
Ricci solitons and concurrent vector fields

Bang-Yen Chen and Sharief Deshmukh

Abstract. A Ricci soliton (M, g, v, λ) on a Riemannian manifold (M, g) is
said to have concurrent potential field if its potential field v is a concurrent
vector field. In the first part of this paper we classify Ricci solitons with
concurrent potential fields. In the second part we derive a necessary and
sufficient condition for a submanifold to be a Ricci soliton in a Rieman-
nian manifold equipped with a concurrent vector field. In the last part,
we completely classify shrinking Ricci solitons with λ = 1 on Euclidean
hypersurfaces. Several applications of our results are also presented.
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1 Introduction

Through this article we only consider connected manifolds. A smooth vector field ξ
on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies

(1.1)
1

2
Lξg +Ric = λg,

where Lξg is the Lie-derivative of the metric tensor g with respect to ξ, Ric is the
Ricci tensor of (M, g) and λ is a constant. Ricci solitons model the formation of
singularities in the Ricci flow and they correspond to self-similar solutions. We shall
denote a Ricci soliton by (M, g, ξ, λ). We call the vector field ξ the potential field of
the Ricci soliton. A Ricci soliton (M, g, ξ, λ) is called shrinking, steady or expanding
according to λ > 0, λ = 0, or λ < 0, respectively. A trivial Ricci soliton is one for
which ξ is zero or Killing, in which case the metric is Einstein.

A Ricci soliton (M, g, ξ, λ) is called gradient if its potential field ξ is the gradi-
ent of some smooth function f on M . We shall denote a gradient Ricci soliton by
(M, g, f, λ) and call the smooth function f the potential function. A gradient Ricci
soliton (M, g, f, λ) is called trivial if its potential function f is a constant. It follows
from (1.1) that trivial gradient Ricci solitons are trivial Ricci solitons since ξ = ∇f .
It was proved in [19] that if (M, g, ξ, λ) is a compact Ricci soliton, the potential field
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ξ is a gradient of some smooth function f up to the addition of a Killing field. Thus
compact Ricci solitons are gradient Ricci solitons.

During the last two decades, the geometry of Ricci solitons has been the focus of
attention of many mathematicians. In particular, it has become more important after
Grigory Perelman applied Ricci solitons to solve the long standing Poincaré conjecture
posed in 1904. G. Perelman observed in [19] that the Ricci solitons on compact simply
connected Riemannian manifolds are gradient Ricci solitons as solutions of Ricci flow.

There are two aspects of the study of Ricci solitons, one looking at the influence
on the topology by the Ricci soliton structure of the Riemannian manifold (see e.g.
[11, 15]) and the other looking at its influence on its geometry (see e.g. [7, 12, 13]). In
this paper we are interested in the geometry of Ricci solitons arisen from concurrent
vector fields on Riemannian manifolds.

If the holonomy group of M leaves a point invariant, then it was proved in [24]
that there exists a vector field v on M which satisfies

∇Zv = Z(1.2)

for any vector Z tangent to M , where ∇ denotes the Levi-Civita connection of M .
Such a vector field is called a concurrent vector field. Riemannian manifolds equipped
with concurrent vector fields have been studied by many mathematician (see, e.g.
[3, 8, 17, 18, 20, 21, 24, 25]). Concurrent vector fields have also been studied in
Finsler geometry since the beginning of 1950s (see, e.g. [16, 23]).

In the first part of this paper we completely classify Ricci solitons with concurrent
potential fields. In the second part we derive a necessary and sufficient condition
for a submanifold to be a Ricci soliton in a Riemannian manifold equipped with a
concurrent vector field. In the last part, we classify shrinking Ricci solitons with λ = 1
on Euclidean hypersurfaces. Several applications of our results are also presented.

