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Abstract. We give a contribution about the study of homogeneous pseudo-
Riemannian structures on a type of homogeneous spaces, namely, the
pseudo-Riemannian generalized symmetric spaces of low dimensions. It
is well known that generalized symmetric Riemannian spaces admit ho-
mogeneous structures of the class T2 ⊕ T3. The same property holds in
the pseudo-Riemannian context. The aim of the present paper is to im-
prove this result, showing that in the pseudo-Riemannian case three- and
four-dimensional generalized symmetric spaces, not symmetric, admit ho-
mogeneous structures of class T2.
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1 Introduction

A (connected) pseudo-Riemannian manifold (M, g) is homogeneous if there exists a
connected Lie group G of isometries acting transitively and effectively on it. Denoted
by H the isotropy group at a fixed point o ∈ M (the origin), then (M, g) can be
identified with (G/H, g). In general, there exists more than one group G ⊂ I(M) ( =
full group of isometries of (M, g)); for any fixed choice M = G/H, the Lie group G acts
transitively and effectively on G/H from the left. The pseudo-Riemmanian metric g
of M can be considered as a G-invariant metric on G/H. The pair (G/H, g) is called
homogeneous pseudo-Riemannian space. We denote by g and h the Lie algebras of G
and H, respectively and by m a complement of h in g. If m is stable under the action
of h, then g = m ⊕ h is called a reductive split, and (g, h) a reductive pair. Contrary
to the Riemannian case, for a homogeneous pseudo-Riemannian space (M = G/H, g)
the Lie algebra g of G needs not to admit a reductive decomposition.

A special class of homogeneous spaces are symmetric spaces [18]. Roughly speak-
ing, these are (pseudo-)Riemannian manifolds for which the geodesic symmetries are
isometries. Locally, a symmetric space has the covariant derivative of its Riemann-
Christoffel curvature tensor that vanishes at each point. A larger class of homogeneous
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spaces, which includes the class of symmetric spaces, is provided by the generalized
symmetric spaces. The theory of the generalized symmetric spaces was begun by
P.J. Graham and A.J. Ledger in 1967; after, many authors contributed to this topic
(A.S. Fedenko, A. Gray, V.G. Kac, K. Sekigawa, J. Wolf and so on). A systematic
exposition appeared for the first time in the book by O. Kowalski in 1980 [22]. In
low dimension, an explicit classification of such spaces is due to O. Kowalski in the
Riemannian case [21] and to J. Černý and O. Kowalski in the pseudo-Riemannian case
[6]. More recently, generalized symmetric spaces have been intensively studied under
several different points of view. A basic property of these spaces is that all of them are
reductive homogeneous. Taking into account their classification, a complete descrip-
tion about the set of homogeneous geodesics for each metric in dimension four was
given in [8]. Other aspects of the geometry of four-dimensional generalized symmetric
spaces have been investigated, as curvature properties [5], algebraic Ricci solitons [3],
and harmonicity of vector fields [4]. S. Terzić classified generalized symmetric spaces
defined as quotients of compact simple Lie groups, describing their real cohomology
algebras explicitly [30] and calculating their real Pontryagin characteristic classes [31].
D. Kotschick and S. Terzić [20] proved that all generalized symmetric spaces are for-
mal, that is, their rational homotopy type is determined by their rational cohomology
algebra alone.

Strictly referred to homogeneity of a space is the concept of homogeneous structure.
Homogeneous Riemannian structures were classified by F. Tricerri and L. Vanhecke
[32], based on the W. Ambrose and I.M. Singer characterization of homogeneous
Riemannian spaces [1]. The classification has three primitive classes, T1, T2 and
T3. They correspond, under suitable topological conditions, to the real hyperbolic
space, to the strictly cotorsionless (or strictly conaturally reductive) spaces, and to
the naturally reductive spaces, respectively. The classification was extended to the
pseudo-Riemannian case by P.M. Gadea and J.A. Oubiña in [16]. Naturally reductive
spaces have been much studied for several reasons: one of these is that they are
considered the simplest kind of homogeneous Riemannian spaces, after Riemannian
symmetric spaces; moreover, the fact that the canonical connection corresponding to a
given reductive decomposition has totally skew-symmetric torsion, has applications in
Physics. Strictly cotorsionless spaces (sometimes called strictly conaturally reductive
spaces) have been much less investigated. Actually, they are also of interest, as they
are in some senses simpler than naturally reductive ones. For instance, they have a
Dirac operator as that of a Riemannian symmetric space. Moreover, the easily seen
relation with closed differential 2-forms, also makes them interesting in Physics. As
a point of comparation, in the Kähler-like context, they are related to almost Kähler
manifolds, as naturally reductive spaces are related to nearly Kähler manifolds.

