
Multitime reaction-diffusion solitons
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Abstract. In this paper, we introduce and explore some properties of two
types of multitime partial differential equations, one as geometrical pro-
longation of the reaction-diffusion Kolmogorov-Petrovskii-Piskunov PDE
and another as geometrical prolongation of the reaction-diffusion PDE
of ultra-parabolic-hyperbolic type. The original ideas include: geometric
ingredients to build first order and second order partial derivative oper-
ators, two multitime reaction-diffusion PDEs, techniques to obtain mul-
titime solitons defined by a multitime reaction-diffusion PDE in a given
direction and multitime solitons defined by a reaction-diffusion PDE of
ultra-parabolic-hyperbolic type.
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1 Reaction-diffusion PDE

The modern theory of the nonlinear waves is an important field of today science. The
nonlinear waves and coherent structures represent an interdisciplinary area with many
applications in physics (nonlinear optics, nonlinear electric circuits, hydrodynamics,
plasmas and states of solid), general relativity, chemistry (chemical reactions), biology
(atmosphere and oceans, animal dispersal), random media and modern telecommu-
nications.

A great variety of phenomena in physics, chemistry or biology can be described by
nonlinear PDEs and particularly by reaction-diffusion equations. For these reasons,
the theory of the soliton-solutions of the reaction-diffusion equations is considered
one of the fastest development area in modern mathematics. The nonlinear reaction-
diffusion (R-D) PDE

(1.1) ut(x, t) = auxx(x, t) + f(u(x, t)), a > 0,

describes density fluctuations in a material undergoing reaction-diffusion. It appears
in population dynamics, combustion theory and chemical kinetics and its solutions
are called reaction-diffusion waves since 1930. In the mathematical and physical
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literature, the PDE (1.1) is wellknown as Kolmogorov-Petrovskii-Piskunov (KPP).
If the reaction term f(u) vanishes, then the equation represents a pure diffusion
process. The choice f(u) = u(1 − u) yields Fisher’s PDE, that was originally used
to describe the spreading of the biological populations. For f(u) = u(1 − u2), the
Newell-Whitehead-Segel PDE describes Rayleigh-Benard convection, if f(u) = u(1−
u)(u − α), 0 < α < 1, then the more general Zeldovich PDE arises in combustion
theory (its particular degenerate case with f(u) = u2 − u3 is sometimes referred to
as the Zeldovich equation as well) and the case f(u) = u3 appears in Differential
Geometry in connection to the motion of the curves (curve-shortening flow [7]).

The paper consists in six Sections. Section 2 underlines the history of the multitime
solitons. Section 3 introduces the multitime R-D PDE in a given direction and shows
that this new PDE is a prolongation of the R-D PDE (1.1). Section 4 analyzes the
multitime solitons defined by a multitime R-D PDE in a given direction. Section 5
introduces the multitime R-D PDE of ultra-parabolic-hyperbolic type and proves that
such an equation is a prolongation of the nonlinear damped hyperbolic PDE (5.1).
Section 6 proves the existence of the multitime solitons defined by a multitime R-D
PDE of ultra-parabolic-hyperbolic type.

2 History of multitime solitons

The theory of the multitime solitons starts with the papers [8]-[10], where the origi-
nal ideas about the multitime sine-Gordon solitons, the multitime Rayleigh solitons
and the multitime Boussinesq solitons are formulated, based on some geometrical
ingredients similar to those in the present paper.

The evolution PDEs can have multi-temporal behavior if the dynamical systems
that they describe permit linear or nonlinear perturbations or if the PDEs contains
nonlinearities due to the friction, the deterioration, the flaw or to the presence of the
constituents consisting of intelligent materials. In this case, the dynamics extends
to many temporal scales evolving from slow to fast and conversely, being able to be
described by more temporal variables. The multi-temporal modeling is particularly
important in engineering, since it permits the evaluation of the properties of certain
materials having as basis the knowledge of the associated geometry.