2 Preliminaries

2.1 Basic formulas and definitions for submanifolds

For general references on Riemannian submanifolds, we refer to [4, 5, 6].
Let (Nm, g̃) denote an m-dimensional Riemannian manifold and ϕ : Mn → Nm

an isometric immersion from an n-dimensional Riemannian manifold (Mn, g) into
(Nm, g̃). Denote by ∇ and ∇̃ the Levi-Civita connections on (Mn, g) and (Nm, g̃),
respectively.

For vector fields X,Y tangent to Mn and η normal to Mn, the formula of Gauss
and the formula of Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xη = −AηX +DXη,(2.2)

where ∇XY and h(X,Y ) are the tangential and the normal components of ∇̃XY .
Similarly, −AηX and DXη are the tangential and normal components of ∇̃Xη. These
two formulas define the second fundamental form h, the shape operator A, and the
normal connection D of Mn in the ambient space Nm.
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For a normal vector η ∈ T⊥
p M , p ∈ M , Aη is a self-adjoint endomorphism. The

shape operator and the second fundamental form are related by

g̃(h(X,Y ), η) = g(AηX,Y ).(2.3)

The mean curvature vector H of Mn in Nm is defined by

H =

(
1

n

)
traceh.(2.4)

The equations of Gauss and Codazzi are given respectively by

g(R(X,Y )Z,W ) = g̃(R̃(X,Y )Z,W ) + g̃(h(X,W ), h(Y,Z))(2.5)

− g̃(h(X,Z), h(Y,W )),

(R̃(X,Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z),(2.6)

for vectors X,Y, Z,W tangent toM and ζ, η normal toM , where (R̃(X,Y )Z)⊥ is the
normal component of R̃(X,Y )Z and ∇̄h is defined by

(2.7) (∇̄Xh)(Y,Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

2.2 Examples of Riemannian manifolds endowed with concur-
rent fields

The best known example of Riemannian manifolds endowed with concurrent vector
fields is the Euclidean space with the concurrent vector field given by its position
vector field x (with respect to the origin).

For more general examples of Riemannian manifolds with concurrent vector fields,
let us consider warped product manifolds of the form: I ×s F , where I is an open
interval of the real line R with s as its arclength and F is an arbitrary Riemannian
manifold. The metric tensor g of I ×s F is given by g = ds2 + s2gF , where gF is
the metric tensor of the second factor F . Let us put v = s ∂

∂s . It follows easily from
Proposition 4.1 of [5, page 79] that the vector field v satisfies (1.2) for any vector Z
tangent to I ×s F . Therefore I ×s F admits a concurrent vector field: v = s∂/∂s.

3 Ricci solitons with concurrent potential fields

The following theorem classifies Ricci solitons on Riemannian manifolds endowed with
a concurrent potential field.

Theorem 3.1. A Ricci soliton (Mn, g, v, λ) on a Riemannian n-manifold (Mn, g)
has concurrent potential field v if and only if the following two conditions hold:

(a) The Ricci soliton is a shrinking Ricci soliton with λ = 1.

(b) Mn is an open part of a warped product manifold I ×s F , where I is an open
interval with arclength s and F is an Einstein (n − 1)-manifold whose Ricci
tensor satisfies RicF = (n− 2)gF , gF is the metric tensor of F .
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Proof. Assume that (Mn, g, v, λ) is a Ricci soliton on a Riemannian n-manifold equipped
with a concurrent potential field v. Then we have

∇Xv = X, ∀X ∈ TMn.(3.1)

It follows from (3.1) that the concurrent vector field v vanishes on a measure zero
subset of Mn at most. By applying (3.1) and the definition of sectional curvature, it
is easy to verify that the sectional curvature of Mn satisfies

K(X, v) = 0.(3.2)

for each unit vector X orthogonal to v. Hence the Ricci tensor of Mn satisfies

Ric(v, v) = 0.(3.3)

Let us put v = µe1, where e1 is a unit vector field tangent to Mn. Also let us
extend e1 to a local orthonormal frame {e1, . . . , en} on Mn. Denote by {ω1, . . . , ωn}
the dual frame of 1-forms of {e1, . . . , en}.

