
Ricci flow and the manifold of Riemannian metrics

H. Ghahremani-Gol, A. Razavi

Abstract. R.Hamilton defined Ricci flow as a weak parabolic partial dif-
ferential equation, in spite of weakness he could prove the existence and
uniqueness in the short time, while later DeTurck found a shorter proof.
On the other hand the space of Riemannian metrics on a compact man-
ifold had been proved to be an infinite dimensional manifold which is a
projective limit of Banach manifolds. In this paper we consider the Ricci
flow as an integral curve of certain vector fields on the manifold of Rie-
mannian metrics and in spite of being infinite dimensional, we prove the
existence and uniqueness for the short time, and moreover we find further
results on the behavior of these curves.
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1 Introduction

The Ricci flow was first defined by Hamilton in the early 1980 [14]. Following works of
Eells and Sampson[8], he introduced an evolution equation for a family of Riemannian
metrics as follows: {

∂
∂tg(t) = −2Rc(g(t))

g(0) = g0,

where Rc(g(t)) denotes the Ricci curvature of the metric g(t), and by rescaling the
space and time we obtain its cousin, the normalized Ricci flow, as:





∂
∂tg(t) = −2Rc(g(t)) + 2

n

∫
M

Rdµ∫
M

dµ
g(t)

g(0) = g0,

where R denotes the scalar curvature of the metric g(t) and dµ is the volume element
of g(t). The Ricci flow is an evolution equation, considered as a partial differential
equation.
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A fundamental problem for any system of partial differential equation is the ex-
istence and uniqueness of solution for the short time. Since Ricci flow is a weak
parabolic partial differential equation, standard parabolic theory does not work for
it. Hamilton proved the existence and uniqueness of solution for the Ricci flow in
the short time by using Nash and Moser implicit function theorem [13, 14]. Later
D.M.DeTurck provided an easier proof using linearizing of differential operators [6].
Ebin studied the space of Riemannian metrics on a compact manifold M in his paper
from geometric point of view[9]. He enlarged this space to a space of a certain type
of infinite dimensional manifolds. The space of Riemannian metrics on a compact,
oriented, smooth n-manifold M is an infinite dimensional manifold. It is an open
subset of a Fréchet space, and is a Fréchet manifold. Since some basic theorems of
differential geometry such as implicit function theorem and theory of ordinary dif-
ferential equation do not hold in the infinite dimensional manifolds such as Fréechet
space, authors have focussed on the special type of Fréchet manifolds namely the
projective limits. Geometry of those Fréchet manifolds which can be obtained as pro-
jective limit Banach manifolds has been studied widely([1, 7, 11, 17, 18]). The space
of Riemannian metrics is a type of projective limit manifolds. In this paper we use
this viewpoint and give a new approach for the proof of short time existence theorem
for the Ricci flow, moreover we find the properties of the Ricci flow as a curve.

2 The space of Riemannian metrics

Let M be a compact, oriented, smooth n-manifold, without boundary. Consider the
collection Met(M) of all smooth Riemannian metrics on M . In fact Met(M) is the
subset of all sections in S2T ∗M of symmetric rank-2 covariant tensor fields which are
positive definite on each T ∗p M for p ∈ M , moreover Met(M) is an open convex positive
cone in Γ(S2T ∗M). For convenience, we will abbreviate Met(M) as M. The space of
Γ(S2T ∗M) is an infinite-dimensional Fréchet space [13], therefore M is also infinite-
dimensional Fréchet manifold. A Fréchet space is a complete Hausdorff metrizable
locally convex topological vector space. A Fréchet manifold is a Hausdorff topological
space with an atlas of coordinate charts taking their values in Fréchet spaces, such
that the coordinate transition functions are all smooth maps between Fréchet spaces.
Since M is an open subset of the vector space Γ(S2T ∗M), the tangent space TgM
for any g ∈ M is Γ(S2T ∗M) itself. Geometry of M at first has been studied by Ebin
[9]. Later Freed and Groisser gave a decomposition of this space to V ol(M) and Mµ

then using this decomposition they defined a Riemannian metric on M, and obtained
the Levi-Civita connection and its geodesics [10]. There are enormous papers about
different aspects of the space of Riemannian metrics, see [3, 4, 9, 10, 21, 12].

2.1 Met(M)

In this section we describe the decomposition of M defined by Freed and Groisser[10],
which we use in the next sections.

