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Abstract. Einstein manifolds are trivial examples of gradient Ricci soli-
tons with constant potential function and thus they are called trivial Ricci
solitons. In this paper, we prove two characterizations of compact shrink-
ing trivial Ricci solitons.
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1 Introduction

A smooth vector field ξ on a Riemannian manifold (M, g) is said to define a Ricci
soliton if it satisfies

1
2
£ξg + Ric = λg,

where £ξg is the Lie-derivative of the metric tensor g with respect to ξ, Ric is the Ricci
tensor of (M, g) and λ is a constant. We shall denote a Ricci soliton by (M, g, ξ, λ)
and call the vector field ξ the potential field of the Ricci soliton. The Ricci soliton
(M, g, ξ, λ) is called shrinking, steady or expanding according to λ > 0, λ = 0, or
λ < 0, respectively.

It is well-known that if (M, g, ξ, λ) is a compact Ricci soliton, then the potential
field ξ is a gradient of some smooth function f up to the addition of a Kiling field and
thus a compact Ricci soliton is a gradient Ricci soliton (cf. [16]). We shall denote
a gradient Ricci soliton by (M, g, f, λ) and call the smooth function f the potential
function of the gradient Ricci soliton. For a gradient Ricci soliton (M, g, f, λ) it is
always possible to choose the potential function f satisfying

2λf = ||∇f ||2 + S,

where S denotes the scalar curvature of M (cf. section 2 for details). A gradient
Ricci soliton (M, g, f, λ) with such a potential function is simply called a gradient
Ricci soliton with normalized potential.

In the following, we denote by λ1 the first nonzero eigenvalue of the Laplace
operator ∆ on a gradient Ricci soliton (M, g, f, λ).
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Recall that Hamilton conjectured in [9,10] that a compact gradient Ricci soliton
with positive curvature operator is an Einstein manifold (a trivial Ricci soliton),
which is settled in [1]. The next important question is to find conditions under which
a compact gradient Ricci soliton is an Einstein manifold.

Since the last two decades, the geometry of Ricci solitons has been the focus of
attention of many mathematicians. In particular, it has become more important
after Grigory Perelman solved the Poincaré conjecture and observed that on compact
simply connected Riemannian manifolds, the Ricci solitons as solutions of Ricci flow,
are gradient Ricci solitons (cf. [15,16]). An Einstein manifold is a trivial example of
a gradient Ricci soliton with constant potential function and therefore it is called a
trivial Ricci soliton. There exist many non-trivial examples of Ricci solitons compact
as well as non-compact (cf. [2]-[4], [11]-[13]).

There are two aspects of the study of Ricci solitons, one looking at the influence on
the topology by the Ricci soliton structure of the Riemannian manifold (cf. [5,14,18])
and the other looking at its influence on its geometry (cf. [1,6,7]). In this paper,
we are interested in finding characterizations of trivial Ricci solitons among compact
gradient Ricci solitons.

On a compact Riemannian manifold (M, g) and a smooth function ϕ : M → R,
the average value of ϕ, denoted by ϕav, is a real number defined by

ϕav =
1

Vol(M)

∫

M

ϕ.

We prove the following characterization of trivial Ricci solitons.

Theorem 1.1. An n-dimensional compact connected shrinking gradient Ricci soliton
(M, g, f, λ) with normalized potential is trivial if and only if

(fS)av ≤ 1
2
n2λ,

where S denotes the scalar curvature of (M, g).

The Poisson equation on a Riemannian manifold (M, g) is

∆ϕ = σ,

where ∆ is the Laplace operator, σ is a given function, and ϕ is the solution to be
determined. The Poisson equation plays a fundamental role in Physics; also well
known for its importance in Electrostatics, Biophysics and Engineering.

It is known that the Poisson equation ∆ϕ = σ on a compact Riemannian manifold
(M, g) has a unique solution up constants if and only if the integral of σ is equal to
zero (cf. [8]). Also, in order to use a Poisson equation to study the geometry of a
compact gradient Ricci soliton (M, g, f, λ), we need to construct a function σ whose
integral is equal to zero.

On a compact gradient Ricci soliton (M, g, f, λ), the function σ = λ(nλ − S)
satisfies the property

∫
M

σ = 0 (see equation (2.8)). In the next theorem, we study
the Poisson equation ∆ϕ = σ with σ = λ(nλ − S) on the gradient Ricci soliton
(M, g, f, λ).