Define the connection forms ωj
i (i, j = 1, . . . , n) on Mn by

∇Xei =
n∑

j=1

ωj
i (X)ej , i = 1, . . . , n.(3.4)

From (3.1) with X = e1, (3.4) and the continuity we find

e1µ = 1,(3.5)

∇e1e1 = 0.(3.6)

Put D1 = Span{e1} and D2 = Span{e2, . . . , en}. It follows from (3.6) that D1 is a
totally geodesic distribution so that the leaves of D1 are geodesics of Mn. Also, we
may derive from (3.1) with X = ei (i = 2, . . . , n) that

e2µ = · · · = enµ = 0,(3.7)

µω1
i (ei) = −1,(3.8)

ω1
j (ei) = 0, i ̸= j.(3.9)

From Cartan’s structure equations, we have

dωi = −
n∑

j=1

ωi
j ∧ ωj , i = 1, . . . , n.(3.10)

Thus, after applying (3.9) and (3.10), we obtain dω1 = 0. Hence we have locally
ω1 = ds for some function s on Mn. It follows from (3.9) that

g([ei, ej ], e1) = ω1
j (ei)− ω1

i (ej) = 0, 2 ≤ i ̸= j ≤ n.(3.11)

Therefore D2 is an integrable distribution. Moreover, from (3.8) we know that the

second fundamental form ĥ of each leaf L of D2 in Mn satisfies

ĥ(ei, ej) = −δij
µ
e1, 2 ≤ i, j ≤ n,(3.12)
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which shows that the mean curvature of each leaf L is given by −µ−1.
Equation (3.12) implies that each leaf of D2 is a totally umbilical hypersurface of

Mn whose mean curvature vector is Ĥ = −e1/µ. Furthermore, by applying (3.7) we
conclude that D2 is a spherical distribution, i.e., the mean curvature vector of each
totally umbilical leaf is parallel in the normal bundle. Consequently, a result of S.
Hiepko and Ponge-Reckziegel (see, e.g., [22] or [5, page 90]) implies thatMn is locally
a warped product manifold I ×f(s) F whose warped metric is given by

g = ds2 + f2(s)gF(3.13)

such that e1 = ∂/∂s.
It follows from (3.13) that the sectional curvature of Mn satisfies

K(X, v) = −f
′′(s)

f(s)
(3.14)

for each unit vector X orthogonal to v. Now, after comparing (3.2) with (3.14) we
obtain f ′′(s) = 0. Therefore we obtain f(s) = as+ b for some constants a and b.

If a = 0 holds, then the warped product manifold I ×f(s) F is a Riemannian
product, which implies that every leaf of D2 is totally geodesic in Mn. Hence µ must
be zero, which contradicts to (3.12). Therefore we must have a ̸= 0. Hence, after
applying a suitable translation and dilation in s we get f(s) = s. Consequently, Mn

is locally a warped product manifold I ×s F .
On the other hand, it follows from the definition of Lie-derivative and condition

(3.1) that the Lie-derivative satisfies

(Lvg)(X,Y ) = g(∇Xv, Y ) + g(∇Y v,X) = 2g(X,Y )(3.15)

for any X,Y tangent to Mn. Combining (3.15) with (1.1) gives

Ric(X,Y ) = (λ− 1)g(X,Y ),(3.16)

which shows that Mn is an Einstein (n − 1)-manifold. After comparing (3.3) and
(3.16) we conclude that Mn is a Ricci flat space. Hence we get λ = 1. Consequently,
the Ricci soliton (Mn, g, v, λ) is a shrinking one.

Since Mn is a Ricci flat space, it follows from Corollary 4.1(3) of [5, page 82]
or formula (9.109) of [2, page 267] that the second factor F of the warped product
manifold I ×s F is an Einstein manifold satisfying RicF = (n− 2)gF .

