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Abstract. On a Riemannian almost product manifold, the notion of a
componentwise conformal vector field is introduced and several examples
are exhibited. We show that this class of vector fields is a conformal
invariant. For a compact manifold, a Bochner type integral formula for the
Ricci tensor on such vector fields is obtained. Then, integral inequalities
which link a curvature condition with the existence of componentwise
conformal vector fields are obtained. Also, applications to Riemaniann
submersions are given, obtaining a new characterization of the standard
flat n-torus.
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1 Introduction

K. Yano was the first to study systematically Riemannian almost product manifolds
in a general setting [15]. A. Gray also worked with this notion, introducing the con-
figuration tensors and derived several formulae which generalized classical ones of
Riemann Geometry such as Gauss and Codazzi equations [7]. Essentially, a Rieman-
nian almost product manifold is a Riemannian manifold (M, g) equipped with two
complementary orthogonal distributions or, in a equivalent way, M is endowed with
an isometric operator P satisfying P 2 = Id. For instance, the total space of a Rie-
mannian submersion admits such a structure. In this case, the vertical distribution is
always integrable. Note that this is not the situation for a general Riemannian almost
product manifold, where both distributions are interchangeable, in general. That is,
a priori none of the two complementary orthogonal distributions satisfies any prop-
erty that makes it special with respect to the other distribution. A general scheme
for the classification of the Riemannian almost product manifolds was introduced
by A. Naveira (cf. [10]), who considered the notions of anti-foliations, minimal or
umbilical Riemannian almost product manifolds (see also [9] and references therein.)
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In this paper, we shall study a natural family of conformal-like (but not conformal,
in general) vector fields on a compact Riemannian almost product manifold and its
relation with curvature. Thus, we introduce the new notion of componentwise confor-
mal vector field in Definition 2.1. Roughly speaking, such a vector field behaves as a
conformal one when restricted to the (±1)-eigenspaces of P , D and D⊥ respectively,
but with (possibly) different conformal factors. In case these two conformal factors
are equal, the usual notion of conformal vector field is included properly (see Example
4.2.) Indeed, several examples in Sections 2 and 4 show that this notion has a clear
geometric meaning. In particular, on a Riemaniann submersion with totally umbilical
fibers, the horizontal lift of a conformal vector field provides an example of our notion
which is not necessarily a conformal vector field (Example 4.1.) The main aim of this
paper is to obtain an integral formula which relates the existence of componentwise
conformal vector fields and curvature properties of M when it is compact (Theorem
3.1), namely

For any componentwise conformal vector field K on a compact Rieman-
nian almost product manifold M , it holds

∫

M

{
Ric(K, K) +

1
2
‖αK‖2 − ‖∇K‖2 + Φ(ρ1, ρ2)

}
dµg = 0,

where αK is the symmetric tensor field introduced in Lemma 2.1, Φ(ρ1, ρ2)
= n1(2−n1)ρ2

1 +n2(2−n2)ρ2
2−2n1n2ρ1ρ2, n1 = dimD, n2 = dimD⊥ and

ρ1, ρ2 are the functions given in Definition (2.1).

In addition, we show obstruction results and further applications to the relevant case
of Riemannian submersions.

The paper is organized as follows. In Section 2, we introduce the notion of compo-
nentwise conformal vector fields, expressing it in two more different equivalent ways
(Lemmattas 2.1 and 2.2.) Moreover, several examples are exhibited in order to anal-
yse basic properties of such vector fields. Componentwise conformal vector fields are
conformal invariant (Example 2.5.) However, the set of all componentwise conformal
vector fields is not a Lie algebra in general (Proposition 2.3, Remark 2.6 and Example
2.8.) Section 3 is devoted to the statement of the main result of this paper (Theorem
3.1.) Furthermore, several of its consequences are shown. The key tool of the proof
is the classical Bochner’s formula. Section 4 is devoted to particularizing our general
integral formula to Riemannian submersions (Theorem 4.2.) We conclude this paper
with some results inspired by the classical Bochner’s technique. In this way, we ob-
tain Theorem 4.4, which might be seen as a version for Riemannian submersions of a
classical result by Bochner [2] (see also [13, Prop. 5.7]), namely,

Let p : M → B be a Riemannian submersion with totally umbilical fibers,
where M is compact. Assume the Ricci tensor of M is negative semidef-
inite on horizontal vectors. Then, each Killing vector field on B must be
parallel.