Our second result is the following.
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Theorem 1.2. Let (M, g, f, λ) be an n-dimensional compact connected shrinking gra-
dient Ricci soliton and let σ = λ(nλ − S). If the scalar curvature S is a solution of
the Poisson equation

(1.1) ∆ϕ = σ,

then either M is trivial or the first nonzero eigenvalue λ1 of the Laplace operator ∆
of M satisfies λ1 ≤ λ.

The significance of this theorem is the following immediate consequence, which
provides another characterization of trivial Ricci solitons.

Corollary 1.3. An n-dimensional compact connected shrinking gradient Ricci soliton
(M, g, f, λ) with λ < λ1 is trivial if and only if the scalar curvature S satisfies the
following Poisson equation

∆ϕ = λ(nλ− S).

In the last section of this paper, we observe that the requirement that the scalar
curvature S of a compact shrinking gradient Ricci soliton satisfies the Poisson equation
(1.1) in Theorem 1.2 is dictated by the behavior of the Ricci curvature in the direction
of the gradient vector field ∇S of S (cf. Theorem 5.1); and it gives yet another
characterization of trivial Ricci solitons (cf. Corollary 5.2).

2 Preliminaries

Let (M, g, f, λ) be an n-dimensional compact gradient Ricci soliton and let X (M)
denote the Lie algebra of smooth vector fields on M . Then we have (cf. [2,3,4])

(2.1) Hf (X,Y ) + Ric(X, Y ) = λg(X,Y ), X,Y ∈ X (M) ,

where Hf (X,Y ) = g(∇X∇f, Y ) is the Hessian and ∇f is the gradient of the potential
function f .

Since S is the scalar curvature of (M, g), equation (2.1) yields

(2.2) ∆f = nλ− S,

where ∆f = Trace (Hf ) is the Laplacian of f . The Ricci operator Q is defined by

(2.3) Ric (X,Y ) = g (Q (X) , Y ) , X,Y ∈ X (M) .

It is well known that the Ricci operator Q satisfies

(2.4)
∑

i

(∇Q) (ei, ei) =
1
2
∇S,

where {e1, .., en} is a local orthonormal frame and ∇Q is the covariant derivative of
Q defined by

(∇Q) (X,Y ) = ∇X (QY )−Q (∇XY ) .

We define the symmetric operator Af by

Hf (X, Y ) = g(AfX, Y ), X, Y ∈ X (M) .
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Then, by using the definition of curvature tensor field R, we have

(∇Af )(X, Y )− (∇Af )(Y, X) = R(X, Y )∇f.

After applying the above equation, ∆f = Trace (Af ), and the symmetry of Af , we
obtain

(2.5)

X(∆f) =
∑

i

g((∇Af )(X, ei), ei)

=
∑

i

g((∇Af )(ei, X) + R(X, ei)∇f, ei)

= −Ric(X,∇f) +
∑

i

g((∇Af )(ei, ei), X)

for X ∈ X (M). Also, it follows from equation (2.1) that

(∇Af )(X, Y ) = −(∇Q)(X,Y ).

By substituting this into equation (2.5) and using equations (2.2) and (2.4), we find

−X(S) = −Ric(X,∇f)− 1
2
X(S),

which implies

(2.6) Q(∇f) =
1
2
∇S.

Note that on a connected gradient Ricci soliton (M, g, f, λ), it follows from equations
(2.1) and (2.6) that

1
2
X

( ‖∇f‖2 + S
)

= Hf (X,∇f) + Ric(X,∇f) = λg(X,∇f),

that is
X

( ‖∇f‖2 + S − 2λf
)

= 0, X ∈ X(M).

This shows that
1
2
( ‖∇f‖2 + S

)− λf = c

for a constant c. Now, after replacing the potential function f of the connected
shrinking gradient Ricci soliton (M, g, f, λ) by f− c

λ , we see that the gradient shrinking
Ricci soliton (M, g, f, λ) satisfies

(2.7) 2λf = ‖∇f‖2 + S.

On a compact gradient Ricci soliton, equation (2.2) gives

(2.8)
∫

M

(nλ− S) = 0.
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3 Proof of Theorem 1.1

Let (M, g, f, λ) be an n-dimensional compact and connected shrinking gradient Ricci
soliton. Then, it follows from equations (2.2) and (2.7) that

(3.1)
1
2
∆f2 = f∆f + ‖∇f‖2

= (n + 2)λf − fS − S,

which together with equation (2.8) gives

(3.2)
∫

M

fS = λ(n + 2)
∫

M

(
f − n

n + 2

)
.

Note that equations (2.7) and (2.8) imply
∫

M

(
f − n

2

)
=

1
2λ

∫

M

‖∇f‖2 ,

which together with equation (3.1) gives

(3.3)
∫

M

fS =
1
2
n2λ Vol(M) +

n + 2
2

∫

M

‖∇f‖2 .