The converse can be verified by direct computation. �

Theorem 3.1 implies the following

Corollary 3.2. There do not exist steady or expanding Ricci solitons with concurrent
potential fields.

Corollary 3.3. Every Ricci soliton (Mn, g, v, λ) with concurrent potential field v is
gradient.

Proof. Since v is concurrent, we have 1
2Lvg = g. So, it follows from the Ricci soliton

equation and λ = 1 that Ric = 0. But f := 1
2g(v, v) satisfies Hess(f) = g. Thus we

get Ric+Hess(f) = λg, which implies that the Ricci soliton is gradient. �
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Remark 3.1. If Mn is a complete Riemannian manifold which admits a concurrent
vector field v, then Mn is isometric to the Euclidean n-space. Moreover, we have
v = r∇r, where r is the distance function from the origin (see [3, Theorem 4]).

4 Riemannian submanifolds as Ricci solitons

From now on, we make the following

Assumption. (Nm, g̃) is a Riemannian m-manifold endowed with a concurrent vec-
tor field v.

For an isometric immersion ϕ : Mn → Nm of a Riemannian n-manifold (Mn, g)
into (Nm, g̃), we denote by vT and v⊥ the tangential and normal components of v
on Mn, respectively. As before, we denote by h,A and D the second fundamental
form, the shape operator and the normal connection of the submanifold Mn in Nm,
respectively.

Theorem 4.1. A submanifold Mn in Nm admits a Ricci soliton (Mn, g, vT , λ) if
and only if the Ricci tensor of (Mn, g) satisfies

Ric(X,Y ) = (λ− 1)g(X,Y )− g̃(h(X,Y ), v⊥)(4.1)

for any X,Y tangent to Mn.

Proof. Let ϕ :Mn → Nm denote the isometric immersion. We have

v = vT + v⊥.(4.2)

Since v is a concurrent vector field on the ambient space Nm, it follows from (1.2),
(4.2) and formulas of Gauss and Weingarten that

(4.3) X = ∇̃Xv
T + ∇̃Xv

⊥∇Xv
T + h(X, vT )−Av⊥X +DXv

⊥

for any X tangent toMn. By comparing the tangential and normal components from
(4.3) we obtain

∇Xv
T = Av⊥X +X,(4.4)

h(X, vT ) = −DXv
⊥.(4.5)

From the definition of Lie derivative and (4.4) we obtain

(4.6)

(LvT g)(X,Y ) = g(∇Xv
T , Y ) + g(∇Y v

T , X)

= 2g(X,Y ) + 2g(Av⊥X,Y )

= 2g(X,Y ) + 2g̃(h(X,Y ), v⊥)

for X,Y tangent to Mn. Consequently, by applying (1.1) and (4.5), we conclude that
(Mn, g, vT , λ) is a Ricci soliton if and only if we have

(4.7) Ric(X,Y ) + g(X,Y ) + g̃(h(X,Y ), v⊥) = λg(X,Y ),

which is nothing but (4.1). �
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Recall that the position vector field x of a Euclidean m-space Em is a concurrent
vector field. The simplest examples of Ricci solitons (Mn, g, vT , λ) on submanifolds
in a Riemannian manifold with concurrent field are the following ones.

Example 4.1. Let γ(s) be a unit speed curve lying in the unit hypersphere Sm−n
o (1)

of Em−n+1 centered at the origin o. Consider the Riemannian submanifold (Mn, g)
of Em defined by

ϕ(s, x2, . . . , xn) = (γ(s)x2, x2, x3, . . . , xn).

ThenMn is a flat space and (Mn, g,xT , λ) is a shrinking Ricci soliton satisfying (4.1)
with λ = 1. Moreover, xT = x and Mn is generated by lines in Em through the
origin.

The following provides more examples of Ricci solitons on submanifolds.

