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Abstract. Curvature collineations of a spray manifold induced by the Lie
symmetries of the underlying spray are studied. The basic observation is
that the Jacobi endomorphism and the Berwald curvature are invariant
under these symmetries; this implies the invariance of the further curvature
data. Our main technical tool is an appropriate Lie derivative operator
along the tangent bundle projection.
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1 Introduction

Curvature collineations play an important role in the study of geometry and physics
of classical space-times; for an excellent account on the subject we refer to G. S. Hall’s
book [5], especially its last chapter. On the other hand, Finsler geometry has appeared
in a number of different physical contexts in recent years. Its increasing importance
from the perspective of fundamental physical theories offers good reason for an
elaboration of the theory of curvature collineation in this generality and in the language
of present-day differential geometry. In the framework of the classical tensor calculus
we have quite a large literature of curvature collineations in Finsler manifolds; a
good survey of the state of art in 1993 is presented by R. B. Misra’s paper [7]. The
first steps toward a modern theory were taken in the papers of R. L. Lovas [6] and
M. Crampin-D. J. Saunders [4]. The task is no easy one, since we have no unique
distinguished covariant derivative operator in Finsler geometry. However, there is a
unifying concept which makes a systematic and transparent treatment possible. This
is the concept of a spray, which plays an essential role both in the foundations of
(semi-) Riemannian geometry (see [1]) and Finsler geometry (see, e.g., [3], [9]). As a
matter of fact, this is not a new discovery either. It was already known by Ludwig
Berwald, as it turns out (among others) from his posthumous paper [2], that through
the so-called affine deviation tensor (nowadays called also Jacobi endomorphism) of
a spray a whole series of curvature quantities may be constructed. So it seems to
be reasonable to start a systematic study of Finslerian curvature collineations in the
generality of spray manifolds without any additional structure. Note that there is
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no complete consensus in the usage of the term ‘spray’ in differential geometry (and
analysis). Our definition in section 4 will be in harmony with demands of Finsler
geometry. In this spirit, the main scene of our considerations will be the pull-back
bundle (T̊M ×M TM, π, T̊M) of the tangent bundle (TM, τ, M) over the projection
of the deleted bundle (T̊M, τ̊ , M). This setting is sketched in section 2.

A curvature collineation of a curvature tensor C of a spray manifold is a projectable
vector field ξ on T̊M such that the Lie derivative L̃ξC vanishes. Here C is a ‘tensor
along τ̊ ’, so we also need a concept of the Lie derivative of the sections of the pull-
back bundle π (which is extended also to the whole tensor algebra of the module of
sections of π). This generalization of the Lie derivative, together with some crucial
commutation rules, is briefly discussed in section 3. For more details, we refer to [6]
and [10].

In section 4, with the help of the affine deviation tensor, first we introduce the
basic curvature data (affine and projective curvatures, Berwald curvature, Douglas
curvature) of a spray manifold (M,S). Next we show that if a vector field X on M is
a Lie symmetry of S, i.e., LXcS = [Xc, S] = 0, then it is a curvature collineation for
all the curvatures mentioned above. This is an expected result, however, to derive it,
one has to overcome a lot of difficulties.

2 Preliminary constructions

Throughout the paper, M will be an n-dimensional smooth manifold (n ≥ 1) whose
underlying topological space is Hausdorff and second countable. The tangent bundle
of M is the triplet (TM, τ,M), which will be denoted simply by its projection map
τ . The deleted bundle for τ is (T̊M, τ̊ , M), where T̊M :=

⋃
p∈M (TpM \ {0p}) (0p is

the zero vector in the tangent space TpM) and τ̊ := τ ¹ T̊M . The majority of our
objects lives in the pull-back bundle (T̊M ×M TM, π, T̊M), π := pr1 ¹ T̊M ×M TM
of τ by τ̊ . The shorthand for this vector bundle will be π. The C∞(T̊M)-module
of sections of π is denoted by Sec(π). (By a section we mean a smooth section.) A
generic section of π is of the form X̃ : u ∈ T̊M 7→ (u,X(u)) ∈ T̊M ×M TM, where
X : T̊M → TM is a smooth mapping such that τ ◦X = τ̊ , called the principal part
of X̃. If X ∈ X(M), i.e., X is a vector field on M , then

