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Abstract. In this paper, we deal with the Castelnuovo-Mumford regu-
larity of the residual scheme resY X of X with respect to Y, where X
and Y are closed subschemes of the n-dimensional projective space Pn

over an algebraically closed field of arbitrary characteristic, moreover, we
characterize it by studying its hyperplane section scheme. In addition, we
investigate the case when resY X consists of points in uniform position,
in particular we offer a method of constructing a set of points of a given
projective space in uniform position.
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1 Introduction

Let X and Y be closed subschemes of the n-dimensional projective space Pn
K over a

fixed algebraically closed field K, where n is a positive integer. The residual scheme
resY X of X with respect to Y is the closed subscheme of Pn

K whose ideal sheaf is
defined by the division ideal sheaf IresY X = (IX : IY ), where IX and IY are the
ideal sheaves of X and Y respectively.

An interesting problem is to understand the relationship between the general hy-
persurface section of the residual scheme in the projective space Pn

K and the general
hypersurface sections of the schemes that define such residual scheme. In this direc-
tion, many interesting and fundamental results may be found in [2],[3], and [10]. In [6],
the second author proved a nicely simple and fundamental statement: a sufficiently
general hypersurface section commutes with the residual scheme.

The aim of this paper is to describe and to compare some geometrical properties
of the residual scheme resY X concerning the Castelnuovo-Mumford regularity, and
the “Uniform Position Principle” with those of (resY X)∩H and resY ∩H(X ∩H) for
any hyperplane section H. To be precise, in Section 2, we recall some definitions and
results on the residual scheme whose the most relevant property is (resY X) ∩ F =
resY ∩F (X∩F ), where F is a general hypersurface. In the first part of Section 3, under
some reasonable hypotheses, we prove that the Castelnuovo-Mumford regularity of
the residual scheme is equal to the regularity of the residual scheme between the
hyperplane sections of the defining schemes, as stated below:
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Theorem 1.1. Let X and Y be closed subschemes of the n-dimensional projective
space Pn

K over a fixed algebraically closed field K. If H ⊆ Pn
K is a general hyperplane

such that the ideals IX + IH and (IX : IY ) + IH are saturated (where IZ stands for
the saturated ideal of the given closed subscheme Z of Pn

K), then the following equality
holds:

reg(resY ∩H(X ∩H)) = reg(resY X).

Proof. See item 2) of Theorem 3.5 below. �

In the second part of Section 3, we recall the geometrical definition of the concept of
“set of points in uniform position” (see for example [1], and [7]). Furthermore, for a
linear space V ⊆ Pn

K of codimension r composed by general hyperplanes with respect
to projective varieties X and Y of Pn

K , we prove the next result which gives a way of
constructing sets of points in uniform position:

Theorem 1.2. Let X and Y be irreducible closed subschemes of the n-dimensional
projective space Pn

K over a fixed algebraically closed field K of arbitrary characteristic.
Let V ⊆ Pn

K be a linear space of codimension r composed by hyperplanes in general
position with respect to X and Y . If resY X is irreducible of dimension r, then the
closed subscheme resY ∩V (X ∩ V ) of Pn

K is a set of points in uniform position.

Proof. See Corollary 3.10 below. �

Remark 1.1. Our results confirm the basic idea of using hyperplane sections as a
faithful method to understand fundamental statements about schemes, such idea may
be founded in many text books, see for example [8], and [11].

2 Notation and preliminaries

Hereafter, K denotes a fixed algebraically closed field of arbitrary characteristic, and
Pn the n-dimensional projective space over K whose homogeneous coordinate ring is
K[x0, . . . , xn], that is, Pn = Proj(K[x0, . . . , xn]). Here, n is a positive integer and xi

is homogeneous of degree one for every i ∈ {0, . . . , n}.
The ideal generated by x0, . . . , xn inK[x0, . . . , xn] is usually called the irrelevant ideal,
and we denote it by m. Recall that for any homogeneous ideal I of K[x0, . . . , xn], the
saturation Ī of I is the set {f ∈ K[x0, . . . , xn] : fm

ℓ ⊆ I, for some positive integer ℓ},
which has obviously a structure of a homogeneous ideal of K[x0, . . . , xn], and do not
have the irrelevant ideal as an associated prime ideal. It is well-known that for any
homogeneous ideal J of K[x0, . . . , xn], one has that Jt = (J̄)t for all t ≫ 0, where Jt
and (J̄)t are the t-graded components of J and J̄ respectively.