There are different beautiful connections between Multitime Solitons and Differ-
ential Geometry, which we will now shortly describe. First, the three steps to attend
the idea of the multitime solitons PDEs are: (1) the geometrical thinking of the de-
formation with respect to a multitime variable t = (t1, ..., tm); (2) the recognition
of the geometrical ingredients able to produce differential operators; (3) the possibil-
ity of introducing multi-spatial and multi-temporal PDEs with solutions of the type
u(x, t) = Φ(〈a, x〉 − 〈c, t〉), where Φ : R → R is a function defining the soliton shape,
and the wave-vector a and the propagation velocity c are required to be non-zero
for generating non-trivial solutions. Second, in our mind appeared the idea of the
multitime solitons as present in many physical, chemical, biological problems hav-
ing a multidimensional temporal character. Third, though the multitime theory was
proposed by Dirac in Physics (1932), the multi-temporal wave equations appeared
recently in the context of harmonic analysis on Riemannian symmetric spaces [5].

Multitime soliton profile Let us define the profile of a soliton u(x, t) = Φ(〈a, x〉−
〈c, t〉) at multitime t = (t1, ..., tm) ∈ Rm to be the graph of the function x →
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u(x, t), x ∈ Rn. Then the initial profile (at multitime t = 0) is just the graph of
Φ(〈a, x〉), and at any later multitime t (according the product order), the profile at
multitime t, after a direction u ∈ Rn, ||u|| = 1, is obtained by translating each point
(x, Φ(〈a, x〉)) of the initial profile to the point (x + 〈c, t〉u, Φ(〈a, x〉)). In other words,
the profile of a multitime soliton propagates by rigid translation.

3 Multitime reaction-diffusion PDE in
a given direction

Let us introduce a first multitime version of the nonlinear reaction-diffusion PDE
(1.1). Since our temporal variable, t = (tα), α = 1, . . . ,m, is m-dimensional, the new
PDE will be called multi-temporal. Furthermore, since the new PDE admits multitime
soliton solutions, this will be called multitime soliton PDE.

Our multitime version of the reaction-diffusion PDE is based on notions of Differ-
ential Geometry. First, the evolution parameter t = (t1, . . . , tm), called multitime, is a
point in Rm, endowed with the product order. Second, we need a distinguished vector
field H = (hα), hα = hα(x, t), α = 1, . . . , m, on Rm, borrowed from the geometry of
the jet bundle of order one J1(R×Rm,R) associated to C2 function u : R×Rm → R.
The distinguished vector field H = (hα) defines a multitime derivation operator (along
the direction H)

(3.1) DHu = hα utα , α = 1, . . . , m.

This operator defines the multitime PDE

(3.2) hα(x, t) utα(x, t) = a ux2(x, t) + f(u(x, t)),

which will be called a multitime reaction-diffusion PDE in the direction H.

Theorem 3.1. There exists an infinity of distinguished vector fields H = (hα) on Rm

such that a solution of the reaction-diffusion PDE is also a solution of the multitime
reaction-diffusion PDE (3.2).

Proof Let t1 = t and u = u(x, t1). Suppose u = u(x, t1) is a solution of reaction-
diffusion PDE. The function v(x, t1, ..., tm) = u(x, t1) is a solution of the multitime
reaction-diffusion PDE (3.2) if the family of distinguished vector fields H = (hα) is
fixed by h1 = 1. It is obvious that we have an infinity of distinguished vector fields
that satisfy this algebraic equation.

The foregoing theorem justifies the term multitime geometrical prolongation of the
reaction-diffusion PDE. The reasons and the relations of fixing a vector field H = (hα)
depend on the problem that we want to solve. Many of the core ideas in PDEs theory
can be reformulated using an appropriate vector field H.

