,m}^{\pm} := \pm \sqrt{\lambda_l^2 + \mu_m^2}, \qquad \nu_{l,m}^0 := \left\{ \begin{array}{cc} \lambda_l & \text{for } 0 \leq m \leq h-1 \\ \mu_m & \text{otherwise.} \end{array} \right.$$

From this set of vectors we have to choose a subset of nonzero vectors whose span is dense.

Theorem 3.4. We get an orthogonal eigenbasis of \mathcal{D}_{α}^{K} by

$$\left\{ \sigma_{l,m}^{\pm} \,\middle|\, (l,m) \in \mathbb{Z}^2 \quad \text{with } \lambda_l \neq 0 \text{ and } m \geq h \right\}$$

$$\cup \left\{ \sigma_{l,m}^0 \,\middle|\, (l,m) \in \mathbb{Z}^2 \quad \text{with } \lambda_l = 0 \text{ or } 0 \leq m \leq h-1 \right\},$$

which will be written as $M_{\alpha}^{\pm} \cup M_{\alpha}^{0}$. The respective eigenvalues are $\nu_{l,m}^{+/0/-}$.

Proof. We check that all these vectors are nonzero and belong to the defined eigenspaces. From the construction in [1] we know that $\sigma_m^l = \sigma_m^{l+} + \sigma_m^{l-}$ implies

$$\sigma_{h-m-1}^l = \sigma_m^{l+} - \sigma_m^{l-}.$$

Therefore, we have the \mathcal{D}_{α}^{K} -invariant subspaces

$$\operatorname{span}\left\{\hat{\sigma}_{l,m},\,\mathcal{D}_{\alpha}^{K}\,\hat{\sigma}_{l,m}\right\} = \operatorname{span}\left\{\hat{\sigma}_{l,m},\,\hat{\sigma}_{l,h-m-1}\right\}.$$

They can be used to prove the orthogonality and density of the constructed sections. \Box

$\mathbf{3.2}$ Trivial $\mathbf{Spin}^{\mathbb{C}}$ structure

We look at \mathcal{D}_{α} on $\Gamma(\underline{\mathbb{H}}) = \Gamma(\underline{\mathbb{C}}^2)$ for the standard connection ∇^K . Let $\sigma_b(x_1, x_2, x_3) := \exp(2\pi i (b_1 x_1 + b_2 x_2 + b_3 x_3))$.

Then we get the basis of sections:

span
$$\{\sigma_b^+ = (\sigma_b, 0) \mid b \in \mathbb{Z}^3\} \cup \{\sigma_b^- = (0, \sigma_b) \mid b \in \mathbb{Z}^3\}.$$

Define $\beta = \alpha + 2\pi b$. We use the classical methods of [2] to determine:

Theorem 3.5. We get an orthogonal eigenbasis for \mathcal{D}_{α} as

$$\left\{ \|\beta\|\sigma_b^+ - \mathcal{D}_\alpha \sigma_b^+ \mid b \in \mathbb{Z}^3 \text{ with } \beta_2 \neq 0 \text{ or } \beta_3 \neq 0 \right\}$$

$$\cup \left\{ \|\beta\|\sigma_b^+ + \mathcal{D}_\alpha \sigma_b^+ \mid b \in \mathbb{Z}^3 \text{ with } \beta_2 \neq 0 \text{ or } \beta_3 \neq 0 \right\}$$

$$\cup \left\{ \sigma_b^{\pm} \mid \beta_2 = \beta_3 = 0 \right\}.$$

Furthermore, we have for $\beta_2 \neq 0$ or $\beta_3 \neq 0$:

$$\operatorname{span}\left\{\sigma_b^+, \, \sigma_b^-\right\} = \operatorname{span}\left\{\|\beta\|\sigma_b^+ - \mathcal{D}_\alpha \sigma_b^+, \, \|\beta\|\sigma_b^+ + \mathcal{D}_\alpha \sigma_b^+\right\}.$$

The spectrum consists of all numbers $\pm \|\beta(b, \alpha)\|$ for $b \in \mathbb{Z}^3$.