Last, but not least, when the base manifold B has a wide enough isometry group, the
previous result can be rewritten as follows (Corollary 4.5).

Let p : M → B be a Riemannian submersion with totally umbilical fibers,
with M compact and B a Riemannian homogeneous manifold. Assume the
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Ricci tensor of M is negative semidefinite on horizontal vectors. Then,
the horizontal distribution is integrable. Moreover, if the dimension of the
fibers is greater or equal to 2, the fibers are totally geodesic and, up to a
finite cover, B is isometric to a standard flat torus.

2 Concept and examples

Let (M, g) be a connected Riemannian manifold. An almost product structure on a
manifold M is a tensor field P ∈ T(1,1)(M) such that P 2 = Id. The almost product
structure P is called improper whenever P = ±Id. Along this paper, any almost
product will not be improper, unless otherwise stated.

We assume that there is an almost product structure P satisfying the condition
g(P (X), P (Y )) = g(X,Y ) for all X,Y ∈ X(M). The triple (M, g, P ) is called a
Riemannian almost product manifold. We denote by D and D⊥ the orthogonal com-
plementary distributions associated with the 1 and −1 eigenvalues of P , respectively.
The corresponding projections π and π⊥ onto D and D⊥ fulfil respectively

(2.1) π =
1
2
(Id + P ), π⊥ =

1
2
(Id− P ).

Conversely, assume two orthogonal complementary distributions D and D⊥ are given
on a Riemannian manifold (M, g). Then, we can easily define an almost product
structure P such that (M, g, P ) is a Riemannian almost product manifold.

Definition 2.1. A vector field K ∈ X(M) is said to be componentwise conformal on
(M, g, P ) if there exist two (smooth) functions ρ1, ρ2 on M such that the Lie derivative
of g respect to K, LKg, satisfies

1. (LKg)(E,F ) = 2ρ1 g(E, F ) for any E, F ∈ D, and

2. (LKg)(E,F ) = 2ρ2 g(E, F ) for any E, F ∈ D⊥.

We will denote n1 = dimD and n2 = dimD⊥.
The following result shows an equivalent definition to the previous one.

Lemma 2.1. A vector field K ∈ X(M) is componentwise conformal on (M, g, P ) if,
and only if, there exist two (smooth) functions ρ1, ρ2 on M and a symmetric tensor
field αK ∈ T(0,2)(M) such that

LKg = 2ρ1 g(π, π) + 2ρ2 g(π⊥, π⊥) + αK ,

with αK(D,D) = αK(D⊥,D⊥) = 0.

Proof. The sufficient condition is trivial, so we will focus on the necessary one. By
using that for each E ∈ X(M), E = π(E) + π⊥(E), we obtain

(LKg)(E, F ) =(LKg)(π(E), π(F )) + (LKg)(π(E), π⊥(F ))

+ (LKg)(π⊥(E), π(F )) + (LKg)(π⊥(E), π⊥(F ))

=2ρ1 g(π(E), π(F )) + 2ρ2 g(π⊥(E), π⊥(F )) + αK(E,F ),
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where
αK(E, F ) = (LKg)(π(E), π⊥(F )) + (LKg)(π⊥(E), π(F )).

Clearly, αK is symmetric. Finally, if E, F ∈ D or E,F ∈ D⊥, then it holds αK(E,F ) =
0. ¤

Another equivalent notion to Definition 2.1 is given in the following result.

Lemma 2.2. A vector field K ∈ X(M) is componentwise conformal on (M, g, P ) if,
and only if, there exist two (smooth) functions λ, µ on M such that

(2.2) LKg = λ g + µ P̂ + αK ,

where P̂ (E,F ) = g(P (E), F ), for E,F ∈ X(M).