For any g ∈ M an L2 inner product on tensor fields is induced. For any A,B ∈
Γ(T ∗M

⊗
T ∗M), we set

〈A,B〉g =
∫

M

trg(ABt)µ(g),
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where in local coordinates {xi}, A = Aijdxi
⊗

dxj (and similarly for B, g), Bt =
Bjidxi

⊗
dxj (the ”transpose” of B), {gij} is the inverse matrix of {gij}, trg(AC) =

Aijg
jkCklg

li, and µ(g) is the volume form
√

det(gij)dx1 ∧ ... ∧ dxn. The restriction
of this quadratic form to symmetric the symmetric tensor fields A and B is positive
definite. Thus there is a metric on M.

Let V ol(M) ⊂ Ωn(M) be the space of volume forms on M , consistent with the
orientation. For α ∈ Ωn(M) and ν ∈ V ol(M), let (α/ν) be the function satisfying
α = (α/ν)ν. Let p : M → V ol(M) be the projection carrying g to µ(g), and let
Mν = Metν(M) = p−1(ν) for any ν ∈ V ol(M).

Each volume form µ determines a splitting

iµ : V ol(M)×Mµ −→ M,

such that

(2.1) (ν, h) 7→ (ν/µ(h))2/nh.

Since V ol(M) is an open subset of vector space Ωn(M), the tangent bundle of V ol(M)
is canonically isomorphic to V ol(M) × Ωn(M). A vector field β over any subset
U ⊂ V ol(M) may therefore be naturally identified with a function β : U → Ωn(M),
and we implicitly make this identification henceforth.

The tangent space to Mµ at h is the set of h− traceless symmetric tensor fields;
that is, {A ∈ Γ(S2T ∗M)| hijAij ≡ 0}. Then for any g = (ν, h) ∈ M ∼= V ol(M)×Mµ,
a tangent vector of TgM can be considered to be of the form α+A where α ∈ Ωn(M) ∼=
TνV ol(M) and A ∈ ThMµ.

The Koszul’s formula of Levi-Civita connection, applied to constant vector fields
B,C, E on M ∼= V ol(M)×Mµ, quickly leads to

∇BC|g = −1
2
(Bg−1C + Cg−1B) +

1
4
{(trg(C))B + (trg(B))C − trg(BC)g}.

3 M as a projective limit manifold

In this section we give a brief definition of a certain type of infinite dimensional
manifolds for which the space of all Riemannian metrics is an example.

It is well known (see for instance [11]) that every Fréchet space F can be identified
with the limit of a projective system {Ei; ρji}i,j∈N of Banach spaces, F ∼= lim←−Ei. This
means that the mappings ρji : Ej −→ Ei (j ≥ i) are smooth and satisfy the following
conditions for every (i, j, k) such that j ≥ i ≥ k:

ρikρji = ρjk.

Definition 3.1. Let {M i;φji}i,j∈N be a projective system of smooth manifolds mod-
eled on the Banach spaces {Ei}i∈N respectively. We assume that:
(1) The models {Ei}i∈N form a projective system with connecting morphisms {ρji :
Ej −→ Ei; j ≥ i} and limit the Fréchet space F = lim←−Ei.
(2) For any element x = (xi)i∈N ∈ M = lim←−M i there exists a family of charts
{(U i, ψi)}i∈N of M i-s, such that the limits lim←−U i, lim←−ψi can be defined and the sets
lim←−U i, lim←−ψi(lim←−U i) are open in M , F respectively.
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Then the limit M = lim←−M i is called a PLB-manifold.

A PLB-manifold M is a Fréchet manifold modelled on F . The corresponding
local structure is fully determined by the charts (lim←−U i, lim←−ψi). The differentiability
of mappings involved can be either this of J. A. Leslie ([16]) or that of A.Kriegl-
P.Michor ([15]). The tangent bundle TM of M has also a Fréchet manifold structure
with model the Fréchet space F × F which is isomorphic to PLB-manifold lim←−TM i.

Proposition 3.1. [11] The tangent bundles{TM i}i∈N form a projective system with
limit set-theoretically isomorphic to TM : TM ' lim←−TM i.

Omori introduced inverse limit Hilbert manifolds and inverse limit Hilbert groups,
which are a special type of projective limit Banach manifolds, those where connecting
morphisms of factors are the natural embedding [17, 18].