Few simply connected homogeneous Riemannian spaces of class T2 are known.
In [23], O. Kowalski and F. Tricerri classified Riemannian manifolds of dimensions
three and four admitting a homogeneous structure of class T2. Few more examples
are known. On the other hand, homogeneous structures of generalized symmetric
Riemannian spaces were studied in [13]. In [32] and [34] F. Tricerri and L. Van-
hecke proved that any simply-connected generalized symmetric Riemannian space in
Kowalski’s sense, admits a homogeneous Riemannian structure of class T2 ⊕ T3. The
same property holds in the pseudo-Riemannian context yet [9]. In the present paper
the author classifies the spaces admitting a homogeneous pseudo-Riemannian struc-
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ture of class T2, among three- and four-dimensional generalized symmetric pseudo-
Riemannian spaces of any signature. Since the number of known spaces admitting
a T2-homogeneous structure is rather scarce, as said above, this result wants to be
an addition to the literature on the topic. On the other hand, this contribution is a
easy consequence of the main theorem included into a wider study that the author is
going to develop into a forthcoming paper, and concerning the classification of pseudo-
Riemannian manifolds in dimension n ≤ 4 which admit a non-trivial homogeneous
structure of class T2.

In Section 2, we give some informations concerning pseudo-Riemannian generalized
symmetric spaces and their classification in low dimensions. We also remind the
definition and some properties of homogeneous structures.

In Section 3, we give a proof that each generalized symmetric space in dimension
three and in dimension four of type A, B and D, admits a homogeneous structure of
class T2.

2 Preliminaries

Let (M, g) a pseudo-Riemannian manifold of class C∞. An s-structure on M is a
family {sx : x ∈ M} of isometries of (M, g) (called symmetries), such that sx has the
point x as only isolated fixed point. An s-structure {sx} on (M, g) is said regular if:

1. the map (x, y) → sx(y) of M ×M into M is C∞;

2. sx ◦ sy = sz ◦ sx, , where z = sx(y),

for all points x, y of M . If we define the tensor field S of type (1, 1) by Sx = (sx)∗x, for
each x ∈ M , we can see that {sx} is regular if and only if the tensor field S is smooth
and invariant with respect to all symmetries sx. The tangent map Sx = (sx)∗x is a
pseudo-orthogonal transformation on Tx(M), admitting the null vector as the only
fixed one.

An s-structure {sx : x ∈ M} is said of order k (k ≥ 2) if (sx)k = idM and k is the
least integer with this property. We say that an s-structure is of infinity order if such
k does not exist. A generalized symmetric pseudo-Riemannian space is a connected
pseudo-Riemannian manifold (M, g), admitting at least one regular s-structure. Order
of a generalized symmetric pseudo-Riemannian space is the infimum of all integers
k ≥ 2 such that M admits a regular s-structure of order k (it may be that k = ∞).
In particular, each symmetric pseudo-Riemannian space is generalized symmetric of
order 2, and conversely.

Let (M, g) be a generalized symmetric pseudo-Riemannian space and {sx} a fixed
regular s-structure on (M, g). Then, the triplet (M, g, {sx}) is called a regular s-
manifold. Let now ∇ denote the Levi-Civita connection and S the tangent tensor
field of {sx}. Following [14], it is possible to define a new connection ∇̃ of the s-
manifold (M, g, {sx}) by the formula

(2.1) ∇̃ = ∇− T,

and the tensor field T is given by TXY = (∇S)(S−1Y, (I−S)−1X) = (∇(I−S)−1XS)(S−1Y ),
for all X,Y ∈ X(M). The connection ∇̃ (called the canonical connection) is the unique
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linear connection on M which is invariant with respect to {sx} and such that ∇̃S = 0.
Indeed, ∇̃ is complete and has parallel curvature R̃ and parallel torsion T̃ , that is,
∇̃R̃ = ∇̃T̃ = 0.