Remark 3.3. In the case $\hat{k} \neq 0$ the spectrum is determined by α_{\perp} while the eigenbasis is determined by α_{\shortparallel} . Here every change of α has influence on both eigenbasis and spectrum.

4 Spectral sections

We look at families of Dirac operators over a compact base space B. [4] defined the concept of a spectral section for a constant R > 0. The most interesting spectral sections are those for small R; they should be classified in the sense of the following definition.

Definition 4.1. Let R_{inf} be defined as the infimum of the set

$$\{R > 0 \mid \text{for } R \text{ exists at least one spectral section}\}.$$

Furthermore, choose a (small) positive number ε_P . Then a system of infinitesimal spectral sections is a map

$$]R_{\inf}, R_{\inf} + \varepsilon_P] \times I \rightarrow \{\text{spectral sections for a fixed operator } D\}$$

$$(R, i) \mapsto P_B^i,$$

where

- 1. I is an arbitrary index set,
- 2. P_R^i is a spectral section for the constant map R,
- 3. every $(P_R^i)_{\alpha}$, $\alpha \in B$, depends continuously on R (where we consider $(P_R^i)_{\alpha}$ as operator between \mathcal{L}^2 spaces), and
- 4. $\bigcup_{i \in I} \{P_R^i\}$ is a representation system for all spectral sections for R, i.e. for all possible spectral sections P_R there is a P_R^i with $i \in I$, so that $\operatorname{Im} P_R \operatorname{Im} P_R^i$ is zero in K-theory.

A minimal system of infinitesimal spectral sections is one in which I is chosen minimal (under the inclusion relation).

4.1 Definition of the family

Let $\ell \subset H^1(T^3; \mathbb{Z})$ be a lattice (of non-maximal dimension) and let $B := (\ell \otimes \mathbb{R})/\ell$.

We need the following ingredients for our definition:

- $\ker(d)_{l\otimes\mathbb{R}}$: The subset of $\ker(d)$ representing elements in $\ell\otimes\mathbb{R}$.
- \mathcal{G}_{ℓ} : The subgroup of the gauge group Map (T^3, S^1) determined by ℓ .
- The projection

$$\operatorname{pr}_{T^3}: T^3 \times (\nabla^K + \operatorname{i} \ker(d)_{l \otimes \mathbb{R}}) \to T^3$$

together with the induced vector bundle $\operatorname{pr}_{T^3}^* (\underline{\mathbb{H}} \otimes K)$.

If v is an element of the fibre of $\operatorname{pr}_{T^3}^*\left(\underline{\mathbb{H}}\otimes K\right)$ over

$$(y, \nabla^K + i\alpha^c) \in T^3 \times (\nabla^K + i \ker(d)_{\ell \otimes \mathbb{R}}),$$

we can define the following action of \mathcal{G}_{ℓ} :

(4.1)
$$\mathcal{G}_{\ell} \times \operatorname{pr}_{T^{3}}^{*} \left(\underline{\mathbb{H}} \otimes K \right) \to \operatorname{pr}_{T^{3}}^{*} \left(\underline{\mathbb{H}} \otimes K \right),$$

$$\left(u, \left(v, y, \nabla^{K} + i\alpha \right) \right) \mapsto \left(u(y) \cdot v, y, \nabla^{K} + i\alpha + udu^{-1} \right).$$

The quotient is a bundle over $T^3 \times B$. The connection from the parameter space determines a family of Dirac operators called \mathcal{D} .

Depending on \hat{k} and ℓ we want to know:

- 1. Do spectral sections exist?
- 2. If they exist: What do they look like?