If the condition (fS)av ≤ 1
2n2λ holds, then we shall have

(3.4)
∫

M

fS ≤ 1
2
n2λ Vol(M).

By combining (3.3) and (3.4), we obtain
∫

M
‖∇f‖2 = 0, which implies that the

potential function f is a constant. Consequently, it follows from (2.1) that M is an
Einstein manifold. Thus the Ricci soliton is trivial.

Conversely, if an n-dimensional compact and connected shrinking gradient Ricci
soliton is trivial, then S = nλ and f is a constant. Therefore, by equation (2.7) we
obtain f = S/(2λ). Consequently, we have (fS)av = 1

2n2λ. This completes the proof
of Theorem 1.1. ¤

Remark 3.1. Theorem 1.1 can also be proved by using the techniques in [17].

4 Proof of Theorem 1.2

Let (M, g, f, λ) be an n-dimensional compact and connected shrinking gradient Ricci
soliton. Suppose that the scalar curvature S satisfies the Poisson equation

(4.1) ∆ϕ = σ,

with σ = λ(nλ− S). Note that the function ψ = 1
2 (‖∇f‖2 + S) satisfies

(4.2) ψ = λf



18 Bang-Yen Chen and Sharief Deshmukh

due to equation (2.7). Combining this with equation (2.2) gives

∆ψ = λ(nλ− S) = σ.

Therefore, both S and ψ are the solutions of the Poisson equation (4.1). Hence, we
have S = ψ + c for some constant c (cf. [8]). Consequently, we obtain

(4.3) ∇S = ∇ψ = λ∇f.

Now, by applying equation (2.8) and the well known minimum principle of λ1, we
have

(4.4)
∫

M

‖∇S‖2 ≥ λ1

∫

M

(nλ− S)2.

On the other hand, it follows from equation (2.8) that
∫

M

(nλ− S)2 =
∫

M

(S2 − n2λ2).

Consequently, inequality (4.4) takes the form

(4.5)
∫

M

‖∇S‖2 ≥ λ1

∫

M

(S2 − n2λ2).

Because the scalar curvature S is a solution of the Poisson equation (4.1) with σ =
λ(nλ− S), we have

S∆S = λ(nλS − S2).

By applying integration by parts to the last equation and by using equation (2.8), we
obtain ∫

M

‖∇S‖2 = λ

∫

M

(S2 − n2λ2),

which together with the inequality (4.5) gives

(λ1 − λ)
∫

M

(n2λ2 − S2) ≥ 0.

Note that using equation (2.2), we have

n2λ2 − S2 = (nλ + S)∆f = nλ∆f + S∆f,

which on insertion in the above inequality gives

(4.6) (λ1 − λ)
∫

M

(S∆f) ≥ 0.

From (2.2), (4.6), ∆S = λ(nλ− S), and integration by parts, we get

0 ≤ (λ1 − λ)
∫

M

(S∆f)

= (λ1 − λ)
∫

M

S(nλ− S)

=
λ1 − λ

λ

∫

M

(S∆S)

=
λ− λ1

λ

∫

M

‖∇S‖2 .
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By combining this with equation (4.3), we obtain

λ(λ1 − λ)
∫

M

‖∇f‖2 ≤ 0,

which implies that either λ1 ≤ λ holds or (M, g, f, λ) is trivial. This completes the
proof of the theorem. ¤
Remark 4.1. Notice that Corollary 1.3 follows immediately from Theorem 1.2. As
for the converse, we have S = nλ for any trivial (M, g, f, λ), which satisfies the given
Poisson equation.

5 A remark

Observe that if (M, g, f, λ) is an n-dimensional compact connected shrinking trivial
Ricci soliton, then the scalar curvature S is a constant equal to nλ. Thus it satisfies
the Poisson equation in Theorem 1.2 trivially. It is interesting to point out that the
condition that the scalar curvature satisfying this Poisson equation is dictated by the
behavior of certain Ricci curvature of the Ricci soliton, as seen in the following.

Theorem 5.1. Let (M, g, f, λ) be an n-dimensional compact connected shrinking gra-
dient Ricci soliton of positive Ricci curvature. If the Ricci curvature Ric and the scalar
curvature S of (M, g) satisfy

(5.1) Ric(∇S,∇S) ≤ λ

(
‖∇S‖2 +

λ

2
(
n2λ2 − S2

))
,

then S is a solution of the Poisson equation ∆ϕ = σ with σ = λ(nλ− S).