As in the Riemannian case [22], the following results hold:

Proposition 2.1. [6] The group G of all automorphisms of a regular s-manifold
(M, g, {sx}) is a transitive Lie transformation group of M. G is a Lie subgroup of
the group of all affine transformations of (M, ∇̃). At each point p ∈ M , the factor
space G/Gp with respect to the isotropy subgroup Gp ⊂ G, is a reductive homogeneous
space, and the canonical connection of G/Gp coincides with ∇̃ if we identify G/Gp

with M .

Corollary 2.2. [6] Any generalized symmetric pseudo-Riemannian space possesses
at least one structure of a reductive homogeneous space with an invariant metric.

J. Černý and O. Kowalski provided a similar classification concerning generalized
symmetric pseudo-Riemannian spaces in dimension n ≤ 4 [6]. More precisely, they
proved the following theorems.

Theorem 2.3. Any proper, simply connected generalized symmetric pseudo-Riemannian
space (M, g) of dimension n = 3 is of order 4. It is indecomposable, and described
(up to an isometry) as follows: the underlying homogeneous space G/H is the matrix
group




e−t 0 x
0 et y
0 0 1


 .

(M, g) is the space R3(x, y, t) with the pseudo-Riemannian metric

g = ±(e2tdx2 + e−2tdy2) + λdt2,

where λ 6= 0 is a real constant. The possible signatures of g are (3,0) (0,3), (2,1), (1,2).
The typical symmetry of order 4 at the initial point (0, 0, 0) is the transformation

x′ = −y, y′ = x, t′ = −t.

Theorem 2.4. All proper, simply connected generalized symmetric pseudo-Riemannian
spaces (M, g) of dimension n = 4 are of order 3 or 4, or infinity. All these spaces are
indecomposable, and belong (up to an isometry) to the following four types:

Type A: The underlying homogeneous space is G/H, where

G =




a b u
c d v
0 0 1


 , H =




cos t − sin t 0
sin t cos t 0
0 0 1




with ad−bc = 1. (M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = ±[(−x +
√

1 + x2 + y2)du2 + (x +
√

1 + x2 + y2)dv2 − 2y2dudv]+
+ λ

(1+x2+y2) [(1 + y2)dx2 + (1 + x2)dy2 − 2xydxdy],
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where λ 6= 0 is a real constant. The order is k = 3 and the possible signatures are
(4,0), (0,4), (2,2). The typical symmetry of order 3 at the initial point (0, 0, 0, 0) is
the transformation

u′ = −(1/2)u− (
√

3/2)v, v′ = −(
√

3/2)u− (1/2)v,

x′ = −(1/2)x + (
√

3/2)y, y′ = −(
√

3/2)x− (1/2).

Type B: The underlying homogeneous space is G/H, where

G =




e−(x+y) 0 0 a
0 ex 0 b
0 0 ey c
0 0 0 1


 , H =




1 0 0 −w
0 1 0 −2w
0 0 1 2w
0 0 0 1


 .

(M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = λ(dx2 + dy2 + dxdy) + e−y(2dx + dy)dv + e−x(dx + 2dy)du,

where λ is a real constant. The order is k = 3 and the signature is always (2,2). The
typical symmetry of order 3 at the initial point (0, 0, 0, 0) is the transformation

u′ = −ue(y−x) − v, v′ = ue−(y+2x) x′ = y, y′ = −(x + y).

Type C: The underlying homogeneous space G/H is the matrix group



e−t 0 0 x
0 et 0 y
0 0 1 z
0 0 0 1


 .

(M, g) is the space R4(x, z, u, t) with the pseudo-Riemannian metric

g = ±(e2tdx2 + e−2tdy2) + dzdt.

The order is k = 4 and the possible signatures are (1,3), (3,1).