X̂ : u ∈ T̊M 7→ (u,X ◦ τ̊(u)) ∈ T̊M ×M TM

is a section of π, called a basic section. Basic sections generate the module Sec(π).
We have a canonical section δ in Sec(π) whose principal part is 1T̊M . Thus for every
u ∈ T̊M , δ(u) = (u, u). Most of our further canonical objects may be identified from
the short exact sequence

(2.1) 0 → Sec(π) i→ X(T̊M)
j→ Sec(π) → 0

of C∞(T̊M)-homomorphisms defined by

(2.2) i(X̂) := Xv; j(Xv) := 0, j(Xc) := X̂,

where Xv and Xc are the vertical and complete lifts of X ∈ X(M). Then C := i(δ) is
a canonical vertical vector field on T̊M , called the Liouville vector field, J := i ◦ j is
a canonical type (1, 1) tensor field on T̊M , the vertical endomorphism.
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Given a vector field η on T̊M , we define a (1,1) tensor field [J, η] on T̊M by

(2.3) [J, η]ξ := [Jξ, η]− J[ξ, η], ξ ∈ X(T̊M).

Then, in particular,

(2.4) [J, Xc] = [J, Xv] = 0 for all X ∈ X(M).

We denote by Tk
l (π) the C∞(T̊M)-module of type (k, l) tensors on the module

Sec(π), and write T(π) for the full tensor algebra of Sec(π). Elements of T(π) are also
mentioned as tensors along τ̊ . If A ∈ T1

l+1(π), we define its trace trA ∈ T0
l (π) by

(trA)(X̃1, . . . , X̃l) := tr(Z̃ 7→ A(Z̃, X̃1, . . . , X̃l))

for X̃1, . . . X̃l ∈ Sec(π).
We recall that an R-linear mapping D : T(π) → T(π) which preserves type and

commutes with contractions is called a derivation of T(π) or a derivation along τ̊ , if it
satisfies the Leibniz rule D(A⊗B) = (DA)⊗B+A⊗(DB); A,B ∈ T(π). Willmore’s
classical theorem on tensor derivations (see, e.g., [8], p. 45–46) may immediately be
translated in this context. So we have

Lemma 2.1. Any derivation of T(π) is completely determined by its action over
T0

0(π) := C∞(T̊M) and T1
0(π) ∼= Sec(π). Conversely, given a vector field η ∈ X(T̊M)

and an R-linear mapping D0 : Sec(π) → Sec(π) such that

D0(fỸ ) = (ηf)Ỹ + fD0Ỹ for all f ∈ C∞(T̊M), Ỹ ∈ Sec(π),

there exists a (necessarily unique) derivation D along τ̊ such that D ¹ C∞(T̊M) = η
and D ¹ Sec(π) = D0.

By an Ehresmann connection in T̊M we mean a right splitting of the exact
sequence (2.1), i.e., a C∞(T̊M)-linear mapping H : Sec(π) → X(T̊M) such that
j ◦ H = 1Sec(π). The vertical mapping associated to H is a left splitting of (2.1)
satisfying Ker(V) = Im(H). So we get the ‘double exact sequence’

0 À Sec(π)
i

À
V

X(T̊M)
j
À
H

Sec(π) À 0.

The mappings h := H ◦ j and v := i ◦ V = 1X(T̊M) − h are the horizontal and the
vertical projection associated to H, respectively. The horizontal lift of a vector field
X ∈ X(M) (with respect to H) is Xh := H(X̂) = h(Xc). The Ehresmann connection
H is said to be homogeneous if [C, Xh] = 0 for all X ∈ X(M).