4.2 Existence of spectral sections

Following [4] we know that spectral sections for \mathcal{D} exist if and only if the index of \mathcal{D} in $K^1(B)$ vanishes. Let \mathcal{I} be the following composition of isomorphisms (remember that B is a torus of maximal dimension 2):

$$K^1(B) \xrightarrow{\operatorname{Chern}} H^1(B; \mathbb{Z}) \longrightarrow (H_1(B; \mathbb{Z}))^* \longrightarrow \ell^*.$$

Lemma 4.1. Let $a \in H^1(T^3; \mathbb{Z})$ and let $f : (\mathbb{R} \cdot a)/a \to B$ be the map induced by the inclusion. In this way we get a pullback family \mathcal{D}^a over $(\mathbb{R} \cdot a)/a$. Then the spectral flow of \mathcal{D}^a in positive direction is given by

$$\langle \hat{k}, a \rangle = \langle \hat{k} \cup a, [T^3] \rangle.$$

Proof. We use our explicit knowledge of the spectrum. First we assume $\hat{k} \neq 0$: From all eigenvalues $\nu_{l,m}^{+/0/-}$ only those of the form $\nu_{l,m}^0$ for $0 \leq m \leq h-1$ have a chance to cross zero. From the definition we know that

$$\nu_{l,m}^0 = \lambda_l = (2\pi l + \langle k, \alpha \rangle) / ||k||,$$

for which we can count the crossings while running around the circle. For $\hat{k}=0$ the spectrum is always symmetric with respect to zero. We see that every spectral flow has to vanish.

Remark 4.2. The spectral flow of \mathcal{D}^a for \hat{k} is, by a folklore result of Atiyah, the same as the index of the positive Dirac operator over $T^3 \times S^1$ equipped with the Spin^C structure belonging to $\hat{k} + a \cup e_{S^1}$, where e_{S^1} is the positive generator of $H^1(S^1; \mathbb{Z})$. Since every two-form over $T^3 \times S^1 \cong T^4$ can be written in this form, this allows us to calculate the index of \mathcal{D}_b^+ for every $b \in H^2(T^4; \mathbb{Z})$. A direct computation yields $\langle b \cup b, [T^4] \rangle$.

With this Lemma we get a direct access to the following statement:

Theorem 4.2. The isomorphism \mathcal{I} maps the index of \mathcal{D} to the map $x \mapsto \langle \hat{k} \cup x, [T^3] \rangle$ in ℓ^* .

Proof. Take a fundamental basis a_1, a_2 of the torus B; then an element in $K^1(B)$ is determined by its images in $K^1((\mathbb{R} \cdot a_i)/a_i)$, which we calculate with the formula from the preceding lemma. Since the maps are linear, it is enough to check the theorem for a_1, a_2 which is an easy exercise.

Corollary 4.3. Spectral sections for \mathcal{D} exist if and only if $k \cup \ell = 0$.

4.3 Construction of spectral sections for $\hat{k} \neq 0$

Theorem 4.4. If spectral sections exist, the spectrum is constant.

Proof. From $k \cup \ell = 0$ we know that for every $\alpha \in (\ell \otimes \mathbb{R})$ we have $\alpha_{\perp} = 0$. From section 3.1.3 we know that this implies a constant spectrum.

Therefore, we have $R_{\inf} = 0$. For ε_P smaller than the smallest eigenvalue of \mathcal{D} , the spectral sections are fixed everywhere except for the h-dimensional kernel of \mathcal{D} .

$$I:=\big\{F\,\big|\,F\,\text{subbundle of}\,\,B\times\mathbb{C}^h\big\}/_\cong\,\mathbb{Z}^{h-1}\cup\{0\}\cup\{\mathbb{C}^k\}$$

and define $P_F|_{\ker \mathcal{D}}$ for $R < \varepsilon_P$ as the orthogonal projection onto F. This defines a system of infinitesimal spectral sections which is obviously also minimal.

4.4 Construction of spectral sections for $\hat{k} = 0$

We split $\Gamma_{L^2}(\mathbb{H})$ into the 2-dimensional \mathcal{D}_{α} -invariant subspaces

$$\Sigma_b = \operatorname{span}\{\sigma_b^+, \sigma_b^-\}.$$

On each of them, we have the two eigenvalues $\pm \|\beta\| = \pm \|\alpha + 2\pi b\|$. For small R we know that for each α there is at most one b with $\|\beta\| \leq R$. So for any spectral section P for \mathcal{D} with small R we know that it fixes all Σ_b . Since $P_{\alpha}|\Sigma_b:\Sigma_b\to\Sigma_b$ is a one-dimensional orthogonal projection for $\|\beta\| > R$, it has to be a one-dimensional orthogonal projection for all β (and, therefore, for all α , since α and β are in bijective correspondence).