If X ⊆ Pn is a closed subscheme, we denote by IX ⊆ OPn the ideal sheaf of X
determined by the saturated homogeneous ideal IX ⊆ K[x0, . . . , xn] of X, where OPn

is the structure sheaf of Pn. A variety will always be irreducible.
Furthermore, for any homogeneous element f of K[x0, . . . , xn] of positive degree,

we denote by K[x0, . . . , xn, f
−1]0 the ring of elements of degree 0 in the graded ring

K[x0, . . . , xn, f
−1].

If X ⊆ Pn is a closed subscheme and F is a hypersurface in Pn, then the hyper-
surface section of X with respect to F is the subscheme X ∩ F ⊆ Pn such that

IX∩F = IX + IF .
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Definition 2.1. Let X and Y be closed subschemes of Pn, with ideal sheaves respec-
tively IX and IY , and saturated ideals respectively IX and IY . The residual scheme
resY X of X with respect to Y is the closed subscheme of Pn given by the ideal sheaf
IresY X = (IX : IY ). Such sheaf is defined on the affine standard open D+(xi) as
follows:

(IX : IY )(D+(xi)) := (IX : IY )K[x0, . . . , xn, x
−1
i ] ∩K[x0, . . . , xn, x

−1
i ]0,

for every i = 0, ..., n.

It is worth nothing that we obtain (IX : IY )(D+(xi)) as a division between the
ideals of X and Y restricted to the open sets (D+(xi)) for every i = 0, . . . , n. In fact,
it occurs that (IX : IY )K[x0, . . . , xn, x

−1
i ] ∩K[x0, . . . , xn, x

−1
i ]0 is equal to

(IXK[x0, . . . , xn, x
−1
i ]∩K[x0, . . . , xn, x

−1
i ]0 : IY K[x0, . . . , xn, x

−1
i ]∩K[x0, . . . , xn, x

−1
i ]0).

Remark 2.2. Let X and Y be closed subschemes of Pn. The residual scheme of X
with respect to Y is the closed subscheme resY X of Pn such that

IresY X = (IX : IY ).

Below, we describe some known relations among the residual scheme resY X of
X with respect to Y and the general hypersurface sections of the schemes X, Y, and
resY X for any closed subschemes X and Y of Pn. The following lemma is helpful for
our results.

Lemma 2.1. ([6], Lemma 3.1) Let a, b, t be ideals in a noetherian commutative ring
A with unit, and let t = (t) be a principal ideal in A. Put Ā = A/a, t̄ = t + a, we
suppose that:

1. t̄ is A/(a : b)−regular

2. the sequence

0 → (a : b)/a
t̄→ (a : b)/a → ((a+ t) : (b+ t))/(a+ t) → 0

is exact, where the first map is induced by the multiplication by the element t̄ ∈ Ā.
Then we have

((a+ t) : (b+ t)) = (a : b) + t.

Remark 2.3. The associated prime ideals of the quotient (a : b) are among the
associated prime ideals of a, that is Ass(a : b) ⊆ Ass a (see Chapter three of [9]).

Theorem 2.2. ([6],Theorem 3.3 ) Let X,Y ⊆ Pn be two closed subschemes. Then,
for a general hypersurface F ⊆ Pn of degree d, we have

(2.1) (resY X) ∩ F = resY ∩F (X ∩ F )

that means, in the sheaf language:

(IX : IY ) + IF = ((IX + IF ) : (IY + IF )).
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Corollary 2.3. With notation and assumptions as in Theorem 2.2. Let IX , IY and
IF be the saturated homogeneous ideals associated of the closed schemes X, Y and F
of Pn respectively. It follows that

(IX : IY ) + IF = ((IX + IF ) : (IY + IF )).

Remark 2.4. The previous equality fails if we consider only homogeneous ideals, not
saturated. On the other hand, such equality is always true if B/IX , B/IY and B/(IX :
IY ) are arithmetically Cohen-Macaulay (aCM), where B is equal to K[x0, . . . , xn] (see
for example [10, Corollary 3.8]).