Type D: The underlying homogeneous space is G/H, where

G =




a b x
c d y
0 0 1


 , H =




et 0 0
0 e−t 0
0 0 1


 ,

with ad−bc = 1. (M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = (sinh(2u)− cosh(2u) sin(2v))dx2 + (sinh(2u) +

+cosh(2u) sin(2v))dy2 − 2 cosh(2u) cos(2v)dxdy + λ(du2 − cosh2(2u)dv2),

where λ 6= 0 is a real constant. The order is infinite and the signature is (2,2). The
typical symmetry at the initial point (0, 0, 0, 0) is induced by the automorphism of G
of the form:

a′ = a, b′ = (1/α2)b, c′ = α2c, d′ = d, x′ = (1/α)x, y′ = αy,

where α 6= 0,±1.
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Let (M = G/H, g) be a (connected) homogeneous pseudo-Riemannian manifold.
If the metric g is positive definite, then the homogeneous Riemannian space (G/H, g)
is always a reductive homogeneous space; this means that, denoted by g and h the Lie
algebras of G and H respectively, there exists a subspace m of g such that g = m⊕ h
and Ad(H)m ⊂ m (where Ad : H × g → g is the adjoint representation of H in
g). When extending Riemannian homogeneous spaces G/H to arbitrary signature,
the problem arises that the group H can be noncompact, so the existence of an
Ad(H)-invariant complement m ⊂ g to the Lie algebra h of H is not ensured, and the
reductive decomposition of the Lie algebra g may not exists (see an example in 4.4
[12]). It is important to stress that reductivity is not an intrinsic property of (M, g),
but of the description of M as coset space G/H. In fact, the so-called Kaigorodov
space is an example of homogeneous Lorentzian manifold which has two different coset
descriptions, but only one of them is reductive [12].

For nonreductive homogeneous pseudo-Riemannian manifolds, see for instance Fels
and Renner [11], Figueroa-O’Farrill, Meessen and Philip [12], and Dǔsek [10].

In the present paper, we consider homogeneous pseudo-Riemannian structures on
homogeneous pseudo-Riemannian manifolds. In [16], the following definition is given:

Definition 2.1. A homogeneous pseudo-Riemannian structure on a pseudo- Rieman-
nian manifold (M, g) is a tensor field T of type (1, 2) on M , such that the connection
∇̃ = ∇ − T satisfies ∇̃g = 0, ∇̃R = 0, ∇̃T = 0, where ∇ denotes the Levi-Civita
connection.

The geometric meaning of the existence of a homogeneous pseudo-Riemannian
structure is explained by the following

Theorem 2.5. [16] A connected, simply connected and complete pseudo-Riemannian
manifold (M, g) admits a homogeneous pseudo-Riemannian structure if and only if it
is a reductive homogeneous pseudo-Riemannian manifold.

Following [17], we consider a real vector space V endowed with an inner product
〈, 〉 of signature (k, n − k). Let T (V ) be the vector space of the tensor of type (0, 3)
on (V, 〈, 〉), such that T (V ) = {T ∈ ⊗3V ∗ : TXY Z + TXZY = 0, X, Y, Z ∈ V }, where
TXY Z = 〈TXY, Z〉. Let c12 : T (V ) → V ∗ be the map defined by

c12(T )(Z) =
n∑

i=1

εiTeieiZ

for all Z ∈ V , where {ei} is a pseudo-orthonormal basis of V , εi = 〈ei, ei〉, εi = −1 if
1 ≤ i ≤ k, εi = 1, if k + 1 ≤ i ≤ n.

The following theorem holds (see [17] for details).

Theorem 2.6. [17] If dim V ≥ 3, then T (V ) decomposes into the orthogonal direct
sum of subspaces which are invariant and irreducible under the action of the pseudo-
orthogonal group O(k, n− k), T (V ) = T1(V )⊕ T2(V )⊕ T3(V ), where

T1(V ) = {T ∈ T (V ) : TXY Z = 〈X, Y 〉ϕ(Z)− 〈X, Z〉ϕ(Y ), ϕ ∈ V ∗}
T2(V ) = {T ∈ T (V ) : SXY ZTXY Z = 0, c12(T ) = 0}
T3(V ) = {T ∈ T (V ) : TXY Z + TY XZ = 0}
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T1(V )⊕ T2(V ) = {T ∈ T (V ) : SXY ZTXY Z = 0}
T1(V )⊕ T3(V ) = {T ∈ T (V ) : TXY Z + TY XZ = 2〈X, Y 〉ϕ(Z)

−〈X, Z〉ϕ(Y )− 〈Y,Z〉ϕ(X), ϕ ∈ V ∗}
T2(V )⊕ T3(V ) = {T ∈ T (V ) : c12(T ) = 0}.