Remark The theory in this Section can be extended to include the nonlinear
Schrödinger equation

iut + uxx + u|u|2 = 0, u(x, t) = complex unknown function,

which recently has been intensively studied because it describes the propagation of
pulses of laser light in optical fibers.
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4 Multitime solitons defined by a multitime
reaction-diffusion PDE in a given direction

The first aim is to find multitime soliton solutions of the multitime PDE

(4.1) hα(x, t)utα(x, t) = ux2(x, t) + u3(x, t),

obtained from multitime PDE (3.2) for the diffusion constant a = 1 and the reaction
term f(u(x, t)) = u3(x, t). Let Φ : I ⊂ R → R be a function of class C2. We are
looking for the multitime solutions in the form

(4.2) u(x, t) = Φ(x− cαtα) = Φ(z),

where (cα) is a constant index vector and z = x− cαtα. Then

ux = Φ′(z), ux2 = Φ′′(z), utα = Φ′(z)(−cα).

Replacing these derivatives, the PDE (4.1) reduces to

−hαcαΦ′(z) = Φ′′(z) + Φ3(z).

If we impose

(4.3) hα(x, t)cα = a(z),

then the foregoing ODE is reduced to a second order Riccati ODE

(4.4) Φ′′(z) + a(z)Φ′(z) + Φ3(z) = 0.

4.1 Case of coefficients depending on z

We shall prove the existence of the solutions of the ODE (4.4) in two particular cases:

a(z) = − Φ(z)
Φ′(z)

and, respectively, a(z) = 3Φ(z).

Case 1. In the particular case

(4.5) a(z) = − Φ(z)
Φ′(z)

,

we shall find solutions by the direct integration method and by the cosine method.
Direct integration. For the particular choice (4.5), the ODE (4.4) becomes

(4.6) Φ′′ − Φ + Φ3 = 0,

which, after the multiplication of both members by Φ′ and integration, leads to the
ODE

(4.7) Φ′2 = Φ2 − Φ4

2
.

The ODE (4.7) has solutions for |Φ| <
√

2. Transforming it in two ODEs with
separable variables,

Φ′ = ±
√

Φ2 − Φ4

2
,
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the solutions are found using primitives. Therefore

(4.8) ±
√

2
∫

dΦ√
Φ2(2− Φ2)

= z + C, C ∈ R.

Making the change of variable
√

2− Φ2 = Ψ, Ψ ∈ (0,
√

2), we obtain the solution

(4.9) Φ(z) =
√

8K
ez

1 + Ke2z
, K > 0,

for both ODEs (4.8).
Cosine method. Using the same choice (4.5) of the function a(z), we shall apply

the cosine method to find solutions for the ODE (4.6) in the form

Φ(z) = λ cosβ(µz), |z| < π

2µ
,

where λ, β, µ are unknown parameters which will be determined further.
Computing the derivatives of the function Φ, we find

Φ′(z) = −λβµ cosβ−1(µz) sin(µz)

and
Φ′′(z) = λβ(β − 1)µ2 cosβ−2(µz)− λβ2µ2 cosβ(µz).

Since λ 6= 0, the substitution into the nonlinear ODE (4.6) leads to the trigonometric
relation

(4.10) β(β − 1)µ2 cosβ−2(µz)− (β2µ2 + 1) cosβ(µz) + λ2 cos3β(µz) = 0.

The single possible case, in which λ, β, µ to be non-zero and all the coefficients of the
powers of the function cos(µz) vanish and which yields the solution, is β = −1. This
value is obtained by equating the powers of cos(µz) from the first term and from the
last term in the relation (4.10), i.e., β − 2 = 3β.

For β = −1, the relation (4.10) becomes

(λ2 + 2µ2) cos−3(µz)− (µ2 + 1) cos−1(µz) = 0.

To be an identity, we impose λ2 + 2µ2 = 0, mu2 + 1 = 0, which yields the solution
µ = ±i and λ = ±√2. Then the functions

(4.11) Φ(z) =
±√2

cos(iz)
=

±√2
cosh(z)

are solutions of the ODE (4.6).

Remark. The solution Φ(z) =
√

2
cosh(z)

coincides to the solution (4.9), previously

obtained by direct integration, for the selection K = 1.