We now assume that ℓ is a plane since dim $\ell \leq 1$ does not lead to interesting conclusions. In addition to the assumptions about R above we assume that ε_P is smaller than the minimal distance between $\ell \otimes \mathbb{R}$ and any point $b \in \mathbb{Z}^3 \backslash \ell$. This implies that for such b there are no eigenvalues with $\|\beta\| < R$ on Σ_b .

The space of one-dimensional orthogonal projections on \mathbb{C}^2 equals $\mathbb{CP}^1 \cong S^2$. Fix an element $b \in \ell_{\mathbb{Z}} = (\ell \otimes \mathbb{R}) \cap \mathbb{Z}^3$ and look at the corresponding map $P_{\beta}|_{\Sigma_b} : \ell \otimes \mathbb{R} \to \mathbb{CP}^1$ (written as function of β). For $||\beta|| \geq R$ every ray coming from zero will be mapped to one point, producing a circle in \mathbb{CP}^1 (this follows from the construction of the eigenbasis). For $||\beta|| < R$ we have to continue this map in some way; topologically, the problem is as follows: We have to construct a map from the 2-disc to the 2-sphere which maps the boundary pointwise to the equator. Up to homotopy, there are $\pi_2(S^2) \cong \mathbb{Z}$ many choices for that.

4.4.1 A system of infinitesimal spectral sections

The preceding discussion leads to the following:

Since we had imposed no lower bounds for R, we have $R_{\inf} = 0$. Let ε_P be so small that if fulfills all conditions mentioned above. We take

$$I = \left\{ g : \ell_{\mathbb{Z}}/\ell \to \pi_2\left(\mathbb{CP}^1\right) \right\}$$

and define for each $R < \varepsilon_P$ spectral projections P^g . For $b \notin \ell_{\mathbb{Z}}$ these maps are already defined on Σ_b . For $b \in \ell_Z$, we define P^g_{α} on Σ_b to be a continuation specified by $g(b) \in \pi_2(\mathbb{CP}^1)$ as discussed in the preceding subsection (These continuations can be chosen to depend continuously on the parameters).

Conditions 1 and 2 (from the definition of infinitesimal spectral sections) are clear, 3 can be checked directly (if we specify the continuations explicitly), and 4 follows from the discussion above.

In general this system is not minimal. We can choose a minimal system J by fixing an element $g_0 \in I$ and a point $l_0 \in \ell_{\mathbb{Z}}/\ell$ and defining

$$J = \{ g \in I \mid g(l) = g_0(l) \text{ for } l \neq l_0 \}.$$

This is true because J represents all element of the form (0, z) from

$$K(B) \cong H^0(B; \mathbb{Z}) \oplus H^2(B; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}.$$

Acknowledgements. This article grew out of my dissertation [3]. I would like to thank my supervisor Prof. Stefan Bauer for his support. Furthermore, I thank Johannes Ebert for helpful suggestions.

References

- [1] A.L. Almorox and C.T. Prieto, *Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces*, J. Geom. Phys. 56 (2006), 2069-2091.
- [2] T. Friedrich, Zur abhangigkeit des dirac-operators von der spin-struktur, Colloquium Mathematicum, Vol. XLVIII, 1984.
- [3] F. Meier, Spectral properties of Spinc Dirac operators on T^3 , $S^1 \times S^2$ and S^3 , PhD thesis, Universitat Bielefeld, July 2010. http://bieson.ub.uni-bielefeld.de/volltexte/2010/1731/.
- [4] R.B. Melrose and P. Piazza, Families of dirac operators, boundaries and the b-calculus, J. Differential Geom. 45 (1997), 99-180.

- [5] J.W. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, first edition, 1996.
- [6] J.W. Morgan, T.S. Mrowka and Z. Szabo, Product formulas along T^3 for Seiberg-Witten invariants, Math. Res. Lett. 4 (1997), 915-929.

$Author's\ address:$

Johannes Fabian Meier Institute of Mathematics, Endenicher Allee 60, 53115 Bonn, Germany.

 $\hbox{E-mail: brief@fabianmeier.de}\\$