Let (M, g) be a reductive homogeneous pseudo-Riemannian manifold and (V, 〈, 〉)
the model for the tangent space TxM , for each x ∈ M . A homogeneous pseudo-
Riemannian structure T is of type {0}, Ti (i = 1, 2, 3), Ti ⊕ Tj (1 ≤ i < j ≤ 3), or
T if, for each point x ∈ M , T (x) ∈ T (TxM) belongs to {0}, Ti(TxM) (i = 1, 2, 3),
Ti(TxM)⊕ Tj(TxM) (1 ≤ i < j ≤ 3), or T (TxM), respectively.

Clearly, homogeneous spaces of type {0} are just symmetric ones and it is worth
knowing that the homogeneous spaces with a T3 structure are naturally reductive
spaces. In [7], the author reports the classification of four-dimensional naturally
reductive pseudo-Riemannian manifolds, similar to the one given for Riemannian
case by O. Kowalski and L. Vanhecke [24]. In [17], P.M. Gadea and J.A. Oubiña
provided a characterization of each of the primitive classes T1, T2, T3, and of T1 ⊕
T2. In [2], homogeneous pseudo-Riemannian structures of linear type are reviewed
and studied. In the Riemannian case, they furnish characterizations of the real,
complex and quaternionic hyperbolic spaces. In the Lorentzian case, a related class
gives characterizations of singular homogeneous plane waves. P. Meessen proved in
[25] that a time-dependent singular homogeneous plane wave admits a degenerate
homogeneous pseudo-Riemannian structure in the class T1 ⊕ T3, and the singular
homogeneous plane waves exhaust the degenerate case in the T1⊕T3 class. Moreover
he proved that a connected homogeneous Lorentzian space admitting a non-degenerate
homogeneous pseudo-Riemannian structure in the class T1⊕T3 is a locally symmetric
space. Actually, a space of constant curvature.

3 Homogeneous pseudo-Riemannian structures on
generalized symmetric spaces

In [9], the authors presented a slight modification of the proof, due to O. Kowalski, of
a result valid in the Riemannian case (see [34]): homogeneous Riemannian structures
of type T2 ⊕ T3 occur on a whole class of Riemannian manifolds, namely the pseudo-
Riemannian generalized symmetric spaces. We are now going to adapt to the pseudo-
Riemannian case a simpler proof of the previous result due to F. Tricerri and L.
Vanhecke [33].

Theorem 3.1. Each generalized symmetric pseudo-Riemannian space, which is not
locally symmetric, admits a non-vanishing homogeneous pseudo-Riemannian structure
of the class T2 ⊕ T3.

Proof. It holds that T is S-invariant, i.e. TSXSY = STXY . Fixed a point P ∈ M ,
let {E1, . . . , En} be an arbitrary pseudo-orthonormal basis of TP (M). Then, since T
and g are S-invariant, we get

Σn
i=1εiTEiEi = Σn

i=1εiTSEiSEi = S(Σn
i=1εiTEiEi),
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εi = ±1. Hence,
(I − S)Σn

i=1εiTEi
Ei = 0

and since (I − S) is non-singular, we have

Σn
i=1εiTEiEi = 0,

that is, T ∈ T2 ⊕ T3. 2

Reminding that a g.s. space admits a homogeneous structure of type T2⊕T3, then
condition c12(T ) = 0 is always verified. Thus, in order to prove that a homogeneous
structure belongs to the class T2, it is enough to prove the other condition:

(3.1) SXY ZTXY Z = 0.