Theorem 4.1. If Φ(z) defined by (4.9) or (4.11) are solutions of the ODE (4.4), in
the hypothesis (4.5), then u(x, t) = Φ(z), where z = x − cαtα are multitime soliton
solutions of the multitime PDE (4.1), under the assumptions (4.3) and (4.5).
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Case 2. In the sequel we shall consider the second particular choice, namely

(4.12) a(z) = 3Φ(z).

According to this assumption, the ODE (4.4) becomes

(4.13) Φ′′ + 3ΦΦ′ + Φ3 = 0.

If we denote Φ = Ψ′, then Φ′ = Ψ′′, Φ′′ = Ψ′′′ and the ODE (4.13) is rewritten as

Ψ′′′ + 3Ψ′Ψ′′ + Ψ′3 = 0.

By multiplication with eΨ we obtain the ODE (eΨΨ′′)′ + (eΨΨ′2)
′
= 0 and by inte-

gration we get eΨΨ′′ + eΨΨ′2 = C1. Hence (eΨΨ′)′ = C1 and a new integration leads
to eΨΨ′ = C1z + C2. In this way, we find eΨ = C1

2 z2 + C2z + C3, on the set where
C1
2 z2 + C2z + C3 > 0. It follows Ψ = ln

(
C1
2 z2 + C2z + C3

)
, hence

(4.14) Ψ′ =
C1z + C2

C1

2
z2 + C2 + C3

.

Coming back to the foregoing notation, we find the solution

(4.15) Φ(z) =
C1z + C2

C1

2
z2 + C2 + C3

,

where C1, C2, C3 are real constants.

Theorem 4.2. If Φ(z) defined by (4.15) is a solution of the ODE (4.4), in the
hypothesis (4.12), then u(x, t) = Φ(z), where z = x − cαtα is a multitime soliton
solution of the multitime PDE (4.1), in the hypothesis (4.3) and (4.12).

4.2 Case of constant coefficients

If we assume a(z) = constant = l, then there are two different cases: l 6= 0 and,
respectively, l = 0.

For l 6= 0, the equation (4.4) becomes a second order ODE with constant coeffi-
cients (second order Riccati type)

(4.16) Φ′′(z) + lΦ′(z) + Φ3(z) = 0,

and for this equation we shall prove the existence of the solutions using the following
method presented in [6]. We suppose that Φ(z) =

∑M
i=0 aiG

i, where the function
G = G(z) is the solution of the Riccati type ODE

G′(z) = ε(1−G2), ε = ±1.

Because the functions 1, G, G2, . . . , Gm(m ∈ N) are linearly independent, we can take
M = 1 and without loss of generality, we may choose Φ(z) = a0 + a1G, where a0, a1

are real constants which will be determined later, with a1 6= 0, for nontrivial solutions.
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Then Φ′(z) = εa1 − εa1G
2 and Φ′′(z) = −2a1 + 2a1G

3. Thus from (4.16) we get a
null polynomial

a3
0 + lεa1 + (3a2

0a1 − 2a1)G + (3a0a
2
1 − lεa1)G2 + (a3

1 + 2a1)G3 = 0,

in the unknown G. It follows a system of algebraic equations

a3
0 + lεa1 = 0, 3a2

0a1 − 2a1 = 0, 3a0a
2
1 − lεa1 = 0, a3

1 + 2a1 = 0,

with the unknowns a0, a1. Since a1 6= 0, the last equation has no real solutions. Thus
the ODE (4.16), and consequently the equation (4.4), has no solution of the foregoing
form if l 6= 0.

If we consider now the case in which the function G = G(z) would be a solution
for the Riccati type ODEs

G′(z) = ε(1 + G2), ε = ±1

and we continue in the same way like before, we’ll be able to say that the equation
(4.4) does not admit solutions of the foregoing form if l 6= 0.