Proof. A straightforward computation from (2.1) and Lemma 2.1. Note that λ =
ρ1 + ρ2 and µ = ρ1 − ρ2. ¤

Remark 2.2. The tensor αK satisfies αK(V, X) = g([V,K], X) + g(V, [X,K]) for
V ∈ D and X ∈ D⊥. In the particular case that D⊥ is integrable and K ∈ D⊥, the
above formula reduces to αK(V, X) = g(X, [V, K]). Note that similar computations
can be done when K ∈ D. Recall that the mean curvature vector field of an (n1 ≥ 1)-
dimensional distribution D in a Riemannian manifold is given by

H =
1
n1

n1∑

i=1

π⊥(∇Vj Vj),

where V1, ..., Vn1 is a local orthonormal frame spanning D. Assume K ∈ D⊥ is
componentwise conformal, then

ρ1 = −g(H,K), and n2 ρ2 = Tr([− ,K]|D⊥).

Example 2.3. There are two trivial cases of Definition 2.1. The first one is when K is
a conformal vector field of M , which obviously is componentwise conformal for P = Id.
The second one appears when (M, g) is a Riemaniann product (M1×M2, g1 +g2) and
K = (K1,K2) where Ki is a conformal vector field on (Mi, gi), i = 1, 2. Note that
in both situations, the symmetric tensor fields α’s vanish identically, which does not
always hold.

Example 2.4. We recall that an orthogonally conformal vector field, [12], is a unit
vector field Z on an (n ≥ 2)-dimensional Riemannian manifold (M, g) such that for
any U, V ⊥ Z, we have (LZg)(U, V ) = 2ρ g(U, V ), for a (smooth) function ρ on M .
Consider the almost product structure P given by P (Z) = Z and P (X) = −X when
X ∈ Z⊥. We clearly have that Z is componentwise conformal. Indeed, we just take
ρ1 = 0, ρ2 = ρ and items 1 and 2 of Definition 2.1 are automatically satisfied.

Example 2.5. Let (M, g, P ) be a Riemannian almost product manifold and assume it
admits a componentwise vector field K. Also, consider a smooth function u : M → R
and construct the conformal metric g∗ = e2ug. Then, given E, F ∈ D, we have

(LKg∗)(E, F ) = K(e2u)g(E,F ) + e2u(LKg)(E, F ) = 2
(
ρ1 + K(u)

)
g∗(E,F ).
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A similar formula holds for D⊥. Therefore, K is also componentwise conformal when
the metric g∗ = e2ug is considered on M . In addition, the associated symmetric
tensor field α∗K can be computed on E ∈ D and F ∈ D⊥ as follows,

α∗K(E,F ) = (LKg∗)(E, F ) = K(e2u)g(E, F ) + e2u(LKg)(E, F ) = e2uαK(E, F ),

that is to say, α∗K = e2uαK . In other words, the notion of componentwise conformal
vector field on (M, g, P ) is a conformal invariant.

A natural property to be required for a componentwise conformal vector field K
is that all of its (local) flows commute with the almost product structure P .

Proposition 2.3. Let K be a componentwise conformal vector field on (M, g, P ).
Then, the stages ψt of all (local) flows of K satisfy (ψt)∗ ◦P = P ◦ (ψt)∗ if, and only
if,

(2.3) LK P̂ = λ P̂ + µ g + αK(P, ).

Proof. If each ψt satisfies (ψt)∗ ◦ P = P ◦ (ψt)∗, then it holds (LK P̂ )(E, F ) =
(LKg)(P (E), F ) for all E, F ∈ X(M). Conversely, take a, b ∈ TpM and consider
the real valued functions

f(t) = g((ψt)∗(a), (ψt)∗(b)), and h(t) = P̂ ((ψt)∗(a), (ψt)∗(b))

A standard argument from (2.2) and (2.3), respectively, shows that f(t) and h(t) have
second derivatives

f ′′(t) = Kp(λ)g(a, b) + Kp(µ)P̂ (a, b), and h′′(t) = Kp(λ)P̂ (a, b) + Kp(µ)g(a, b).

Then,

f(t) =
1
2

(
Kp(λ)g(a, b) + Kp(µ)P̂ (a, b)

)
t2 + (LKg)(a, b) t + g(a, b).

h(t) =
1
2

(
Kp(λ)P̂ (a, b) + Kp(µ)g(a, b)

)
t2 + (LK P̂ )(a, b) t + P̂ (a, b).