We define the vertical differential of a function F ∈ C∞(T̊M) and a section
Ỹ ∈ Sec(π) as the 1-form ∇vF ∈ T0

1(π) and the (1, 1)-tensor ∇vỸ ∈ T1
1(π) given by

(2.5) ∇vF (X̃) := (iX̃)F, X̃ ∈ Sec(π)

and

(2.6) ∇vỸ (X̃) := ∇v
X̃

Ỹ := j[iX̃, η]; X̃ ∈ Sec(π), η ∈ X(T̊M), jη = Ỹ .
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respectively. With the help of an ‘auxiliary’ Ehresmann connection H, (2.6) may be
written in the more convenient form

(2.7) ∇v
X̃

Ỹ = j[iX̃,HỸ ].

Nevertheless, ∇v is a canonical operator which does not depend on any extra structure
in π. Notice that basic sections have vanishing vertical derivatives:

(2.8) ∇v
X̃

Ŷ = 0 for all X̃ ∈ Sec(π), Y ∈ X(M).

Indeed ∇v
X̃

Ŷ := j[iX̃, Y h] = 0, since [iX̃, Y h] is a vertical vector field, and hence
belongs to Ker (j).

By Lemma 2.1, the operators ∇v
X̃

(X̃ ∈ Sec(π)) can be uniquely extended to
derivations of the full tensor algebra T(π). So we may also form the vertical differential
of any tensor along τ̊ . If, for example, A ∈ T1

k(π), then ∇vA ∈ T1
k+1(π) is given by

∇vA(X̃, Ỹ1, . . . , Ỹk) := (∇v
X̃
A)(Ỹ1, . . . Ỹk); X̃, Ỹi ∈ Sec(π), i ∈ {1, . . . , k}.

If an Ehresmann connection H is specified in T̊M , we define the h-Berwald differential
∇h in the same way as the vertical differential, but with the starting steps

∇hF (X̃) := (HX̃)F ; F ∈ C∞(T̊M), X̃ ∈ Sec(π);(2.9)

∇hỸ (X̃) := ∇h
X̃

Ỹ := V[HX̃, iỸ ]; X̃, Ỹ ∈ Sec(π).(2.10)

3 Lie derivative along τ̊

We recall that a vector field ξ on T̊M is said to be projectable if there is a vector field
X on M such that τ̊∗ ◦ ξ = X ◦ τ̊ .

Lemma 3.1. Let a projectable vector field ξ ∈ X(T̊M) be given. There exists a unique
derivation L̃ξ along τ̊ such that

L̃ξF := ξF if F ∈ C∞(T̊M),(3.1)

L̃ξỸ := i−1[ξ, iỸ ] if Ỹ ∈ Sec(π).(3.2)

Proof. Since ξ is a projectable and iỸ is a vertical vector field on T̊M , their Lie
bracket is also vertical, so the right-hand side of (3.2) yields a well-defined section of
π. For any function F ∈ C∞(T̊M) we have

L̃ξFỸ := i−1[ξ, i(FỸ )] = i−1[ξ, F (iỸ )] = i−1(F [ξ, iỸ ] + (ξF )iỸ ) = (ξF )Ỹ + F L̃ξỸ ,

so our assertion follows by Lemma 2.1. ¤

The derivation L̃ξ is called the Lie derivative along τ̊ with respect to ξ.
IfH is an arbitrarily chosen Ehresmann connection in T̊M , then [ξ, iỸ ] = v[ξ, iỸ ] =

i ◦ V[ξ, iỸ ], so (3.2) may also be written in the form

(3.3) L̃ξỸ = V[ξ, iỸ ].

(However, L̃ξ is a natural operator!) We mention some frequently used special cases.
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Lemma 3.2. For any vector field X on M ,

L̃Xc Ŷ = [̂X,Y ] = L̂XY , Y ∈ X(M);(3.4)

L̃Xv Ỹ = ∇v
X̂

Ỹ , Ỹ ∈ Sec(π).(3.5)

If an Ehresmann connection H is specified in T̊M , then

L̃Xh Ỹ = ∇h
X̂

Ỹ .(3.6)

Thus L̃Xv = ∇v
X̂

, L̃Xh = ∇h
X̂

.