In the second case, l = 0, the equation (4.4) becomes Φ′′(z) + Φ3(z) = 0, and it
has a solution given by elliptic functions,

Φ(z) =
√

2
2

sd

(
z;
√

2
2

)
,

where sd(z; k) is the Jacobi elliptic function satisfying

(
dη

dz

)2

= 1 + (2k2 − 1)η2 + k2(k2 − 1)η4.

Remark: Using the nonclassical symmetry reduction method [1], if w(z) satisfies
the equation w′′+w3 = 0, then PDE (1.1), in the case a = 1 and f(u(x, t)) = u3(x, t),
allows a solution of the form u(x, t) = (x+C)w(z), z = 1

2x2 +Cx+3t, where C ∈ R.
In this way, an exact solution of PDE (1.1), in the case a = 1 and f(u(x, t)) = u3(x, t),
is given by

u(x, t) =
√

2
2

(x + C) sd

(
1
2
x2 + Cx + 3t;

√
2

2

)
, C ∈ R.

4.3 Maclaurin series soliton of multitime
reaction-diffusion PDE in a given direction

The basic idea for finding Maclaurin series-solutions of the multitime PDE (4.1) is
that we assume this equation has a solution Φ which is analytic on an interval around
the origin z = 0. Then we can express Φ as a power series in the form

(4.17) Φ(z) =
∞∑

n=0

αnzn
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and we try to determine the unknown coefficients αn. On an interval around the
origin z = 0, the resulting power series should converge. We shall say that Φ(z) is a
series-solution around the origin.

Computing Φ′(z),Φ′′(z) and Φ3(z), we get

Φ′(z) =
∞∑

n=1

nαnzn−1 =
∞∑

n=0

(n + 1)αn+1z
n,

Φ′′(z) =
∞∑

n=1

(n + 1)nαn+1z
n−1 =

∞∑
n=0

(n + 2)(n + 1)αn+2z
n

and

Φ3(z) =
∞∑

n=0

(
n∑

i=0

i∑

k=0

αkαi−kαn−i

)
zn.

If a(z) = Mz + A, M, A ∈ R, is an affine function in z, then the ODE (4.4)
becomes ∞∑

n=0

(n + 2)(n + 1)αn+2z
n + (Mz + A)

∞∑
n=0

(n + 1)αn+1z
n+

+
∞∑

n=0

(
n∑

i=0

i∑

k=0

αkαi−kαn−i

)
zn = 0.

This identity can be written in the form

∞∑
n=0

(n + 2)(n + 1)αn+2z
n + M

∞∑
n=0

(n + 1)αn+1z
n+1 + A

∞∑
n=0

(n + 1)αn+1z
n+

+
∞∑

n=0

(
n∑

i=0

i∑

k=0

αkαi−kαn−i

)
zn = 0,

whence we get

∞∑
n=0

(n + 2)(n + 1)αn+2z
n + M

∞∑
n=1

nαnzn + A

∞∑
n=0

(n + 1)αn+1z
n+

+
∞∑

n=0

(
n∑

i=0

i∑

k=0

αkαi−kαn−i

)
zn = 0

and then

2α2 +
∞∑

n=1

(n + 2)(n + 1)αn+2z
n + M

∞∑
n=1

nαnzn + Aα1 + A

∞∑
n=1

(n + 1)αn+1z
n

+α3
0 +

∞∑
n=1

(
n∑

i=0

i∑

k=0

αkαi−kαn−i

)
zn = 0.
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Thus we obtain the identity

2α2 + Aα1 + α3
0 + +

∞∑
n=1

[
(n + 2)(n + 1)αn+2 + A(n + 1)αn+1

+Mnαn +
n∑

i=0

i∑

k=0

αkαi−kαn−i

]
zn = 0.

By identifying the coefficients of the powers of z with 0, we find the condition

2α2 + Aα1 + α3
0 = 0

and the recurrence

(4.18)

(n + 2)(n + 1)αn+2 + A(n + 1)αn+1

+Mnαn +
n∑

i=0

i∑

k=0

αkαi−kαn−i = 0, n ≥ 1.