Therefore, P̂ ((ψt)∗(a), (ψt)∗(b)) = g((ψt)∗(P (a)), (ψt)∗(b)) for all a, b ∈ TpM . ¤

Remark 2.6. For every Riemaniann almost product manifold (M, g, P ), the tensor P̂
endows M with a semi-Riemannian metric. On the other hand, Definition 2.1 has an
obvious extension to the semi-Riemannian case. A componentwise conformal vector
field K on (M, g, P ) satisfies (2.3), if and only if, K is also componentwise conformal
for the semi-Riemannian metric P̂ . On the other hand, it is a direct computation to
check that the set of all componentwise conformal vector fields which satisfy (2.3) is
a Lie algebra. This is not the situation for componentwise conformal vector fields in
general (see Example 2.8.)

Remark 2.7. Observe that in our notion, no condition is imposed on LK P̂ . A vector
field K on a (semi)-Riemannian manifold (M, g) is said to be bi-conformal [6, Def.
3.1] when

(a) LKg = λ g + µ P̂ and (b) LK P̂ = λ P̂ + µ g,

for λ, µ ∈ C∞(M). Thus, the notion of bi-conformal vector field is a very particular
case of componentwise conformal vector field.
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Example 2.8. Let E2 be the Euclidean plane with usual flat metric g = dx2 + dy2,
with the almost product structure P given by P (∂x) = ∂x and P (∂y) = −∂y. Consider
a vector field K = a ∂x + b ∂y, for some smooth functions a, b on E2. A direct
computation shows

LKg = 2ax dx⊗ dx + 2by dy ⊗ dy + (ay + bx) (dx⊗ dy + dy ⊗ dx).

In this case, any vector field K is componentwise conformal. Note that αK = 0 if
and only if ay = −bx. By taking K1 = y ∂x − x ∂y and K2 = (x/3)∂x − (y/2)∂y,
we have that both K1 and K2 are componentwise conformal with αK1 = αK2 = 0.
The symmetric tensor field corresponding to their Lie bracket satisfies α[K1,K2] =
(5/3)(dx⊕ dy + dy ⊕ dx) and therefore, it never vanishes.

For the three dimensional Euclidean space E3 with its usual metric, consider the
distribution D = Span{∂z} with its corresponding tensor P . Next, let K be a vector
field given by K = a ∂x + b ∂y + c ∂z, for some smooth functions a, b, c in E3. We have
that K is componentwise conformal if, and only if,

ax = by and ay = −bx.

That is, for each z ∈ R, the function Hz(x+iy) := a(x, y, z)+ib(x, y, z) is holomorphic.
Taking now K1 = (x− y + z)∂x + (x + y)∂y + x ∂z and K2 = x ∂z, we have that K1

and K2 are componentwise conformal, but the Lie bracket [K1,K2] is not (compare
with [6, Prop. 5.2]).

Example 2.9. Let G be a Lie group with Lie algebra g and let g be a left invariant
Riemannian metric on G. Then, for every E,F ∈ g, the Levi-Civita connection ∇ of
g satisfies [3, Prop. 3.18]

∇EF =
1
2
{[E, F ]− (adE)∗(F )− (adF )∗(E)},

where (adE)∗ denotes the adjoint with respect to g of the linear map adE . Consider
now an arbitrary element K ∈ g, then

LKg(E, F ) = − g(adK(E), F )− g(E, adK(F )),

for E, F ∈ g. Assume g = d ⊕ d⊥ where d is any proper vector subspace of g
and consider the corresponding left invariant distributions D and D⊥ on G obtained
from d and d⊥, respectively. Without loss of generality, we can consider K ∈ d.
Therefore, whenever adK |d = 0 and adK |d⊥ = c Id with c 6= 0, the vector field K
is a componentwise conformal vector field on (G, g, P ), but not conformal, where P
is the almost product structure corresponding to D and D⊥. For example, consider
the subgroup G of the upper triangular matrices of the linear general group Gl(n,R)
given by G = {A ∈ Gl(n,R) : aij = 0, when i > j} with Lie algebra g = {E ∈
gl(n,R) : aij = 0, i > j}. Define d = {E ∈ g : a1j = 0, j 6= 1} and f = {E ∈ g :
aij = 0, when i > 1 and a11 = 0}. That is,

d =








a11 0 . . . 0
0 a22 . . . a2n

0
...