We conclude this section by recalling the following classic result that we do not
find an explicit proof anywhere.

Proposition 2.4. Let I be a homogeneous ideal of K[x0, . . . , xn]. For every nonneg-
ative integer d, there exists a sheaf morphism ed : Id⊗KOPn(−d) → OPn such that for
a sufficiently large integer d, its image is constant. Here, Id (respectively, K) means
the constant sheaf on Pn with coefficients in Id (respectively, in K).

Proof. Let d be a nonnegative integer. By the universal property of the asso-
ciated sheaf, construct the sheaf morphism ed : Id ⊗K OPn(−d) → OPn is equiv-
alent to construct a presheaf morphism e−d : (Id ⊗K OPn(−d))− → OPn , where
(Id ⊗K OPn(−d))− is the presheaf defined by the following way: for every open set U
of Pn, (Id ⊗K OPn(−d))−(U) = Id ⊗K OPn(−d)(U), and for every open sets V and
W of Pn such that W ⊆ V , we have that ρ(Id⊗KOPn (−d))−

V
W

= ρId
V
W ⊗ ρOPn (−d)

V
W
,

where ρF
V
W denotes the restriction map of the presheaf F from F(V ) to F(W ) for

any presheaf F on Pn. Let U be a nonempty open set of Pn. Consider the following
application:

σU : Id ×OPn(−d)(U) → OPn(U)

(λ, s) 7→ σU (λ, s)

where σU (λ, s) : U →
∏

p∈U K[x0, . . . , xn](p) is such that σU (λ, s)(q) = λ(q)s(q) for
every q ∈ U . It is not difficult to prove that σU is a K-bilinear application, therefore
there exists the K-linear application ed

−
U : Id ⊗K (OPn(−d)(U)) → OPn(U) such that

for every λ ∈ Id and for every s ∈ OPn(−d)(U) we have that ed
−
U (λ ⊗ s) = σU (λ, s).

Moreover, we obtain the presheaf morphism ed
− from (Id ⊗K OPn(−d))− to OPn ,

henceforth, by the universal property of the associated sheaf, there exists a morphism
ed : Id ⊗K OPn(−d) → OPn of OPn -modules (see [8, Proposition-Definition 1.2, page
64]).

Now, what is left is to show that for a sufficiently large integer d, the image of the
morphism ed is constant. Indeed, we may assume that the homogeneous ideal I is
generated by homogeneous elements a1, . . . , ar for some r ∈ N. Fix a nonnegative
integer d such that d is greater than or equal to the degree of ai for any i ∈ {1, . . . , r}.
Next, we prove that the image im ed of ed is isomorphic to the OPn -module Ĩ. To
this end, it is enough to construct a presheaf morphism between im− ed and Ĩ. It is
worth noting that by the construction of ed

−, the image ed
−
U is contained in Ĩ(U) for

every open set U of Pn, and therefore, im− ed is an OPn -submodule of Ĩ. This gives
rise to the inclusion morphism ι− : im− ed → Ĩ, which induces obviously an injective
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application ι−p : (im− ed)p → Ĩp for every p ∈ Pn. Henceforth, the induced morphism

ι : im ed → Ĩ is injective. Recall that Pn has an open covering by the affine standard
open sets (D+(xi))i=0,...,n. Fix i ∈ {0, . . . , n}, our first aim is to prove that ι−D+(xi)

is surjective. Indeed, let s be an element of Ĩ(D+(xi)), using the fact that Ĩ(D+(xi))
is isomorphic to I(xi) (see [8, Proposition 5.11, page 116]), there exists a nonnegative
integer m and a homogeneous element λ of I of degree m such that s is equal to

the element λ̃
xm
i

of Ĩ(D+(xi)). On the other hand, there exists homogeneous elements

µ1, . . . , µr ∈ K[x0, x1, . . . , xn] such that λ =
∑r

j=1 µjaj , where deg(µj) = m−deg(aj)
for every j ∈ {1, . . . , r}. Consider the following element of Id⊗K (OPn(−d)(D+(xi))):