By the initial conditions Φ(0) = α0, Φ′(0) = α1 and 2α2 + Aα1 + α3
0 = 0, this

recurrence gives all the coefficients of the power series (4.17), but the difficult part is
just solving this recurrence for the unknown αn or at least showing the convergence
of the series, which remain open problems, for the moment.

Theorem 4.3. In the foregoing hypothesis, the multitime series soliton solution of
the multitime PDE (4.1) is

u(x, t) =
∞∑

n=0

αn(x− cαtα)n,

with α0, α1 fixed, 2α2 + Aα1 + α3
0 = 0 and αn, n ≥ 3, given by the recurrence (4.18).

5 Multitime reaction-diffusion PDE of
ultra-parabolic-hyperbolic type

We consider the nonlinear damped hyperbolic PDE

(5.1) εutt(x, t) + ut(x, t) = a∆xu(x, t) + f(u(x, t)), x ∈ Rn, t ∈ R,

depending on the positive parameter ε, not necessarily small, and the nonlinear func-
tion f : R → R. If we impose n = 1, ε = 0, then the PDE (5.1) reduces to reaction-
diffusion PDE (1.1).

We mention that in the case n = 1, the PDE of type (5.1) appeared as mathemat-
ical models to describe some natural phenomena, like the propagation of the voltage
along a nonlinear transmission line or the random motion of one-celled organisms.

Let us create a second multitime version extending both the ultra-parabolic-
hyperbolic PDE (5.1) and the reaction-diffusion PDE (1.1). For this aim, we use
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ingredients from jet bundle of order one J1(Rn × Rm,R) induced on Rm: (1) a dis-
tinguished symmetric linear connection Γγ

αβ = Γγ
αβ(x, t) and (2) a distinguished con-

travariant symmetric fundamental tensor field gαβ = gαβ(x, t), of constant signature
(p, q, r), p + q + r = m. Using the function u : Rn × Rm → R, of class C2, we build
the Hessian operator

(5.2) (HessΓu)αβ = utαtβ − Γγ
αβutγ , α, β = 1, . . . , m

and its trace, called ultra-parabolic-hyperbolic operator,

(5.3) ¤Γ,gu = gαβ(HessΓu)αβ .

This operator defines another multitime PDE of ultra-parabolic-hyperbolic type

(5.4) ¤Γ,gu(x, t) = a∆xu(x, t) + f(u(x, t)),

where x ∈ Rn and t = (t1, . . . , tm) ∈ Rm. Explicitly,

(5.5) gαβ(x, t)utαtβ (x, t)− gαβ(x, t)Γγ
αβ(x, t)utγ (x, t) = a∆xu(x, t) + f(u(x, t)).

Theorem 5.1. There exists an infinity of distinguished geometrical structures Γγ
αβ,

gαβ on Rm such that a solution of the nonlinear damped hyperbolic PDE (5.1) is also
a solution of the multitime PDE of ultra-parabolic-hyperbolic type (5.5).

Proof Let t1 = t and u = u(x, t1). Suppose u = u(x, t1) is a solution of the
nonlinear damped hyperbolic PDE (5.1). The function v(x, t1, ..., tm) = u(x, t1) is a
solution of the multitime PDE of ultra-parabolic-hyperbolic type (5.5) if the families
of geometrical structures Γγ

αβ , gαβ are fixed by g11 = 1, gαβΓ1
αβ = 1. It is obvious that

we have an infinity of geometrical structures that satisfy these algebraic equations.
The foregoing theorem justifies the term multitime geometrical prolongation of the

nonlinear damped hyperbolic PDE. The fundamental tensor field gαβ and the connec-
tion Γγ

αβ are fixed by conditions depending on the problem that we want to solve.
A fundamental tensor field and a connection are important in mathematics because
they provide a concise mathematical framework for formulating PDE problems in
areas such as elasticity, fluid mechanics, general relativity etc.