The space M is an inverse limit Hilbert manifold. In order to obtain some of
results obtained by Palais in [19, 20] about space of sections of the vector bundles,
we consider the bundles T p

q M of (p, q)-tensors as vector bundles E over M . Then the
space of sections Γ(E) = Γ(T p

q ) is the space of all smooth tensor fields of type (p, q)
on M . The metric g on M determines an inner product on the bundles T p

q M in the
usual way. Therefore, an inner product in the space Γ(E) of tensor fields of type (p, q)
is defined. If T and U are tensor fields of type (p, q), then

(3.1) 〈T, U〉g =
∫

M

g(x)(T (x), U(x))µ(g)(x),

where
g(x)(T (x), U(x)) = gi1k1 ...giqkqgj1l1 ...gjplpT

j1...jp

i1...iq
U

l1...lp
k1...kq

.

The Ck-norm is defined in the space Γ(E) as follows: for a nonnegative integer k and
a tensor field T of type (p, q), set

(3.2) |T |k =
k∑

i=0

supx∈M‖∇(i)T (x)‖,

where ∇(i) = ∇◦ ... ◦∇ is the ith power of the covariant derivative and ‖∇(i)T (x)‖ =
〈∇(i)T,∇(i)T 〉1/2

g is the tensor norm at a point x ∈ M . We denote by Ck(E) the
completion of the space Γ(E) with respect to the topology defined by the norm |T |k.
The Banach space Ck(E) consists of tensor fields of class Ck. However, in many
problems, Hilbert spaces are more convenient, then we define on the space Γ(E) inner
products stronger than (3.1). Let s be a nonnegative integer and T and U be tensor
fields of type (p, q). We set

(3.3) 〈T, U〉g,s =
s∑

i=0

〈∇(i)T,∇(i)U〉g =
s∑

i=0

∫

M

g(∇(i)T,∇(i)U)µ(g),

where 〈∇(i)T,∇(i)U〉g is the inner product (3.1). We denote by Hs(E) the completion
of the space Γ(E) with respect to the topology defined by inner product(3.3). The
space Hs(E) is called the space of Sobolev smoothness class Hs; it is a Hilbert space.
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We denote by ‖.‖s the norm of this space. In particular, for s = 0, the space H0(E) is
the completion of the space Γ(T p

q M) with respect to inner space (3.1).(For detail, see
([19], Chap. IX).) For l ≥ s, we have H l(E) ⊂ Hs(E); this embedding is continuous.
Obviously, Ck(E) ⊂ Hk(E). The inverse embedding is stated by the following Sobolev
embedding theorem (for the proof, see ([19], Chap. X)).

Theorem 3.2. [19] If s ≥ n/2 + 1 + k, then Hs(E) ⊂ Ck(E) and the embedding
mapping Hs(E) → Ck(E) is completely continuous.

Therefore, for s ≥ n/2+1+k, we can assume that a tensor field T of Sobolev class
Hs is differentiable of class Ck. Further restrictions on s are related with smoothness
conditions for tensor fields of the space Hs(E).

Theorem 3.3. [20] Let E and F be vector bundles over M and f : E → F be a
C∞-mapping preserving fibers. If s ≥ n/2+1, then the mapping φ : Hs(E) → Hs(F )
defined by the formula φ(α) = f ◦ α is a mapping of class C∞.

Now we see that the space M is a projective (inverse) limit Hilbert manifold.
Assume Ss

2 = Hs(S2M) is the Hilbert space of symmetric 2-forms of class Hs, s >
n/2. Let C0M be the space of continuous Riemannian metrics. For s > n/2, let
Ms = Hs(S2M)

⋂
C0M. Since Hs ⊂ C0(S2(M)) and the embedding is continuous,

we have that Ms is open in Ss
2 = Hs(S2M) and is an open, convex, positive cone. In

particular, the space Ms is a smooth Hilbert manifold. The system {M, Ms} forms
a strong ILH-manifold (inverse limit Hilbert manifold)[21].

3.1 Integral curves

In an infinite dimensional manifold a given vector filed need not have integral curves
locally, and if there exist they need not be unique for a given initial value. This is due
to the fact that inverse function theorem, the implicit function theorem don’t hold
for all of the infinite dimensional manifolds.