Proof. Relation (3.4) is a direct consequence of the definition (3.2), or of (3.3). To
check (3.5), observe that from (2.4)

0 = [J, Xv]HỸ
(2.3)
= [JHỸ , Xv]− J[HỸ , Xv] = [iỸ ,Xv]− J[HỸ , Xv],

hence

(3.7) J[Xv,HỸ ] = [Xv, iỸ ],

therefore L̃Xv Ỹ
(3.3)
= V[Xv, iỸ ]

(3.7)
= V ◦ i ◦ j[Xv,HỸ ]

(2.7)
= ∇v

X̂
Ỹ . Finally, (3.6) is

immediate from (3.3) and (2.10). ¤

Proposition 3.3 (Commutation rules). Let X and Y be vector fields on M . Then

(3.8) L̃Xc ◦ j = j ◦ LXc ,

where LXc is the usual Lie derivative on T̊M with respect to Xc;

(3.9) L̃Xc ◦ ∇v
Ŷ
−∇v

Ŷ
◦ L̃Xc = L̃[X,Y ]v .

If an Ehresmann connection H is also specified in T̊M and ∇h is the h-Berwald
differential arising from H, then

(3.10) L̃Xc ◦ ∇h
Ŷ
−∇h

Ŷ
◦ L̃Xc = L̃[Xc,Y h].

Proof. Since for any vector field η on T̊M , 0
(2.4)
= [J, Xc]η = [Jη,Xc] − J[η, Xc], we

have

(3.11) J[Xc, η] = [Xc,Jη].

Thus L̃Xcjη = V[Xc,Jη]
(3.11)
= VJ[Xc, η] = j[Xc, η] = jLXcη, which proves (3.8).

Next we show that the left-hand sides and the right-hand sides of (3.9) and
(3.10) act in the same way on C∞(T̊M) and Sec(π); then our assertions come from
Lemma 2.1. Let F ∈ C∞(T̊M), Z̃ ∈ Sec(π). Then, on the one hand,

(L̃Xc ◦ ∇v
Ŷ
−∇v

Ŷ
◦ L̃Xc)F = Xc(Y vF )− Y v(XcF ) = [Xc, Y v]F = L̃[X,Y ]vF.
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On the other hand,

i ◦ (L̃Xc ◦ ∇v
Ŷ
−∇v

Ŷ
◦ L̃Xc)(Z̃) = i(L̃Xcj[Y v,HZ̃])− i(∇v

Ŷ
i−1[Xc, iZ̃])

(3.8), (2.6)
= J[Xc, [Y v,HZ̃]]− J[Y v,H ◦ i−1[Xc, iZ̃]]

(3.11), (3.7)
= [Xc, [Y v, iZ̃]]

− [Y v, [Xc, iZ̃]] = [Xc, [Y v, iZ̃]] + [Y v, [iZ̃, Xc]] Jacobi= −[iZ̃, [Xc, Y v]]

= [[X,Y ]v, iZ̃],

hence
(L̃Xc ◦ ∇v

Ŷ
−∇v

Ŷ
◦ L̃Xc)(Z̃) = i−1[[X, Y ]v, iZ̃] = L̃[X,Y ]v Z̃,

thus proving (3.9).
It is clear that the left-hand side and the right-hand side of (3.10) act in the same

way on C∞(T̊M). As to their actions on Sec(π), we find

i ◦ (L̃Xc ◦ ∇h
Ŷ
−∇h

Ŷ
◦ L̃Xc)(Z̃) = i(L̃XcV[Y h, iZ̃])− i∇h

Ỹ
i−1[Xc, iZ̃]