f =
r∑

j=1

[x
d−deg(aj)
i aj ⊗

µ̃j

x
m−deg(aj)+d
i

],

where
µ̃j

x
m−deg(aj)+d

i

is the element of Ĩ(D+(xi)) associated to
µj

x
m−deg(aj)+d

i

for every j ∈

{1, . . . , r}. Consequently, θD+(xi)(f) belongs to (Id⊗K OPn(−d))(D+(xi)), where θ is
the canonical morphism between (Id⊗KOPn(−d))− and Id⊗KOPn(−d). Furthermore,

we have that edD+(xi)(θD+(xi
(f)) = s. Since the sheaf Ĩ is flasque, or flabby (see [8,

Exercise 1.16, page 67] or [12, Section 6.1, page 111]), we get that ι−D+(xi)∩W is

surjective for every nonempty open set W of Pn. This proves the surjectivity of ι−p
for every p ∈ Pn. Finally, we conclude that ι is an isomorphism between im ed and Ĩ,
and we are done.

3 Main results

The Castelnuovo-Mumford regularity is a very interesting geometric invariant for
schemes and there are important conjectures involving the regularity that explore
purely algebraic approaches to discover new properties of a projective variety (e.g.
[4], and [8]). In order to state the main result of this section on the regularity of the
hyperplane section of a residual scheme, we give some definitions and results. Remind
that for any homogeneous ideal I of K[x0, . . . , xn] and for any positive integer d, let
Id be the K−vector space generated by all forms of degree d of I.

From the last section, we know that for every homogeneous ideal I ofK[x0, . . . , xn],
and for a sufficiently large integer d, the image of the canonical sheaf morphism
ed : Id ⊗OPn(−d) → OPn is constant, and it is usually called the sheafification Ĩ of I.

Proposition 3.1. With the above notation, the sheaf Ĩ is a coherent sheaf of Pn.

Proof. See [8, Proposition 5.11, page 116]. �

For any nonnegative integer i and for any sheaf F on Pn, let Hi(Pn,F) be the
ith-cohomology group of F (see [8, Chapter three, Section two, page 206]). If m is an
integer, we denote by F(m) the sheaf F ⊗OPn OPn(m).

Definition 3.1. Let m be an integer. A coherent sheaf F on Pn is m-regular if
Hq(Pn,F(m− q)) = {0} for every positive integer q.
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Here comes the concept of Castelnuovo-Mumford regularity of a given coherent
sheaf.

Definition 3.2. Let F be a coherent sheaf on Pn. The Castelnuovo-Mumford reg-
ularity of F is the smallest m for which F is m-regular, it is denoted by reg(F).
Furthermore, for every closed subscheme X of Pn, the regularity of X is the regular-

ity of the coherent sheaf R̃/IX , where IX is the unique saturated homogeneous ideal
associated to X, and R is equal to K[x0, . . . , xn].

Definition 3.3. Let m be an integer. A homogeneous ideal I of K[x0, . . . , xn] is
m-satured if Id = (Ī)d, for every d ≥ m. The satiety, known also as the saturation
index, of I is the smallest integer m for which I is m−saturated, and it is usually
denoted by sat(I).

Proposition 3.2. ([7], Proposition 2.6) An ideal I is m-regular if and only if I is

m-saturated and its sheafification Ĩ is m-regular.

An useful algebraic version of the definition of the regularity is due to Eisenbud-
Goto (see [5]). Here we review briefly such version. Let k be a field, R = k[x0, . . . , xn]
the polynomial ring over k, and let M be a finitely generated graded R-module. Then
as an R-module, M admits a finite minimal graded free resolution:

0 → ⊕jR(−j)bpj → . . . → ⊕jR(−j)b0j → M → 0.

Definition 3.4. ([5]) With the above notation, the Castelnuovo-Mumford regularity
of M is the integer

reg(M) = max {j − p, bpj ̸= 0}.

The following theorem is crucial to use the definition of regularity of a finitely
generated R-module, in particular of an ideal of R, from the algebraic point of view.

Theorem 3.3. ([7], Proposition 2.6) Let I be a homogeneous saturated ideal of R.
Then the regularity of I and the regularity of its sheafification are equals.

Also, we need the following result:

Theorem 3.4.