We have the following theorem about existence and uniqueness of integral curves
for those Fréchet manifolds which can be obtained as a projective limits of Banach
manifolds.[1]

Theorem 3.4. [1] Let ξ be a vector field on the Fréchet manifold M = lim←−M i

which can be considered as the projective limit of vector fields {ξi}i∈N of {M i}i∈N
respectively. Then ξ admits locally a unique integral curve θ, satisfying an initial
condition of the form θ(0) = x for x ∈ M .

4 Ricci flow and space of Riemannian metrics

Hamilton introduced in [14] the Ricci flow as follows:

Definition 4.1. Let M be a manifold with an initial metric g0, a Ricci flow is a
family of Riemannian metrics {g(t)} on M satisfying the PDE:

{
∂
∂tg(t) = −2Rc(g(t))

g(0) = g0,

where Ric(g(t)) denotes the Ricci curvature of the metric g(t).
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The traceless part of the Ricci tensor on a Riemannian n-manifold (M, g) is the
tensor Eij := Rij − 1

nRgij , where Rij is coordinate expression of Ricci curvature and
R is the scalar curvature defined as the trace of the Ricci tensor, i.e. R := gijRij . A
metric g is called Einstein if the traceless part of the Ricci tensor is identically 0.
The various geometric quantities evolve when the metric evolves [2]. Suppose that
gij(t) is a time-dependent Riemannian metric, and ∂

∂tgij(t) = hij(t). Then the volume
element as a geometric quantities evolves according to the following equation:

∂

∂t
µ(g(t)) =

1
2
trghµ(g(t)).

4.1 Short-Time existence

An important foundational step in the study of any system of evolutionary partial
differential equations is to show short-time existence and uniqueness. As the PDE
of Ricci flow is not strictly parabolic, we can’t deduce directly the existence and
uniqueness of short time solution for Ricci flow. Hamilton using Nash-Moser implicit
function theorem proved short-time existence theorem for Ricci flow[14]. DeTurck
later gave a more direct proof by modifying the flow by a time-dependent change of
variables to make it parabolic [6].
Since M is a projective limit Banach manifold, we can find another approach for the
proof of the short time existence theorem of Ricci flow equation.

Theorem 4.1. If (M, g0) is a compact Riemannian manifold, there exists a unique
solution g(t), defined for time t ∈ [0, ε), to the Ricci flow such that g(0) = g0 for some
ε > 0.

Proof. Let X be the vector filed on M such that g −→ −2Rc(g). Since M is a type of
projective limit Banach manifold, the vector filed V can be considered as projective
limit. Using theorem (3.4) the Ricci flow curve can be considered as the integral curve
of this vector filed and its existence can be proved as follows.
By proposition (3.1) the vector field X ∈ TM can be considered as X = lim←−Xi.
We show that X admit locally a unique integral curve α with initial condition as
α(0) = g0 for g0 ∈ M. Since for i ∈ N, Xi is a vector field on Hilbert manifold Mi,
there exist a unique integral curve αi such that

(ψi
k ◦ αi)′ = Ψ2,i

k (Xi(αi(t))); k ∈ I

and αi(0) = gi
0 = ϕi(g0) where ϕi : M → Mi is the canonical projection and

{(π−1(U i
k),Ψk)}k∈I is the corresponding trivialization for TMi, Ψ2,i

k is the projec-
tion of Ψi

k onto its second factor. Now α = lim←−αi is integral curve for X. We must
show φji ◦ αj = αi for j ≥ i. It is sufficient to show φji ◦ αj is also an integral curve
of Xi. Then we have

(ψi
k ◦ (φji ◦ αj)′ = ρji ◦ (ψj

k ◦ αj))′(t) = ρji(ψj
k ◦ αj)′(t)

= ρji(Ψ2,j
k (Xj(αj(t)))) = Ψ2,j

k (Tφji(Xj(αj(t)))

= Ψ2,j
k (Xj(φji ◦ αj(t)))

and also φji ◦ αj(gj
0) = gi

0. Therefore by uniqueness of integral curve φji ◦ αj = αi.
This shows {αi}i∈N is a projective system of curves and α = lim←−αi exists. α satisfies
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the conditions for theorem because

(ψ ◦ α)′(t) = ((ψi
k ◦ αi)′(t))i∈N = (Ψ2,i

k (Xi(αi(t))))i∈N = Ψ2
k(X(α(t))).

Uniqueness of α follows from uniqueness of αi. ¤

4.2 Geodesics on M

Geodesics on M with initial conditions have been calculated in [10].Freed and Groisser
fixed µ ∈ V ol(M) and implicity identified M with V ol(M)×Mµ as in (2.1) and found
the geodesics. In this section we explain geodesic equation on M.