= [Xc, iV[Y h, iZ̃]]− iV[Y h, [Xc, iZ̃]] = [Xc,v[Y h, iZ̃]]− v[Y h, [Xc, iZ̃]]
(∗)
= [Xc, [Y h, iZ̃]] + [Y h, [iZ̃,Xc]] = −[iZ̃, [Xc, Y h]] = [[Xc, Y h], iZ̃],

whence our claim. (At step (∗) we used the fact that v is acting on vertical vector
fields, which belong to its fixed submodule.) ¤

Notice that in formula (3.9) the first term on the left-hand side and the term on
the right-hand side annulate the basic sections by (2.8) and (3.5), so it follows that

(3.12) ∇v
Ŷ
◦ L̃Xc(Ẑ) = 0; X, Y, Z ∈ X(M).

Of course, this can also be checked by an easy direct calculation.

4 Curvature collineations of spray manifolds

A C1 vector field S : TM → TTM is said to be a spray for M if it is smooth on T̊M
and satisfies the conditions

τ∗ ◦ S = 1TM and [C,S] = S.

The first condition expresses that S defines a second-order differential equation on
M ; it may equivalently be written in the form JS = C. Condition [C,S] = S requires
positive homogeneity of degree 2. A manifold equipped with a spray is called a spray
manifold.

Any spray S for M induces a homogeneous Ehresmann connection H in T̊M such
that for every vector field X on M

(4.1) Xh = H(X̂) =
1
2
(Xc + [Xv, S]).

We say that the so specified Ehresmann connection is the Berwald connection for the
spray manifold (M,S).
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In terms of the classical tensor calculus, the basic curvature data of a spray
manifold were introduced in a very lucid manner by L. Berwald in his posthumous
paper [2]. We follow his treatment as close as we can, but using an index-free
technique. In this spirit, we start with the Jacobi endomorphism K ∈ T1

1(π) (called
affine deviation by Berwald) given by

(4.2) K(X̃) := V[S,H(X̃)], X̃ ∈ Sec(π).

Next, with the help of K, we define the fundamental affine curvature R ∈ T1
2(π) and

the affine curvature H ∈ T1
3(π) by the formulae

(4.3) R(X̃, Ỹ ) :=
1
3
(∇vK(Ỹ , X̃)−∇vK(X̃, Ỹ ))

and

(4.4) H(X̃, Ỹ )Z̃ := ∇vR(Z̃, X̃, Ỹ )

(X̃, Ỹ , Z̃ ∈ Sec(π)). From the Jacobi endomorphism one can construct a further
important (1, 1) tensor, which is unchanged if the spray S is replaced by

(4.5) S = S − 2ϕC, ϕ ∈ C∞(T̊M).

This new ingredient is the projective deviation tensor

(4.6) W◦ := K− 1
n− 1

(trK)1Sec(π) +
3

n + 1
(trR)⊗ δ +

2− n

n2 − 1
(∇v trK)⊗ δ,

baptized so by Berwald. On the analogy of (4.3) and (4.4), we define the fundamental
projective curvature W ∈ T1

2(π) and the projective curvature W∗ ∈ T1
3(π) by

W(X̃, Ỹ ) :=
1
3
(∇vW◦(Ỹ , X̃)−∇vW◦(X̃, Ỹ ))(4.7)

and

W∗(X̃, Ỹ )Z̃ := ∇vW(Z̃, X̃, Ỹ ),(4.8)

respectively (X̃, Ỹ , Z̃ ∈ Sec(π)). The tensors W and W∗ are also invariant under
‘the projective change’ (4.5).

The tensors just defined have a counterpart in (semi-) Riemannian geometry.
The next two curvature tensors are the prototypes of non-Riemannian data in spray
geometry. The Berwald curvature B and the Douglas curvature D of (M,S) are given
by

(4.9) B(X̂, Ŷ )Ẑ := (∇v∇hẐ)(X̂, Ŷ ); X, Y, Z ∈ X(M)

and

(4.10) D := B− 1
n + 1

((trB)¯ 1Sec(π) + (∇v trB)⊗ δ),
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where the symbol ¯ stands for symmetric product without numerical factor. The
importance of the Douglas curvature lies in the fact that it is also invariant under the
projective changes of the spray.