1) Let I be a homogeneous ideal of R = k[x0, . . . , xn], and let H be a principal ideal
generated by a linear form h of R. If h /∈ I and I +H ̸= (x0, . . . , xn), then

(3.1) reg(I) = reg(I +H).

2) Let X be a closed subscheme of Pn and let H be a general hyperplane of Pn. If
IX + IH is a saturated ideal of K[x0, . . . , xn], then the following equality occurs:

(3.2) reg(X) = reg(X ∩H).

Proof. 1) Let E. := 0 → En−1 → . . . → E1 → E0 → R → R/I → 0 be the minimal
graded resolution of R/I, where

Ep = ⊕jR(−j)bpj ,
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for every p ∈ {0, . . . , n− 1}. Recall that by definition reg(I) = max{j − p, bpj ̸= 0}.
Consider the tensor product of the resolution E. for R/H. If Tor1(R/I,R/H) is null,
then E.⊗R (R/H) is a minimal graded resolution of R/(I +H) and

reg(I) = reg(R/I)− 1 = reg(R/(I +H))− 1 = reg(I +H).

SinceH /∈ Ass(I), it implies that the localization Tor1(R/I,R/H)P of Tor1(R/I,R/H)
at the prime ideal P is null for every P ∈ Ass(I), so we are done.

2) The fact that H is a general hyperplane implies that IH = (h) for some general
linear form h ∈ K[x0, . . . , xn], and h /∈ IX . Using Theorem 3.3 and the previous item
1), we obtain the following equalities:

reg(X ∩H) = reg(R/IX∩H) = reg( ˜IX + IH)− 1 = reg(IX + IH)− 1 = reg(IX)− 1.

Hence, we conclude that

reg(X ∩H) = reg(R/IX∩H) = reg(R/IX) = reg(X).

�

Example 3.5. Here, we provide an example to show that the saturation hypothesis
in the item 2) of the previous theorem is necessary. Let R = K[x0, x1]. Consider the
closed subscheme X of P1 defined by the ideal (x0), and the hyperplane H defined by
the ideal (x0+x1). Note that by construction, H is general. It is clear that IX = (x0)
and IH = (x0+x1) are saturated ideals, however, the ideal IX + IH = (x0, x0+x1) =
(x0, x1) is not saturated. Now, the fact that reg(X) = reg(R/IX) = reg(R/(X0)) = 0

and X ∩H = f� implies that the Equation (3.2) is not true. On the other hand, note
that reg(IX) = reg((x0)) = 1 and reg(IH) = reg((x0 + x1)) = 1, this implies that the
Equation (3.1) is true in spite of the hypothesis IX + IH ̸= (x0, x1) is not satisfied.

Now we are able to prove the result stated in the introduction.

Theorem 3.5.

1) Let I and J be homogeneous ideals of R = k[x0, . . . , xn] and let H be a principal
ideal generated by a linear form h of R. If H /∈ Ass(I) and [(I : J) + H] ̸=
(x0, . . . , xn), then

(3.3) reg((I +H) : (J +H)) = reg(I : J).

2) Let X and Y be closed subschemes of Pn. If H ⊆ Pn is a general hyperplane
such that the ideals IX +IH and (IX : IY )+IH are saturated, then the following
equality holds:

(3.4) reg(resY ∩H(X ∩H)) = reg(resY X).

Proof. 1) By hypothesis and Remark 2.3, we have that h is general with respect to
the ideals I and (I : J). Hence, the equality (I : J) +H = ((I +H) : (J +H)) holds
true from Lemma 2.1. By item 1) of Theorem 3.4 we get

reg((I : J) +H) = reg(I : J).
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2) Observe that the equality (resY X)∩H = resY ∩H(X ∩H) is achieved by using
the Equation (2.1) of Theorem 2.2. Hence, by hypothesis we have:

(IX : IY ) + IH = (IX : IY ) + IH = ((IX + IH) : (IY + IH)).