. . . an−1 n

0 0 . . . ann








, f =








0 b2 ... bn

0 0 . . . 0

0
... . . . 0

0 0 . . . 0








,
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and take K = (kij) ∈ d where k11 = 1 and kij = 0 otherwise. Let g be any left
invariant Riemannian metric on G such that f = d⊥ . Therefore, adK |d = 0 and
adK |d⊥ = Id, which means that the left invariant vector field K is componentwise
conformal on G.

The authors would like to thank Prof. C. Draper for some comments on this
Example.

3 An integral formula

We will denote by ∇ the Levi-Civita connection of (M, g). Given a vector field
K ∈ X(M), we define the operator LKY = −∇Y K, for any Y ∈ X(M). With this
notation, the Lie derivative takes the general form

(LKg)(E,F ) = −g(LKE,F )− g(E, LKF ),

for any E, F ∈ X(M), div(K) = −TrLK and the classical Bochner formula is written

K(TrLK) = Ric(K, K)− div(∇KK) + Tr(L2
K),

here Ric denotes the Ricci tensor of g. Making use of

div(div(K)K) = −K(TrLK) + (TrLK)2,

when M is compact, we get,

(3.1)
∫

M

{
Ric(K, K) + Tr(L2

K)− (TrLK)2
}

dµg = 0,

where dµg denotes the canonical measure associated with g.

Theorem 3.1. Let (M, g, P ) be a compact Riemannian almost product manifold. Let
K ∈ X(M) be a componentwise conformal vector field. Then, we have

(3.2)
∫

M

{
Ric(K, K) +

1
2
‖αK‖2 − ‖∇K‖2 + Φ(ρ1, ρ2)

}
dµg = 0,

where αK is the symmetric tensor field introduced in Lemma (2.1), Φ(ρ1, ρ2) = n1(2−
n1)ρ2

1 + n2(2− n2)ρ2
2 − 2n1n2ρ1ρ2, n1 = dimD, n2 = dimD⊥ and ρ1, ρ2 are given in

Definition (2.1).

Proof. By assumption,

g(LKE, F ) + g(E, LKF ) =− 2ρ1g(π(E), π(F ))− 2ρ2g(π⊥(E), π⊥(F ))
− αK(E, F ),

for any E,F ∈ X(M). Therefore,

(3.3) LK + Lt
K = −2ρ1π − 2ρ2π

⊥ − φ,
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where Lt
K is the g-adjoint operator of LK and φ is the g-self-adjoint operator defined

by

(3.4) αK(E, F ) = g(φ(E), F ),

for any E,F ∈ X(M). Directly from equation (3.3) we have

(3.5) Tr(LK) = −ρ1n1 − ρ2n2.

Also from equation (3.3),

L2
K + (Lt

K)2 + LKLt
K + Lt

KLK = 4ρ2
1π + 4ρ2

1π
⊥ + φ2 + 2ρ1φ ◦ π + 2ρ1π ◦ φ

+ 2ρ2 φ ◦ π⊥ + 2ρ2 π⊥ ◦ φ,

where we can take traces to get

(3.6) 2Tr(L2
K) + 2‖∇K‖2 = 4ρ2

1n1 + 4ρ2
2n2 + ‖αK‖2,

because of Tr(π ◦ φ) = Tr(φ ◦ π) = Tr(π⊥ ◦ φ) = Tr(φ ◦ π⊥) = 0. The proof concludes
by inserting (3.5) and (3.6) in the general Bochner formula (3.1). ¤

Formula (3.2) can be seen as an extension to the one used by Yano [14] to analyse
conformal vector fields on a compact Riemannian manifold under some curvature
assumption [14, Th. 1]. In fact, the following consequence of previous theorem
extends Yano’s result.

Corollary 3.2. Let (M, g, P ) be an (n ≥ 3) compact Riemannian almost product
manifold with nonpositive Ricci curvature. A componentwise conformal vector field
K has vanishing covariant derivative whenever ‖αK‖2 + 2Φ(ρ1, ρ2) ≤ 0. Moreover,
if the Ricci curvature is negative definite at some point, then K vanishes identically.

As a consequence of Theorem (3.1), we reprove the following result in [12].

Corollary 3.3. Let (M, g) be an n(≥ 3)-dimensional compact Riemannian manifold.
If (M, g) admits an orthogonally conformal vector field Z, then

(3.7)
∫

M

Ric(Z, Z)dµg ≥ 0.