Example 4.2. Let k be a natural number such that 2 ≤ k ≤ n − 1 and r =√
k − 1. Consider the spherical hypercylinder ϕ : Sk(r) × En−k → En+1 defined

by {(y, xk+2, . . . , xn+1) ∈ En+1 : y ∈ Ek+1 and ⟨y,y⟩ = r2}. It is straightforward to
verify that the spherical hypercylinder Sk(

√
k − 1)×En−k in En+1 satisfies (4.1) with

λ = 1. Hence (Sk(
√
k − 1)× En−k, g,xT , λ) is a shrinking Ricci soliton with λ = 1.

Example 4.3. Let n1, . . . , np be integers ≥ 2 and r1, . . . , rp be positive numbers
satisfying (n1 − 1)/r21 = · · · = (np − 1)/r2p. Put n = n1 + · · ·+ np.

Let (Mn, g) denote the Riemannian product Sn1(r1)× . . .× Snp(rp) of p spheres
Sn1(r1), . . . , S

np(rp) of radii r1, . . . , rp, respectively, which is isometrically imbedded
in En+p in the standard way. It is direct to verify that (Mn, g,xT , λ) is a shrinking
Ricci soliton with λ equal to (n1 − 1)/r21.

5 Some applications of Theorem 4.1

A Riemannian submanifold Mn is called η-umbilical (with respect to a normal vector
field η) if its shape operated satisfies Aη = φI, where φ is a function on Mn and I is
the identity map.

The following two results are immediate consequences of Theorem 4.1.

Theorem 5.1. A Ricci soliton (Mn, g, vT , λ) on a submanifold Mn in Nm is trivial
if and only if Mn is v⊥-umbilical.

Corollary 5.2. Every Ricci soliton (Mn, g, vT , λ) on a totally umbilical submanifold
Mn of Nm is a trivial Ricci soliton.

Following [5], the scalar curvature τ of (Mn, g) is defined to be

τ =
∑

1≤i<j≤n

K(ei, ej),(5.1)

where {e1, . . . , en} is an orthonormal frame of Mn.
Another easy application of Theorem 4.1 is the following.

Proposition 5.3. If (Mn, g, vT , λ) is a Ricci soliton on a minimal submanifold Mn

in Nm, then Mn has constant scalar curvature given by n(λ− 1)/2.
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Proof. Assume that (Mn, g, vT , λ) is a Ricci soliton on a submanifold Mn in Nm.
Then Theorem 4.1 implies that the Ricci tensor of Mn satisfies

Ric(X,Y ) = (λ− 1)g(X,Y )− g̃(h(X,Y ), v⊥)(5.2)

for X,Y tangent to Mn. If Mn is minimal in Nm, then the mean curvature vector
vanishes identically. In particular, this implies that g̃(H, v⊥) = 0. Hence, we obtain
(5.2) that

n∑
i=1

Ric(ei, ei) = n(λ− 1).

Therefore Mn has constant scalar curvature n(λ− 1)/2. �

Let ∇f denote the gradient of a function f on Mn. By applying (4.4) and (4.5)
we have the following.

Lemma 5.4. Let Mn be a submanifold of Nm. Then we have

∇ψ = −Av⊥vT ,(5.3)

vT = ∇φ,(5.4)

where ψ = 1
2 g̃(v

⊥, v⊥) and φ = 1
2 g̃(v, v).

Proof. Let Mn be a submanifold of Nm. Then we find from (4.5) that

Xψ = g̃(∇̃Xv
⊥, v⊥) = g̃(DXv

⊥, v⊥) = −g(Av⊥vT , X),

which implies (5.3). Equation (5.4) follows from

Xφ = g̃(∇̃Xv, v) = g̃(X, v) = g(X, vT )

for X tangent to Mn. �

The next result follows immediately from (5.4) of Lemma 5.4.