On the other hand, the fact that the ideal IX + IH is saturated implies that the ideal
((IX+IH) : (IY +IH)) is saturated. Indeed, Ass((IX+IH) : (IY +IH)) ⊆ Ass(IX+IH),
so m /∈ Ass(IX + IH). Therefore, m /∈ Ass((IX + IH) : (IY + IH)) and consequently
((IX + IH) : (IY + IH)) is saturated. Then by the item 1), it follows that

reg(IX : IY ) = reg((IX : IY ) + IH) = reg((IX + IH) : (IY + IH)).

This proves that reg(resY X) = reg(resY ∩H(X ∩H)). �

Example 3.6. Here, we present an example to show that the saturation hypothesis
in the item 2) of the previous theorem is necessary. Let R be the homogeneous
coordinate ring K[x0, x1] of the projective line P1 defined over a field K. Consider the
closed subschemes X and Y of P1 defined by the ideals (x0x1) and (x0) respectively,
the hyperplane H defined by the ideal (x0 + x1), and we denote Z = resY X. Note
that H is general by construction. We have that the ideals IX = (x0x1), IY = (x0),
and IH = (x0 + x1) are saturated, however, the ideal

(IX : IY ) + IH = (x1) + (x0 + x1) = (x0, x1)

is not saturated. The fact that reg(Z) = reg((̃x1)) − 1 = reg((x1)) − 1 = 0 and that
Z ∩ H is empty implies that reg(Z) ̸= reg(Z ∩ H), and consequently the Equation
(3.4) is not true. On the other hand, the equality

((IX + IH) : (IY + IH)) = ((x0x1, x0 + x1) : (x0, x0 + x1))

= ((x0x1, x0 + x1) : (x0, x1))

= (x0, x1)

give us that reg((IX + IH) : (IY + IH)) = 1. So, the Equation (3.3) holds because
reg(IX : IY ) = reg((x1)) = 1, in spite of the hypothesis (IX : IY ) + IH ̸= (x0, x1) is
not satisfied.

Remark 3.7. If I is not saturated, we have the following definition of regularity:

reg(I) = max{reg(Ī), sat(I)}.

Remark 3.8. Let < be a term order introduced on the monomials of the polynomial
ring R = K[x0, . . . , xn] and let in<(I) be the initial ideal of an homogeneous ideal I
of R. If the ideal I is saturated, it may happen that in<(I) is not saturated, however,
the inequality reg(I) ≤ reg(in<(I)) still true (see [7, Corollary 2.12]). The latter
could be not true for the regularity of schemes. Indeed, let X be an algebraic variety
of Pn, henceforth, reg(X) = reg(R/IX),where X = Proj(R/IX) and IX is saturated.
Despite of the fact that reg(IX) ≤ reg(in<(IX)) holds true, the ideal in<(IX) is not
longer saturated in general, so we cannot speak of Proj(R/ in<(IX)).
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Now we focus on the second topic that we want to investigate. We recall that
the “Uniform Position Principle” for a set of points Γ of the projective space Pn is
formulated in terms of the Hilbert function of the scheme Γ. To be precise, we have:

Definition 3.9. A set Γ of points of Pn is in uniform position if every pair of subsets
of Γ having the same number of points have the same Hilbert function.

The relevance of the concept comes from the following known result:

Theorem 3.6 (Uniform Position Principle). Let X be a variety of the projective space
Pn of dimension r. If V is a general linear space of Pn of codimension r, then X ∩V
is a set of points in uniform position.

Proof. See pages 109-113 of [1]. �

To state the most relevant geometric consequence in our context, we have the following
concept:

Definition 3.10. Let X be a variety of the projective space Pn whose defining ideal
is IX . A linear space V of Pn is general with respect to X if every associated prime
ideal of its defining ideal IV is not an associated prime ideal of IX .

Proposition 3.7. A linear space V of a projective space Pn of codimension r is a
variety of Pn.

Proof. The ideal IV can be generated by n− r circuits (see [11, Example 1.5]), hence
IV can be generated by a regular sequence of n−r linear forms of K[x0, . . . , xn], then
IV is a prime ideal. �

Proposition 3.8. Let X be a variety of a projective space Pn. If V ⊆ Pn is a linear
space consisting of hyperplanes in general position with respect to X, then V is general
with respect to X.