But, if (M, g) is n-dimensional generalized symmetric space, with n ≤ 4, endowed
with a pseudo-Riemannian metric, then for each type of metric of the classification
made in [6], the difference tensor T of (2.1), is given by the formula

2g(TXY, Z) = g(T̃XY, Z) + g(T̃XZ, Y ) + g(T̃Y Z, X),

where T̃ is the torsion of the canonical connection ∇̃. Thus, condition (3.1) is equiv-
alent to condition

(3.2) SXY Z T̃XY Z = 0.

3.1 Three-dimensional case

According to Theorem (2.3), any proper, simply connected generalized symmetric
pseudo-Riemannian space (M, g) of dimension n = 3 is isometric, as homogeneous
space, to the group G of matrices of the form




e−t 0 x
0 et y
0 0 1


 .

Following [6] and [22], the Lie bracket [ , ] of the Lie algebra g of G is defined by:

[X ′, Y ′] = 0, [X ′, Z ′] = −X ′, [Y ′, Z ′] = Y ′,

where {X ′, Y ′, Z ′} is an orthogonal basis with respect to a fixed scalar product 〈, 〉
on g.
Let 〈X ′, X ′〉 = 〈Y ′, Y ′〉 = a and 〈Z ′, Z ′〉 = b; then we shall suppose a > 0 and b < 0.
Thus, the scalar product 〈, 〉 induces a Lorentzian metric on the matrix group G.
Put X = X ′/

√
a , Y = Y ′/

√
a , Z = Z ′/

√−b , then {X, Y, Z} is a Lorentzian
orthonormal basis such that

[X, Y ] = 0, [X,Z] = −ρX, [Y,Z] = ρY,

where ρ = 1/
√−b.

Three-dimensional unimodular Lie groups endowed with a left invariant Lorentzian
metric, were classified by S. Rahmani [29], who obtained a result corresponding to
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one made by Milnor [26] in the Riemannian case. In particular, S. Rahmani proved
that: if G is a three-dimensional connected unimodular Lie group, then there exists a
pseudo-orthonormal frame field {e1, e2, e3}, with e3 time-like, such that the Lie algebra
of G is one of the following:

(g1) :
[e1, e2] = αe1 − βe3

[e1, e3] = −αe1 − βe2

[e2, e3] = βe1 + αe2 + αe3, α 6= 0,
(g2) :

[e1, e2] = −γe2 − βe3

[e1, e3] = −βe2 + γe3, γ 6= 0
[e2, e3] = αe1,

(g3) :
[e1, e2] = −γe3

[e1, e3] = −βe2

[e2, e3] = αe1,
(g4) :

[e1, e2] = −e2 + (2ε− β)e3, ε = ±1
[e1, e3] = −βe2 + e3

[e2, e3] = αe1.

Taking into account the above classification, we can notice that 3-dimensional
Lorentzian generalized symmetric spaces belong to the algebra of type g2, with α =
0 = β, γ = −1. Thus, the relation (3.2) is always verified, since it is equivalent to
the condition SX,Y,Zg([X, Y ], Z) = 0. Moreover, we get that T ∈ T3 if and only if
TXXZ = 0 [32], which is a not satisfied condition by these spaces; indeed, we know
that they are not naturally reductive.

3.2 Four-dimensional case

3.2.1 Spaces of type A: signature (+, +, +,+)

The Lie algebra g of the Lie group G has a reductive decomposition g = m ⊕ h and
{X1, Y1, X2, Y2, B} is a basis of g with {X1, Y1, X2, Y2} basis of m and {B} basis of
h; the Lie bracket [ , ] on g is given by the following table:

[ , ] X1 Y1 X2 Y2 B
X1 0 0 −X1 Y1 Y1

Y1 0 0 Y1 X1 −X1

X2 X1 −Y1 0 −2B −2Y2

Y2 −Y1 −X1 2B 0 2X2

B −Y1 X1 2Y2 −2X2 0

and the scalar product of m is:

〈X1, X1〉 = 〈Y1, Y1〉 = 1, 〈X2, X2〉 = 〈Y2, Y2〉 = 2/ρ2.

We put λ = 2/ρ2 [8],[6]. With respect to the basis {X1, Y1, X2, Y2} of m, the
torsion tensor field T̃ has components

T̃ (X1, X2) = X1, T̃ (X1, Y2) = −Y1, T̃ (Y1, X2) = −Y1, T̃ (Y1, Y2) = −X1.