We recall that a vector field X on M is said to be a Lie symmetry of S or an affine
vector field on M (with respect to S) if

(4.11) LXcS = [Xc, S] = 0.

In our earlier paper [10] we have shown that this property (among others) is equivalent
to the relations

(4.12) [Xc, Y h] = [X,Y ]h, Y ∈ X(M)

and

(4.13) [v, Xc] = 0.

(Of course, the horizontal lift is formed in (4.12) with respect to the Berwald connection
of (M,S), and v is the vertical projection associated to the Berwald connection. The
bracket [v, η], η ∈ X(T̊M), is defined by the same rule as [J, η] in (2.3).)

A projectable vector field ξ on T̊M is said to be a curvature collineation of a
curvature tensor C ∈ T1

k(π) of a spray manifold (k ∈ {1, 2, 3}; affine and projective
deviation are included), if L̃ξC = 0. Then we also say that ξ is a curvature collineation
of the spray manifold.

Theorem 4.1. Let (M, S) be a spray manifold. If X is an affine vector field on M ,
then Xc is a curvature collineation for the Jacobi endomorphism K, and hence for
the fundamental affine curvature R and the affine curvature H.

Proof. First we show that L̃XcK = 0. For any vector field Y on M ,

(L̃XcK)(Ŷ ) = L̃Xc(K(Ŷ ))−K(L̃Xc Ŷ ) = L̃Xc(V[S, Y h])− V[S,H(L̃Xc Ŷ )]
= i−1[Xc,v[S, Y h]]− V[S,H ◦ i−1[Xc, Y v]] = i−1([Xc,v[S, Y h]]

−v[S, [X, Y ]h])
(4.12)
= i−1([Xc,v[S, Y h]]− v[S, [Xc, Y h]])

Jacobi+ (4.11)
=

i−1([Xc,v[S, Y h]]− v[Xc, [S, Y h]]) = −i−1([v, Xc][S, Y h])
(4.13)
= 0,

as was to be proven. Notice that relation L̃XcK = 0 is equivalent to

(4.14) L̃Xc ◦K = K ◦ L̃Xc

over Sec(π). From this, taking into account (3.9), we obtain that

(4.15) L̃Xc(∇vK(Ẑ, Ŷ )) = ∇v
Ẑ
◦ L̃Xc(K(Ŷ )) + L̃[X,Z]v(K(Ŷ ))

for any vector fields Y, Z on M .
Now we turn to prove that L̃XcR = 0. Since L̃XcR is a tensor along τ̊ , it is enough

to check that L̃XcR(Ŷ , Ẑ) = 0 for all Y,Z ∈ X(M). By the product rule,

(4.16) (L̃XcR)(Ŷ , Ẑ) = L̃Xc(R(Ŷ , Ẑ))−R(L̃Xc Ŷ , Ẑ)−R(Ŷ , L̃XcẐ).
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At the right-hand side

L̃Xc(R(Ŷ , Ẑ))
(4.3)
=

1
3
(L̃Xc(∇vK(Ẑ, Ŷ ))− L̃Xc(∇vK(Ŷ , Ẑ)))

(4.15)
=

1
3
(∇v

Ẑ
◦ L̃Xc(K(Ŷ )) + L̃[X,Z]v(K(Ŷ ))−∇v

Ŷ
◦ L̃Xc(K(Ẑ))− L̃[X,Y ]v(K(Ẑ)));

R(L̃Xc Ŷ , Ẑ) =
1
3
((∇vK)(Ẑ, L̃Xc Ŷ )− (∇vK)(L̃Xc Ŷ , Ẑ)) =

1
3
((∇v

Ẑ
K)(L̃Xc Ŷ )

− (∇v
L̃Xc Ŷ

K)(Ẑ))
(3.12), (2.8)

=
1
3
(∇v

Ẑ
(K(L̃Xc Ŷ ))−∇v

i−1[Xc,Y v](K(Ẑ)))

(4.14)
=

1
3
(∇v

Ẑ
◦ L̃Xc(K(Ŷ ))−∇v

[̂X,Y ]
(K(Ẑ))).