Proof. Assume that for some positive integer s we have IV = (h1, . . . , hs), which is
composed by hyperplanes defined by Hi = (hi) where h1, . . . , hs are linear forms of
K[x0, . . . , xn], and such that each Hi is general with respect to X. This implies that
Hi /∈ Ass(IX) = {IX}, and consequently Hi ̸= IX , for each i = 1, . . . , s. If IV = IX ,
then hi ∈ IX , but this contradicts the fact that Hi ̸= IX . Therefore, IV /∈ Ass(IX)
and V is general with respect to X. �

Remark 3.11. The converse of Proposition 3.8 is not true. Suppose that V is general
with respect to X. Since IV /∈ Ass(IX), we have that IV ̸= IX . Hence, (hi) /∈ Ass(IX)
for some i ∈ {1, . . . , s}, and the hyperplane generated by Hi is general with respect to
X. Nevertheless, we can have some hyperplane in V that is not general with respect
to X.

Corollary 3.9. Let X and Y be closed subschemes of Pn such that resY X is irre-
ducible of dimension one. If H ⊆ Pn is a general hyperplane with respect to X, then
resY ∩H(X ∩H) is a set of points in uniform position.
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Proof. The hyperplaneH is a linear space of codimension n−1, then (resY X)∩H
is a set of points in uniform position. The assertion follows by the next equality which
is given in Theorem 2.2:

(resY X) ∩H = resY ∩H(X ∩H).

The corollary below gives a way of constructing sets of points in uniform position.

Corollary 3.10. Let X and Y be varieties of a projective space Pn such that resY X
is irreducible of dimension r. If V is a linear space of Pn of codimension r that
consists of hyperplanes in general position with respect to X and Y , then the variety
resY ∩V (X ∩ V ) is a set of points in uniform position.

Proof. By Proposition 3.8, we obtain that V is general with respect to X, Y and
resY X. Set H1, . . . , Hn−r the hyperplanes that defines IV (that is, IV =

∑n−r
i=1 Hi).

So, we infer that:

(IX : IY ) + IV = (IX : IY ) +
n−r∑
i=1

Hi

= ((IX +H1) : (IY +H1)) +

n−r∑
i=2

Hi

...

= ((IX + IV ) : (IY + IV )).

Hence (resY X)∩V = resY ∩V (X∩V ). Since (resY X)∩V is a set of points in uniform
position, the assertion follows. �

Below, we need the following result:

Lemma 3.11. Let I and J be homogeneous ideals of K[x0, . . . , xn]. If I and J are
prime ideals, then (I : J) = I or (I : J) = K[x0, . . . , xn].

Proof. Let J = (g1, . . . , gs) where s is a positive integer and g1, . . . , gs are irreducible
elements of K[x0, . . . , xn]. It is known that (I : J) =

∩s
i=1(I : gi). Two cases may

occur. If J ⊆ I, then (I : J) = K[x0, . . . , xn]. Otherwise, (I : J) = I. Indeed, one
may find some i ∈ {1, . . . , s} such that gi /∈ I. Now, take a homogeneous element h of
K[x0, . . . , xn] belonging to the ideal (I : gi). Since I is prime, it follows that h ∈ I,
and therefore (I : gi) ⊆ I. This proves that (I : J) ⊆ I, and we are done. �

We conclude the paper with the following natural question:

Problem: Let Γ and Γ′ be sets of points of Pn in uniform position with sheaf ideals
IΓ and IΓ′ . Does the quotient sheaf IΓ : IΓ′ define a scheme of points in uniform
position?

Here, we give a partial answer to the above question:
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Theorem 3.12. Let X and Y be irreducible closed subschemes of dimension r of
a projective space Pn such that resY X is irreducible of dimension r. If V ⊆ Pn is
a linear space of codimension r which is general with respect to X and Y , then the
closed subschemes X ∩V and Y ∩V of Pn are sets of points in uniform position, and
either

1. the equality resY ∩V (X ∩ V ) = X ∩ V holds, or

2. both resY X and resY ∩V (X ∩ V ) are empty.

Proof. It is obvious that IX and IY are homogeneous prime ideals. So, by Theorem
2.2 and Lemma 3.11, the statement 1. corresponds to the case (IX : IY ) = IX , and
the statement 2. corresponds to the case (IX : IY ) = K[x0, . . . , xn]. �
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