Proposition 5.5. Every Ricci soliton (Mn, g, vT , λ) on a submanifold Mn of Nm is
a gradient Ricci soliton with potential function φ = 1

2 g̃(v, v).

This proposition shows that the gradient Ricci soliton (Mn, g, φ, λ) on Mn is
trivial if and only if g̃(v, v) is constant on Mn.

Corollary 5.6. A gradient Ricci soliton (Mn, g, φ, λ) on a submanifold Mn of Nm

is trivial if and only if the concurrent vector field v on Nm is normal to Mn.

Proof. Let Mn be a submanifold of Nm. Suppose that (Mn, g, φ, λ) is a trivial gra-
dient Ricci soliton. Then g̃(v, v) is constant on Mn. Thus by taking the derivative of
g̃(v, v) with respect to a tangent vector X, we find 0 = Xg̃(v, v) = 2g(X, v) according
to (1.2). Because this is true for any arbitrary tangent vector of Mn, the concurrent
vector field v must be normal to Mn.

Conversely, if v is normal to Mn, then we have Xg̃(v, v) = 2g(X, v) = 0. Thus
g̃(v, v) is constant on Mn. Consequently, the gradient Ricci soliton is a trivial one
according to Corollary 5.6. �
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The last result of this section is the following.

Proposition 5.7. If (Mn, g,xT , λ) is a Ricci soliton on a hypersurface of Mn of
En+1, then Mn has at most two distinct principal curvatures given by

κ1, κ2 =
nα+ ρ±

√
(nα+ ρ)2 + 4− 4λ

2
,(5.5)

where α is the mean curvature and ρ is the support function, i.e., H = αN and
ρ = ⟨N,x⟩ with N being a unit normal vector field.

Proof. Assume that (Mn, g,xT , λ) is a Ricci soliton on a hypersurface of Mn of
En+1, where xT denotes the tangential component of the position vector field x. Let
{e1, . . . , en} be an orthonormal frame on Mn such that e1, . . . , en are eigenvectors of
the shape operator AN . Then we have

ANei = κiei, i = 1, . . . , n.(5.6)

From equation (2.5) of Gauss we obtain

Ric(X,Y ) = ng0(h(X,Y ),H)−
n∑

i=1

g0(h(X, ei), h(Y, ei)),(5.7)

where g0 denotes the Euclidean metric of En+1. It follows from (5.6), (5.7) and
Theorem 4.1 that (Mn, g,xT , λ) is a Ricci soliton if and only if we have

(nα− κj)κiδij = (λ− 1)δij − ρκiδij ,(5.8)

where δij is the Kronecker delta. Equation (5.8) is equivalent to

κ2i − (nα+ ρ)κi + λ− 1 = 0, i = 1, . . . , 0,

which implies the proposition �

6 Shrinking Ricci solitons on Euclidean hypersur-
faces

If the ambient space is complete, then it is isometric to the Euclidean space and, up to
isometries, every concurrent vector field is the position vector field (cf. Remark 3.1).
Hence, the purpose of this section is to prove the following classification theorem.

Theorem 6.1. Let (Mn, g,xT , λ) be a shrinking Ricci soliton on a hypersurface of
Mn of En+1 with λ = 1. Then Mn is an open portion of one of the following hyper-
surfaces of En+1:

(1) A totally umbilical hypersurface;

(2) A flat hypersurface generated by lines through the origin o of En+1;

(3) A spherical hypercylinder Sk(
√
k − 1)× En−k, 2 ≤ k ≤ n− 1.
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Proof. Assume that (Mn, g,xT , λ) is a shrinking Ricci soliton on a hypersurface of
Mn of En+1. Then it follows from Proposition 5.7 that Mn has at most two distinct
principal curvatures given by

nα+ ρ+
√
(nα+ ρ)2 + 4− 4λ

2
,
nα+ ρ−

√
(nα+ ρ)2 + 4− 4λ

2
.(6.1)

If Mn has only one principal curvature, then Mn is totally umbilical.
Now, let us assume that Mn has two distinct principal curvatures and λ = 1.