Thus, with a simple computation we see that relation (3.2) is always verified.

3.2.2 Spaces of type A: signature (+, +,−,−)

Following [8], [6] the Lie algebra g of the Lie group G has a reductive decomposition
g = m⊕ h and {X1, Y1, X2, Y2, B} is a basis of g with {X1, Y1, X2, Y2} basis of m and
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{B} basis of h such that the Lie bracket [ , ] on g is given by the following table:

[ , ] X1 Y1 X2 Y2 B
X1 0 0 −δX1 δY1 Y1

Y1 0 0 δY1 δX1 −X1

X2 δX1 −δY1 0 −2δ2B −2Y2

Y2 −δY1 −δX1 2δ2B 0 2X2

B −Y1 X1 2Y2 −2X2 0

and the scalar product of m is:

〈X1, X1〉 = 〈Y1, Y1〉 = 1, 〈X2, X2〉 = 〈Y2, Y2〉 = −2,

where δ > 0 is a real constant. With respect to the basis {X1, Y1, X2, Y2} of m, the
torsion tensor field T̃ has non-vanishing components

T̃ (X1, X2) = δX1, T̃ (X1, Y2) = −δY1, T̃ (Y1, X2) = −δY1, T̃ (Y1, Y2) = −δX1.

Thus, with a simple computation we see that relation (3.2) is always verified.

3.2.3 Spaces of type B

The Lie algebra g of the Lie group G has a reductive decomposition g = m ⊕ h and
{X1, Y1, X2, Y2, A} is a basis of g with {X1, Y1, X2, Y2} basis of m and {A} basis of h
such that the Lie bracket [ , ] on g is given by the following table:

[ , ] X1 Y1 X2 Y2 A
X1 0 0 −X1 ±A + Y1 0
Y1 0 0 ∓A + Y1 X1 0
X2 X1 ±A− Y1 0 0 2Y1

Y2 ∓A− Y1 −X1 0 0 −2X1

A 0 0 −2Y1 2X1 0

and the scalar product 〈, 〉 on m is:

〈X1, X2〉 = 〈Y1, Y2〉 = −1, 〈X2, X2〉 = 〈Y2, Y2〉 = 2λ.

With respect to the basis {X1, Y1, X2, Y2} of m, the torsion tensor field T̃ has
non-vanishing components

T̃ (X1, X2) = X1, T̃ (X1, Y2) = −Y1, T̃ (Y1, X2) = −Y1, T̃ (Y1, Y2) = −X1.

Thus, with a simple computation we see that relation (3.2) is always verified.

3.2.4 Spaces of type D

The Lie algebra g of the Lie group G has a reductive decomposition g = m⊕ h; there
exists {U1, U2, U3, U4, A}, basis of g with {U1, U2, U3, U4} basis of m and {A} basis of
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h, such that the Lie bracket [ , ] on g is given by the following table:

[ , ] U1 U2 U3 U4 A
U1 0 0 0 −U2 U1

U2 0 0 −U1 0 −U2

U3 0 U1 0 −A 2U3

U4 U2 0 A 0 −2U4

A −U1 U2 −2U3 2U4 0

and the scalar product 〈, 〉 on m is:

〈U1, U2〉 = 1, 〈U3, U4〉 = λ,

with λ real constant, λ 6= 0. With respect to the basis {U1, U2, U3, U4} of m, the
torsion tensor field T̃ has non-vanishing components:

T̃ (U1, U4) = U2, T̃ (U2, U3) = U1.

Thus, with a simple computation we see that relation (3.2) is always verified.
Summing up the above results, we can state the following theorems:

Theorem 3.2. Let (M, g) be a three-dimensional generalized symmetric space en-
dowed with the metric described in theorem (2.3). Then M always admits a Lorentzian
homogeneous structure of class T2, but not of class T3 (since M is not a naturally re-
ductive space).

Theorem 3.3. Let (M, g) be a four-dimensional generalized symmetric space endowed
with one of the metrics described in theorem (2.4), with exclusion of the case C. Then
M always admits a pseudo-Riemannian homogeneous structure of class T2, but not of
class T3 (since M is not a naturally reductive space).
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