Interchanging Y and Z, it follows that

−R(L̃Xc Ŷ , Ẑ)−R(Ŷ , L̃XcẐ) = R(L̃XcẐ, Ŷ )−R(L̃Xc Ŷ , Ẑ) =
1
3
(∇v

Ŷ
◦ L̃Xc(K(Ẑ))

−∇v

[̂X,Z]
(K(Ŷ ))−∇v

Ẑ
◦ L̃Xc(K(Ŷ )) +∇v

[̂X,Y ]
(K(Ẑ))).

Thus we find that the right-hand side of (4.16) is

1
3
(L̃[X,Z]v(K(Ŷ ))−∇v

[̂X,Z]
(K(Ŷ ))− L̃[X,Y ]v(K(Ẑ)) +∇v

[̂X,Y ]
(K(Ẑ)))

(3.5)
= 0,

which proves the desired relation L̃XcR = 0. Note that this is equivalent to

(4.17) L̃Xc(R(Ŷ , Ẑ)) = R(L̃Xc Ŷ , Ẑ) + R(Ŷ , L̃XcẐ); Y,Z ∈ X(M).

We show finally that X is a curvature collineation also for the affine curvature H.
For any vector fields Y, Z, U on M ,

(L̃XcH)(Ŷ , Ẑ, Û) = L̃Xc(H(Ŷ , Ẑ)Û)−H(L̃Xc Ŷ , Ẑ)Û −H(Ŷ , L̃XcẐ)Û

−H(Ŷ , Ẑ)L̃XcÛ) = L̃Xc((∇vR)(Û , Ŷ , Ẑ))− (∇vR)(Û , L̃Xc Ŷ , Ẑ)

−(∇vR)(Û , Ŷ , L̃XcẐ)− (∇vR)(L̃XcÛ , Ŷ , Ẑ) = L̃Xc(∇v
Û

(R(Ŷ , Ẑ)))

−(∇v
Û
R)(L̃Xc Ŷ , Ẑ)− (∇v

Û
R)(Ŷ , L̃XcẐ)− (∇v

[̂X,U ]
R)(Ŷ , Ẑ)

(3.9), (3.12)
= ∇v

Û
◦ L̃Xc(R(Ŷ , Ẑ)) + L̃[X,U ]v(R(Ŷ , Ẑ))−∇v

Û
(R(L̃Xc Ŷ , Ẑ))

−∇v
Û

(R(Ŷ , L̃XcẐ))−∇v

[̂X,U ]
(R(Ŷ , Ẑ))

(4.17)
= L̃[X,U ]v(R(Ŷ , Ẑ))

−∇v

[̂X,U ]
R(Ŷ , Ẑ)

(3.5)
= 0,

which completes the proof. ¤

Corollary 4.2. Any affine vector field is a curvature collineation for the projective
deviation, the fundamental projective curvature and the projective curvature.

Proof. Suppose X ∈ X(M) is an affine vector field of the spray manifold (M, S). Then,
taking into account that L̃Xc1Sec(π) = 0, L̃Xcδ = V[Xc, C] = 0 and L̃Xc ◦tr = tr ◦L̃Xc ,
it follows that

L̃XcW◦ (4.6)
= L̃XcK− 1

n− 1
tr(L̃XcK)1Sec(π) +

3
n + 1

(tr(L̃XcR))⊗ δ
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+
2− n

n2 − 1
(L̃Xc(∇v trK))⊗ δ

Th. 4.1=
2− n

n2 − 1
(L̃Xc(∇v trK))⊗ δ.