The equality holds if, and only if, ∇UZ = 0 for any U ⊥ Z, and in such case, Z is
orthogonally Killing (i.e., ρ = 0).

Proof. From Example 2.4, Z is componentwise conformal with ρ1 = 0 and ρ2 = ρ.
Moreover, for every E ∈ X(M), the operator φ given in (3.4) satisfies,

φ(E) = g(E,Z)∇ZZ + g(E,∇ZZ)Z

and ‖αK‖2 = Tr(φ2) = 2‖∇ZZ‖2. The integral formula (3.2) implies the announced
inequality (3.7) and its equality condition. ¤
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4 Applications to Riemannian submersions

Let p : (M, ĝ) → (B, g) be a Riemannian submersion, and denote by v and h the
(orthogonal) projections onto the vertical, V, and horizontal, H, distributions of p,
respectively. Also, let A and T be the associated O’Neill tensors, [11]. In this section,
we extensively make use of properties of tensors A and T (see for instance [1, Chap.
9] or [5, Chap. 1].) A direct computation gives,

Lemma 4.1. Let p : (M, ĝ) → (B, g) be a Riemannian submersion. Given K ∈ X(B),
let K̂ ∈ X(M) be its horizontal lift. Then it holds,

(LK̂ ĝ)(E,F ) = (p∗LKg)(E,F )− 2ĝ(TvEvF, K̂)− ĝ(AEF + AF E, K̂),

for any E, F ∈ X(M).

Example 4.1. Now assume p : (M, ĝ) → (B, g) is a Riemannian submersion with to-
tally umbilical fibers. Consider the vertical distribution D = V and its corresponding
almost product structure P . In this case, the horizontal lift K̂ ∈ X(M) of a conformal
vector field K ∈ X(B) is componentwise conformal. Indeed, if LKg = 2ρ g holds, then

(p∗LKg)(E,F ) = 2ρ g(p∗(E), p∗(F )) = 2(ρ ◦ p) ĝ(hE,hF ).

The tensor T evaluated on vertical vectors is just the second fundamental form II of
the fibers, and therefore ĝ(TvEvF, K̂) = ĝ(II(vE,vF ), K̂), for any E,F ∈ X(M). If
we assume the fibers are totally umbilical, their second fundamental forms are given
by II(vE,vF ) = ĝ(vE,vF )H, where H is the mean curvature vector of the fibers.
From Lemma 4.1, we have

(LK̂ ĝ)(E, F ) = 2ρ1 ĝ(vE,vF ) + 2(ρ ◦ p)ĝ(hE,hF )− ĝ(AEF + AF E, K̂),

where, ρ1 = −ĝ(H, K̂).

Example 4.2. Let p : S3 → S2(1/2) be the classical Hopf fibration. Take a non-
trivial Killing vector field K on S2 and consider K̂ its horizontal lift, as in previous
example. It is easy to see that ρ1 = ρ2 = 0 everywhere and αK̂ 6= 0.

Next, in addition to the notations introduced in Example 4.1, we denote by R̂ic,
∇̂ and ∇̂⊥, respectively, the Ricci tensor of M , the Levi-Civita connection of M and
the normal connection of the fibers.

Theorem 4.2. Let p : (M, ĝ) → (B, g) be a Riemannian submersion with M compact.
Assume the fibers are totally umbilical and n1-dimensional. Then, for every Killing
vector field K ∈ X(B),

(4.1)

∫

M

R̂ic(K̂, K̂) dµĝ =
∫

M

{
‖∇̂⊥K̂‖2 + ‖∇K‖2 ◦ p + n1(n1 − 1)ĝ(H, K̂)2

}
dµĝ.
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Proof. From Example 4.1 we know that K̂ is componentwise conformal with ρ1 =
−ĝ(H, K̂), ρ2 = 0 and the operator φ given in (3.4) satisfies

φE = AhEK̂ + AK̂vE,

for every E ∈ X(M). Let {U1, . . . , Un1 , X1, . . . , Xn2} be a p-adapted local orthonormal
frame. That is, the vector fields U ′

is span the vertical distribution V, the X ′
js span

the horizontal distribution H and are basic. Now, we compute the terms of integral
formula (3.2), obtaining

‖αK̂‖2 = Tr(φ2) = 2
n1∑

i=1

‖AK̂Ui‖2 = 2
n1∑

i=1

‖∇̂⊥Ui
K̂‖2 = 2‖∇̂⊥K̂‖2.