Then (6.1) implies that the two distinct principal curvatures are given respectively
by 0 and nα+ ρ. Let κ denote the nonzero principal curvature, i.e., κ = nα+ ρ. Let
us assume that the multiplicities of κ and 0 are k and n − k, respectively, for some
k with 1 ≤ k < n. Then we have nα = kκ. Hence the mean curvature α and the
support function ρ are related by

n(1− k)α = kρ.(6.2)

Case (a): k = 1. In this case, (6.2) gives ρ = g̃(x, N) = 0. Thus the concurrent vector
field x is tangent to Mn. So, it follows from (1.2) that ∇̃Xx = X. Hence integral
curves of x are part of lines through the origin in En+1. Therefore we obtain case (2)
of the theorem.
Case (b): 2 ≤ k ≤ n− 1. Without loss of generality, we may assume that

AN =

(
κIk 0
0 0n−k

)
(6.3)

with respect to an orthonormal tangent frame {e1, . . . , en} ofMn, where Ik is an k×k
identity matrix and 0n−k is an (n− k)× (n− k) zero matrix. We put

D1 = Span{e1, . . . , ek}, D2 = Span{ek+1, . . . , en}.(6.4)

By taking the derivative of (6.2) with respect a tangent vector X of Mn, we find

Xα = − k

n(1− k)
g(xT , ANX) =

k

n(k − 1)
g(ANxT , X).(6.5)

Thus we have

∇α =
k

n(k − 1)
ANxT ,(6.6)

which implies that the gradient ∇α lies in the distribution D1. Therefore, without
loss of generality, we may assume that

∇α = ζe1(6.7)

for some function ζ. So we have

e2α = · · · = enα = e2κ = · · · = enκ = 0.(6.8)

For any vector fields X,Y ∈ D1 and V,W ∈ D2, we have

h(X,Y ) = κg(X,Y ), h(X,V ) = h(V,W ) = 0.(6.9)
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It follows from (2.7), (6.9) and equation (∇̄V h)(W,X) = (∇̄Xh)(V,W ) of Codazzi
that h(∇VW,X) = 0. Since this is true for any vector field X in D1, we conclude from
(6.3) that ∇VW lies in D2. Therefore D2 is a totally geodesic integrable distribution,
i.e., D2 is an integrable distribution whose leaves are totally geodesic submanifolds of
Mn. Moreover, it follows from h(V,W ) = 0 that each leaf of D2 is in fact a totally
geodesic submanifold of En+1. Consequently, Mn are foliated by (n− k)-dimensional
totally geodesic submanifolds of En+1.

For 1 ≤ i ̸= j ≤ k and t ∈ {k + 1, . . . , n}, (2.7), (6.3), (6.8) and (6.9) give

(∇̄eih)(ej , et) = −h(ej ,∇eiet), (∇̄eth)(ei, ej) = 0.(6.10)

Thus from (∇̄eih)(ej , et) = (∇̄eth)(et, ej), we obtain ωt
i(ej) = 0. Therefore D1 is also

a totally geodesic integrable distribution. Consequently, the de Rham decomposition
theorem implies that Mn is locally a Riemannian product, say Mk

1 × En−k, of a
Riemannian r-manifold Mk

1 and the Euclidean (n − k)-space. Furthermore, due to
h(D1,D2) = {0} by (6.3), Moore’s lemma implies that the immersion is a direct
product immersion, i.e., Sk ×En−k ⊂ Ek+1×En−k, where Sk ⊂ Ek+1 is the standard
imbedding of a k-sphere. Consequently, we obtain case (3) of the theorem. �

Remark 6.1. If Theorem 6.1(1) occurs, then Mn is either an open portion of a
hyperplane contained the origin or of a hypersphere centered at the origin.
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