Proposition 4.2. [10] The geodesic in V ol(M) with initial position µ and initial
velocity α ∈ Tµ(V ol(M) = Ωn(M) is

µ(t) = µt = (1 +
1
2
(
α

µ
)t)µ.

Proposition 4.3. [10] The geodesic in Mµ with initial position g and initial velocity
A ∈ Tg(Mµ) is

g(t) = gt = get(g−1A).

Theorem 4.4. [10] the geodesic in M with initial position (µ, g) and initial velocity
(α, A) ∈ Ωn(M)× sym0(M, g) is

iµ(gt) = (q(t)2 + r2t2)
2
n g exp(

tan−1(rt/q)
r

g−1A),

where q(t) = 1 + 1
2 (α/µ)t, r = 1

4 (ntr((g−1A)2))
1
2 and iµ is defined as in previous

section. If r = 0 after replacing the exponential term by 1, then the change in volume
form of g(t) is given by the formula

µ(g(t)) = (q(t)2 + r2t2)µ.

Sketch of proof. Let {g(t)} be a geodesic and B = g′ = dg
dt then the above formula

of Levi-Civita connection has been applied to the geodesic equation ∇g′g
′ = 0 to

obtain (µt, ht). Finally using splitting map iµ for M ∼= V ol(M)×Mµ, geodesics are
obtained, you can see [10] for more details. ¤

Theorem 4.5. The velocity vector of geodesics on M is as follows:

α′(t) = (α(1 +
1
2

α

µ
t) + 2r2tµ,

A

q2 + r2t2
exp(

tan−1( rt
q )

r
g−1A))

also for r = 0

α′(t) = (α(1 +
1
2

α

µ
t), 0).

Proof. According to M ∼= V ol(M) × Mµ, a geodesic is of the form α(t) = (µt, ht)
where

µt = µ(g(t)) = (q(t)2 + r2t2)µ
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and

ht = g exp

(
tan−1( rt

q )

r
g−1A

)
.

Therefore

d

dt
µt = (2q(t)q́(t) + 2r2t)µ =

(
2

(
1 +

1

2

α

µ
t

)
1

2

α

µ
+ 2r2t

)
µ =

(
1 +

1

2

α

µ
t

)
α + 2r2tµ.

As well, we get

d

dt
ht = g exp

(
tan−1( rt

q

r
g−1A

)
g−1A× 1

r

d
dt (

rt
q )

1 + ( rt
q )2

= g exp

(
tan−1( rt

q )

r
g−1A

)
g−1A× 1

r
× q2

q2 + r2t2
×

rq − 1
2

α
µ tr

q2

= exp

(
tan−1( rt

q )

r
g−1A

)
A×

q − 1
2

α
µ t

q2 + r2t2

=
A

q2 + r2t2
exp

(
tan−1( rt

q )

r
g−1A

)

thus for r 6= 0 we have

α′(t) =

(
α

(
1 +

1
2

α

µ
t

)
+ 2r2tµ,

A

q2 + r2t2
exp

(
tan−1( rt

q )

r
g−1A

))
,

and also for r = 0 according to α(t) = (q(t)2µ, g) the velocity vector of geodesic is as
follows:

α′(t) = (α(1 +
1
2

α

µ
t), 0),

which concludes the proof. ¤

Remark 4.2. By Definition 4.1, a Ricci flow equation can be considered as a curve
on M. We call these curves as Ricci flow curve.

We will study the behavior of them on the manifold M. In special cases we obtain
the following result:

Theorem 4.6. A Ricci flow curve starting from an Einstein metric g0 is not a
geodesic.

Proof. Let g0 be an Einstein metric: Ric(g0) = λg0, where λ is a constant. Then
g(t) = (1− 2λt)g0.Then by Theorem 4.4 this curve is not the geodesic. ¤

Moreover using Theorem 4.5, we see that velocity vector of geodesic on M is
different from velocity vector of Ricci flow curve

Proposition 4.7. If M is a compact manifold with strictly positive scalar curvature
R0 then the space of Riemannian metrics on the compact manifold M is foliated by
the Ricci flow.
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Proof. Since M is a compact manifold with strictly positive scalar curvature R0,
Ricci flow equation is a non-vanishing vector field on M also solution of Ricci flow are
integral curves on the M. It is obvious that this integral curve foliate the M. ¤

4.3 Ricci solitons

Ricci solitons are special solution of Ricci flow such that every g(t) is the form g(t) =
σ(t)ϕ∗t (g0) where σ(t) and ϕ(t) are respectively scalar and diffeomorphisms of M and
g0 is initial metric and ϕ0 = Id, σ(0) = 1[5]. We call these curve, the Ricci soliton
curve.