On the other hand, since the fibers are totally umbilical, we get

‖∇̂K̂‖2 =
n1∑

i=1

‖∇̂UiK̂‖2 +
n2∑

j=1

‖∇̂Xj
K̂‖2

= n1ĝ(H, K̂)2 + 2‖∇̂⊥K̂‖2 +
n2∑

j=1

‖h∇̂Xj K̂‖2

= n1ĝ(H, K̂)2 + 2‖∇̂⊥K̂‖2 + ‖∇K‖2 ◦ p.

Therefore, Theorem (3.1) yields the announced integral formula (4.1). ¤

Corollary 4.3. Let p : (M, ĝ) → (B, g) be a Riemannian submersion with M com-
pact. Assume the fibers are totally umbilical. Then, for every Killing vector field
K ∈ X(B), we have

(4.2)
∫

M

R̂ic(K̂, K̂) dµĝ ≥ 0.

If n1 ≥ 2 (resp. n1 = 1), the equality holds if, and only if, K̂ and K are parallel,
(resp. ∇̂⊥K̂ = 0 and K is parallel).

Remark 4.3. For every Killing vector field K on an arbitrary Riemannian manifold
B, a well-known computation yields

41
2
‖K‖2 = ‖∇K‖2 − Ric(K, K),

where 4 is the Laplacian of B. Therefore,

(4.3)
∫

B

Ric(K,K)dµg ≥ 0,

and the equality holds if, and only if, K is parallel, [2]. Coming back to the previous
situation p : (M, ĝ) → (B, g), using [5, Chap. 1] and taking into account the umbilicity
of the fibers, we have

(4.4) R̂ic(K̂, K̂) = Ric(K,K) ◦ p + n1ĝ(∇̂K̂H, K̂)− 2‖∇̂⊥K̂‖2 − n1ĝ(H, K̂)2.

Therefore, the inequality in Corollary (4.3) cannot be deduced from the classical
inequality (4.3).
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Theorem 4.4. Let p : (M, ĝ) → (B, g) be a Riemannian submersion with totally
umbilical fibers, where M is compact. Assume the Ricci tensor R̂ic of M is negative
semidefinite on horizontal vectors. Then, every Killing vector field on B must be
parallel.

Remark 4.4. Recall now that the Lie algebra g of the isometry group Iso(B) is
naturally identified to the Lie algebra of the Killing vector fields on B, being B
compact. Under the assumption of Theorem (4.4), the Lie algebra g is abelian. Since
B is compact, the Lie group Iso(B) is finite or its identity component is isomorphic
to a k-dimensional torus S1 × · · · × S1.

Corollary 4.5. Let p : (M, ĝ) → (B, g) be a Riemannian submersion with totally
umbilical fibers, where M is compact and B is homogeneous. Assume the Ricci tensor
R̂ic of M is negative semidefinite on horizontal vectors. Then, the O’Neill tensor A
vanishes (i.e., H is integrable). If moreover n1 ≥ 2 holds, then

1. The O’Neill tensor T = 0 (i.e., each fiber is totally geodesic),

2. B is isometric, up to a finite cover, to an n-dimensional flat torus.

Proof. For every q ∈ B and v ∈ TqB, take a Killing vector field Kv ∈ X(B) with
Kv

q = v. The assumption on the Ricci tensor implies that equality holds in (4.2).
Therefore ∇̂⊥K̂v = 0 for all q ∈ B and v ∈ TqB. Now, it is not difficult to obtain
that the O’Neill tensor A vanishes. If n1 ≥ 2, we get that K̂v is parallel and then
T = 0. Hence, B must be Ricci flat from (4.4). Being B homogeneous, the result (2)
follows from [8, Cor. 6.5.6]. ¤

Remark 4.5. Compare with [4, Prop. 3.1] where the author showed that a Rie-
mannian submersion with totally geodesic fibers from a manifold M with nonpositive
sectional curvature on Riemannian manifold B satisfies A = 0.
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