6 Multitime solitons defined by a
reaction-diffusion PDE of
ultra-parabolic-hyperbolic type

Let Φ : I ⊂ R→ R be a function of class C2. Let a = (ai), c = (cα) be two constant
index vectors and z = aix

i − cαtα = 〈a, x〉 − 〈c, t〉. We want to find the multitime
soliton solutions

u(x, t) = Φ(aix
i − cαtα) = Φ(z),

of the PDE (5.5). To simplify, we suppose n = 1, a1 = 1, z = x− cαtα and for a = 1
and f(u(x, t)) = u3(x, t), we get the multitime PDE

(6.1) gαβ(x, t)utαtβ (x, t)− gαβ(x, t)Γγ
αβ(x, t)utγ (x, t) = ux2(x, t) + u3(x, t),
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where x ∈ Rn and t = (t1, . . . , tm) ∈ Rm. The partial derivatives

ux = Φ′(z), ux2 = Φ′′(z), utα = Φ′(z)(−cα), utαtβ = Φ′′(z)cαcβ ,

impose the ODE

(6.2) gαβcαcβΦ′′(z) + gαβΓγ
αβcγΦ′(z) = Φ′′(z) + Φ3(z).

If we assume

(6.3) 1− gαβcαcβ = a(z), −gαβΓγ
αβcγ = b(z),

we obtain a second order ODE (higher order Riccati type)

(6.4) a(z)Φ′′(z) + b(z)Φ′(z) + Φ3(z) = 0.

6.1 Case of coefficients depending on z

We shall prove the existence of the solutions for ODE (6.4) in the particular case

(6.5) a(z) = b(z) = − 1
4Φ′(z)

.

For this selection, the ODE (6.4) becomes

Φ′′(z) + Φ′(z)− 4Φ3(z)Φ′(z) = 0.

By integration on the interval [0, z], we obtain the ODE Φ′ + Φ − Φ4 = 0, with
separable variables, which has the solutions

(6.6) Φ(z) =
1

3
√

1−Ke3z
, K > 0,

respectively

(6.7) Φ(z) =
1

3
√

1 + Ke3z
, K > 0.

Theorem 6.1. If Φ(z) given by (6.6) and (6.7) are solutions of the ODE (6.4), under
the assumption (6.5), then u(x, t) = Φ(z),where z = x − cαtα are multitime soliton
solutions of the multitime PDE (6.1), under the assumptions (6.3) and (6.5).

6.2 Case of constant coefficients

If we consider a(z) = constant = k 6= 0 and b(z) = constant = l, then the ODE (6.2)
becomes a second order ODE with constant coefficients (higher order Riccati type)

(6.8) kΦ′′(z) + lΦ′(z) + Φ3(z) = 0,

and for this equation we shall prove the existence of the solutions, using the
G′

G
expansion method [12]. We suppose that the solution Φ of the equation (6.8) can be

expressed by a polynomial in
G′

G
in the form

Φ(z) =
n∑

i=0

ai

(
G′

G

)i

, an 6= 0,
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where G = G(z) is satisfying the second order linear ODE G′′ + λG′ + µG = 0
and ai, λ, µ are real constants which will be determined later. The positive integer
n is found by homogeneous balance between the highest order derivatives and the
nonlinear terms appearing in equation. Thus, deg(Φ′′) = deg(Φ3) yields the identity
n + 2 = 3n, whence n = 1. Therefore Φ(z) = a0 + a1

G′
G , the constants a0, a1

being determined further, with a1 6= 0. Because G′′ = −λG′ − µG, it follows that(
G′

G

)′
= −µ− λ

G′

G
−

(
G′

G

)2

and then, computing Φ′, Φ′′ and Φ3, we get

Φ′(z) = −a1µ− a1λ
G′

G
− a1

(
G′

G

)2

,

Φ′′(z) = a1λµ + (a1λ
2 + 2a1µ)

G′

G
+ 3a1λ

(
G′

G

)2

+ 2a1

(
G′

G

)3

and, respectively,

Φ3(z) = a3
0 + 3a2

0a1
G′

G
+ 3a0a

2
1

(
G′

G

)2

+ a3
1

(
G′

G

)3

.