Observe that for every function F ∈ C∞(T̊M) and vector field Y on M we have

(L̃Xc∇vF )(Ŷ ) = Y v(XcF ).

Indeed, (L̃Xc(∇vF )(Ŷ )) = Xc(Y vF )−∇vF ([̂X, Y ]) = [Xc, Y v]F + Y v(XcF )
− [X, Y ]vF = Y v(XcF ).

Now, with the choice F := trK, we find that

(L̃Xc∇v(trK))(Ŷ ) = Y v(Xc trK) = Y v(tr L̃XcK) = 0,

thus proving that L̃XcW◦ = 0. Having this result, relations L̃XcW = 0 and
L̃XcW∗ = 0 may be shown in the same way as L̃XcR = 0 and L̃XcH = 0 in the
preceding proof. ¤

Theorem 4.3. The affine vector fields of a spray manifold are curvature collineations
for the Berwald curvature.

Proof. Let (M, S) be a spray manifold and X ∈ X(M) an affine vector field on M
with respect to S. For any vector fields Y, Z, U on M ,

(L̃XcB)(Ŷ , Ẑ, Û) = L̃Xc(B(Ŷ , Ẑ)Û)−B(L̃Xc Ŷ , Ẑ)Û −B(Ŷ , L̃XcẐ)Û

−B(Ŷ , Ẑ)L̃XcÛ
(4.9), (3.4)

= L̃Xc((∇v∇hÛ)(Ŷ , Ẑ))− ((∇v∇hÛ)([̂X,Y ], Ẑ))

−((∇v∇hÛ)(Ŷ , [̂X,Z]))− ((∇v∇hL̃XcÛ)(Ŷ , Ẑ)) = L̃Xc(∇v
Ŷ
∇h

Ẑ
Û)−∇v

[̂X,Y ]
∇h

Ẑ
Û

−∇v
Ŷ
∇h

[̂X,Z])
Û −∇v

Ŷ
∇h

Ẑ
L̃XcÛ

(3.9), (3.10)
= ∇v

Ŷ
(L̃Xc∇h

Ẑ
Û) + L̃[X,Y ]v∇h

Ẑ
Û

−∇v

[̂X,Y ]
∇h

Ẑ
Û −∇v

Ŷ
∇h

[̂X,Z]
Û −∇v

Ŷ
L̃Xc∇h

Ẑ
Û +∇v

Ŷ
L̃[Xc,Zh]Û

(3.5), (4.12)
= −∇v

Ŷ
∇h

[̂X,Z]
Û +∇v

Ŷ
L̃[X,Z]hÛ

(3.6)
= 0,

which proves the theorem. ¤

Corollary 4.4. Any affine vector field is a curvature collineation for the Douglas
curvature.

Proof. Let X ∈ X(M) be an affine vector field of the spray manifold (M,S). Then,
by the preceding theorem, L̃Xc kills the first two members on the left-hand side of
(4.10), so it remains to show that L̃Xc(∇v trB) = 0. For any vector fields Y, Z, U on
M ,

(L̃Xc(∇v trB))(Ŷ , Ẑ, Û) = Xc((∇v trB)(Ŷ , Ẑ, Û))− (∇v trB)([̂X,Y ], Ẑ, Û)

−(∇v trB)(Ŷ , L̃XcẐ, Û)− (∇v trB)(Ŷ , Ẑ, L̃XcÛ) = XcY v(trB(Ẑ, Û))

−[X, Y ]v(trB(Ẑ, Û))− Y v(trB(L̃XcẐ, Û))− Y v(trB(Ẑ, L̃XcÛ))

= Y v(Xc(trB)(Ẑ, Û)− trB(L̃XcẐ, Û)− trB(Ẑ, L̃XcÛ))

= Y v(L̃Xc trB(Ẑ, Û)) = Y v((tr L̃XcB)(Ẑ, Û)) Th. 4.3= 0,

as was to be shown. ¤
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