Proof. Let (M, g, f, λ) be an n-dimensional compact connected shrinking gradient
Ricci soliton of positive Ricci curvature. Then equation (2.6) gives

(5.2) Ric(∇f,∇S) =
1
2
‖∇S‖2

and

(5.3) Ric(∇f,∇f) =
1
2
g(∇f,∇S).

Now, using equation (2.2), we find

g(∇f,∇S) = ∇f(S) = div(S∇f)− S(nλ− S).

By substituting this value into equation (5.3), integrating the resulting equation and
applying divergence theorem, we get

(5.4)
∫

M

Ric(∇f,∇f) =
1
2

∫

M

(
S2 − n2λ2

)
,

where we have used equation (2.8). Clearly, we have

Ric(∇S − λ∇f,∇S − λ∇f)

= Ric(∇S,∇S)− 2λRic(∇f,∇S) + λ2Ric(∇f,∇f).
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After integrating the above equation and applying equations (5.2) and (5.4), we arrive
at ∫

M

Ric (∇S − λ∇f,∇S − λ∇f)

=
∫

M

{
Ric(∇S,∇S)− λ ‖∇S‖2 +

λ2

2
(
S2−n2λ2

)}

=
∫

M

{
Ric (∇S,∇S)− λ

(
‖∇S‖2 +

λ

2
(
n2λ2 − S2

))}
.

Now, by applying condition (5.1) and the positiveness of Ricci curvature on M from
the hypothesis, we may conclude from the above equation that

∇S = λ∇f.

After combining this equation with equation (2.2), we obtain

∆S = λ(nλ− S) = σ,

which implies the theorem. ¤

Combining Theorem 5.1 and Corollary 1.3 gives the following.

Corollary 5.2. An n-dimensional compact connected shrinking gradient Ricci soliton
(M, g, f, λ) of positive Ricci curvature with λ < λ1 is trivial if and only if the scalar
curvature S satisfies

(5.5) Ric(∇S,∇S) ≤ λ

(
‖∇S‖2 +

λ

2
(
n2λ2 − S2

))
.

Proof. If condition (5.5) holds, then Theorem 5.1 implies that the scalar curvature
satisfies the Poisson equation ∆S = σ. Therefore, Theorem 1.2 together with λ < λ1

implies that the Ricci soliton is trivial.

Conversely, if (M, g, f, λ) is trivial, then S = nλ satisfies the condition in the
statement. ¤

Acknowledgements. This work is supported by King Saud University, Deanship
of Scientific Research, College of Science Research Center.

References

[1] C. Bohm and B. Wilking, Manifolds with positive curvature operators are space
forms, Ann. of Math. (2) 167, 3 (2008), 1079–1097.

[2] H.-D. Cao, Geometry of Ricci solitons. Chinese Ann. Math. Ser. B, 27, 2 (2006),
121–142.

[3] B. Chow and D. Knopf, The Ricci flow: An introduction. Mathematical Surveys
and Monographs, Amer. Math. Soc., Providence, RI, 2004.

[4] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci flow. Graduate Studies in Mathe-
matics, Amer. Math. Soc., Providence, RI, 2006.



Compact shrinking Ricci solitons 21

[5] A. Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. Amer.
Math. Soc. 134, 12 (2006), 3645–3648.

[6] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci.
Math. Roumanie 55(103), 1 (2012), 41–50.

[7] S. Deshmukh, H. Alodan and H. Al-Sodais, A Note on Ricci Soliton, Balkan J.
Geom. Appl. 16, 1 (2011), 48–55.

[8] S. Donaldson, Geometric Analysis Lecture Notes, available online at
http://www2.imperial.ac.uk/˜skdona/.

[9] R. S. Hamilton, The formation of singularities in the Ricci flow, In: Surveys in
Differential Geometry, Vol. II, (1995), 7–136.

[10] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity
(Santa Cruz, CA, 1986), Contemp. Math. 71, American Math. Soc. 1988, 237–
262.

[11] T. Ivey, Local existence of Ricci solitons, Manuscripta Math. 91, 2 (1996), 151–
162.

[12] T. Ivey, New examples of complete Ricci solitons, Proc. Amer. Math. Soc. 122,
1 (1994), 241–245.

[13] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993),
301–307.

[14] M. F. Lopez and E. Garcia-Rio, A remark on compact Ricci solitons, Math. Ann.
340 (2008), 893–896.

[15] J. Lott, The work of Grigory Perelman, International Congress of Mathemati-
cians, Vol. I, Eur. Math. Soc., Zürich, 2007, 66–76.
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