The substitution of these expressions into the equation (6.8) yields the following
polynomial identity

a3
0 + kλµa1 − lµa1 + (3a2

0a1 + kλ2a1 + 2kµa1 − lλa1)
G′

G
+

+(3a0a
2
1 + 3kλa1 − la1)

(
G′

G

)2

+ (a3
1 + 2ka1)

(
G′

G

)3

= 0,

in the unknown
G′

G
. Equating with 0 all its coefficients, we get the following system

of algebraic equations

a3
0 + kλµa1 − lµa1 = 0, 3a2

0a1 + kλ2a1 + 2kµa1 − lλa1 = 0,

3a0a
2
1 + 3kλa1 − la1 = 0, a3

1 + 2ka1 = 0,

which has solutions only in the case l = 0 and k < 0; the solutions are a0 =√−2kλ
2 , a1 =

√−2k, µ = λ2

4 , λ ∈ R and a0 = −
√−2kλ

2 , a1 = −√−2k, µ =
λ2

4 , λ ∈ R. Since λ2 − 4µ = 0, we find
G′

G
=

C2

C1 + C2z
− λ

2
, C1, C2 ∈ R, so we get

two different solutions

Φ(z) = ±
√−2k C2

C1 + C2z
, C1, C2 ∈ R.

of equation (6.8), in the additional assumption k < 0, l = 0.
Theorem 6.2. If we fix the fundamental tensor gαβ and the connection Γγ

αβ by
the conditions

1− gαβcαcβ = constant < 0, −gαβΓγ
αβcγ = 0,

then we get two different soliton-solutions

u(x, t) = ±
√

2(gαβcαcβ − 1)C2

C1 + C2(x− cαtα)
, C1, C2 ∈ R

of the multitime PDE (6.1).
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6.3 Maclaurin series soliton of multitime
ultra-parabolic-hyperbolic type PDE

In the same conditions like in the beginning of Subsection 4.3, we shall continue by
considering the affine functions a(z) = Mz +A, b(z) = Nz +B, M,N, A,B ∈ R and
then equation (6.2) becomes

2Aα2 + Bα1 + α3
0 +

∞∑
n=1

[
A(n + 2)(n + 1)αn+2 + (Mn + B)(n + 1)αn+1

+Nnαn +
n∑

i=0

i∑

k=0

αkαi−kαn−i

]
zn = 0.

By identifying the coefficients of the powers of z with 0, we find the condition

2Aα2 + Bα1 + α3
0 = 0

and the recurrence

A(n + 2)(n + 1)αn+2 + (Mn + B)(n + 1)αn+1

(6.9) +Nnαn +
n∑

i=0

i∑

k=0

αkαi−kαn−i = 0, n ≥ 1.

By the initial conditions Φ(0) = α0, Φ′(0) = α1 and 2Aα2 + Bα1 + α3
0 = 0, this

recurrence gives all the coefficients of the power series (4.17), but, like we have said
before, the difficult part is just solving this recurrence for the unknown αn, an open
problem also.

Theorem 6.2. In the foregoing hypothesis, the multitime series soliton solution of
multitime PDE (5.4) is

u(x, t) =
∞∑

n=0

αn(x− cαtα)n,

with α0, α1 fixed, 2Aα2 + Bα1 + α3
0 = 0 and αn, n ≥ 3 given by the recurrence (6.9).
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[10] L. Matei, C. Udrişte, C. Ghiu, Multitime Boussinesq solitons, International Jour-
nal of Geometric Methods in Modern Physics, 9, 4 (2012), to appear.

[11] V. Volpert, S. Petrovskii, Reaction-diffusion waves in biology, Physics of Life
Reviews 6 (2009), 267-310.

[12] E. M. E. Zayed, The (G′/G)-expansion method combined with the Riccati equation
for finding solutions of nonlinear PDE’s, J. Appl. Math. Informatics, 29, 1-2
(2011), 351-367.

Authors’ address:
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