Theorem 4.8. Ricci soliton curve results in an equation which consists of an initial
metric and a vector field and a scalar as follows:

−2Ricg0 = 2λg0 + £V g0.

Proof. For arbitrary curve α(t) = σ(t)ϕ∗t (g0) according to decomposition M ∼= V ol(M)×
Mµ we have:

α(t) =

(
µσ(t)ϕ∗t (g0),

(
µ

µσ(t)ϕ∗t (g0)

) 2
n

σ(t)ϕ∗t (g0)

)
.

The velocity vector α′(t) is as follows:

α′(t) =
(

1
2 trσ(t)ϕ∗t (g0)(

∂
∂tσ(t)ϕ∗t (g0))µσ(t)ϕ∗t (g0),

( µ
µσ(t)ϕ∗t (g0)

)
2
n ( ∂

∂tσ(t)ϕ∗t (g0)− 1
n trσ(t)ϕ∗t (g0)(

∂
∂tσ(t)ϕ∗t (g0))σ(t)ϕ∗t (g0)

)

=
(

1
2

1
σ(t) (ϕ

∗)−1
t (g0)(

dσ(t)
dt ϕ∗t (g0) + σ(t)∂

∂ ϕ∗t (g0))µσ(t)ϕ∗t (g0),

( µ
µσ(t)ϕ∗t (g0)

)
2
n (dσ(t)

dt ϕ∗t (g0) + σ(t)∂
∂ ϕ∗t (g0)− 1

n
1

σ(t) (ϕ
∗)−1

t (g0)(
dσ(t)

dt ϕ∗t (g0)

+σ(t)∂
∂ ϕ∗t (g0))σ(t)ϕ∗t (g0)

)

and at t = 0 we have
(4.1)

α′(0) = (
1
2
g−1
0 (σ′(0)g0+£V g0)µg0 , (

µ

µg0

)
2
n (σ′(0)g0+£V g0− 1

n
(g−1

0 (σ′(0)g0+£V g0)g0)),

where £ denotes the Lie derivative, V is the time-dependent vector field such that
V (ϕt(p)) = d

dtϕt(p)) for any p ∈ M . On the other hand for α(t) as a Ricci flow curve
according to (3.4), the velocity vector α′(t) is as follows:

α′(t) = (−Rµσ(t)ϕ∗t (g0),−2( µ
µσ(t)ϕ∗t (g0)

)
2
n [Ric(σ(t)ϕ∗t (g0))− R

n σ(t)ϕ∗t (g0)]

= (− 1
σ(t)ϕ

∗
t (R0)σ(t)

n
2 µϕ∗t (g0),−2 1

σ(t) (
µ

µσ(t)ϕ∗t (g0)
)

2
n ·

·[ϕ∗t (Ricg0)− 1
n

1
σ(t)ϕ

∗
t (R0)σ(t)ϕ∗t (g0)])

= (−ϕ∗t (R0)σ(t)
n
2−1µϕ∗t (g0),

−2
σ(t) (

µ
µσ(t)ϕ∗t (g0)

)
2
n [ϕ∗t (Ricg0)− ϕ∗t (R0)

n ϕ∗t (g0)]);
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at t = 0 we have

(4.2) α′(0) =
(
−R0µg0 ,−2(

µ

µg0

)
2
n [Ricg0 − R0

n
g0]

)
.

By comparing (4.1) and (4.2) have:
{ −R0 = 1

2g−1
0 (σ′(0)g0 + £V g0),

−2(Ricg0 − R0
n g0) = σ′(0)g0 + £V g0 − 1

ng−1
0 (σ′(0)g0 + £V g0)g0,

Therefore −2Ricg0 = σ′(0)g0 + £V g0,
Let σ′(0) = 2λ; then −2Ricg0 = 2λg0 + £V g0. ¤

Remark 4.3. The above theorem coincides with the well-known result on Ricci
soliton - see for example [5].

The Ricci flow curve has certain properties which will be included in another
forthcoming paper.
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