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Abstract. The Ricci flow has a central position as one of the key tools
of geometry. The Kähler-Riemann flow generalizes the notion of Riemann
flow, along the line of Kähler-Ricci flow and Ricci flow. These extensions
are natural, since resemble results of Ricci flow and Riemann flow, but
also provide new methods of study and classification of Kähler spaces.

These techniques raised the problem of constructing families of related
Kähler metrics obtained deforming the initial metric by certain Kähler-
Riemann type flows, using properties of the h-projective, h-concircular
and h-conharmonic curvature tensor fields on Kähler manifolds. Holo-
morphically projective, concircular and conharmonic mappings between
Kähler manifolds, corresponding to these classes of evolution metrics, are
characterized.
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1 Introduction

The Ricci flow, first introduced by Hamilton, is the equation

∂gij
∂t

= −2Sij ,

where S is the Ricci tensor field.
The Ricci flow, which evolves a Riemannian metric by its Ricci curvature, is a

natural analogue of the heat equation for metrics. As a consequence, the curva-
ture tensors evolve by a system of diffusion equations which tends to distribute the
curvature uniformly over the manifold. Hence, one expects that the initial metric
should be improved and evolve into a canonical metric, thereby leading to a better
understanding of the topology of the underlying manifold.

Note that, due to the minus sign on the right hand side of the equation, a solution
to this parabolic type equation, whose prototype was the heat equation, shrinks in
the directions of the positive Ricci curvature and expands in directions of negative
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Ricci curvature. Generally speaking, it compresses all the positive curvature parts of
the manifold into nothingness, while expanding the negative curvature parts of the
manifold until they become very homogeneous.

The original goal in studying Ricci flow was related to the classification problem
of 3-manifolds, but generalizations in higher dimensions are still to be made.

Hamilton showed that on a compact three-manifold with an initial metric having
positive Ricci curvature, the Ricci flow converges, after rescaling to keep constant
volume, to a metric of positive constant sectional curvature, proving the manifold
is diffeomorphic to the three-sphere S3 or a quotient of the three-sphere by a linear
group of isometries.

Hamilton [14] later introduced the notion of Ricci flow with surgery and laid out
an ambitious program to prove the Poincaré and Geometrization conjectures. In a
spectacular demonstration of the power of the Ricci flow, Perelman [23] developed
new techniques which enabled him to complete Hamiltons program and settle these
celebrated conjectures. More recently, the Ricci flow was used to prove the Brendle-
Schoen Differentiable Sphere Theorem [2] and other geometric classification results
[22].

In addition to these successes has been the development of the Kähler-Ricci flow.
If the Ricci flow starts from a Kähler metric on a complex manifold, the evolving
metrics will remain Kähler and the resulting PDE is called the Kähler-Ricci flow.
Cao [6] used this flow, together with parabolic versions of the estimates of Yau and
Aubin, to reprove the existence of Kähler-Einstein metrics on manifolds with negative
and zero first Chern class.

Since then, the study of the Kähler-Ricci flow has developed into a vast field in its
own right. There have been several different avenues of research involving this flow,
including: existence of Kähler-Einstein metrics on manifolds with positive first Chern
class and notions of algebraic stability [12]; the classification of Kähler manifolds with
positive curvature in both the compact and non-compact cases [8]; extensions of the
flow to non-Kähler settings [24].

The ideas of Riemann flow and Riemann wave have their origin in the work of
Udrişte [25]. It turns out to be a very fruitful approach to consider the problem of
curvature flow via the bialternate product Riemannian metrics on Riemann spaces
[16], [26].

We extended these investigations in the complex case. In a similar fashion we
consider the Kähler-Riemann flow as a major tool in Kähler geometry. The behavior
of gradient Kähler-Riemann solitons with Bochner curvature tensor leads to a classi-
fication problem of Kähler manifolds [15]. In this framework it is possible to focus on
describing certain families of Kähler metric using properties and techniques of some
Kähler-Riemann type flows. In the third section we characterize the holomorphically
projective, concircular and conharmonic mappings between Kähler manifolds, cor-
responding to these classes of evolution metrics, obtained by deforming the initial
Kähler metric by some geometric Kähler-Riemann flows.

These are very recent developments in a field which we expect is only just begin-
ning.
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2 Riemann flow. Kähler-Riemann flow.

The idea of Ricci flow was generalized [25], [26] to the concept of Riemann flow, which
is a PDE that evolves the metric tensor G:

∂Gijkl

∂t
= −2Rijkl,

where G = 1
2g ∧ g, R is the Riemann curvature tensor associated to the metric g

and ”∧ ” is the Kulkarni-Nomizu product. For (0, 2)-tensors a and b, their Kulkarni-
Nomizu product [17] a ∧ b is given by

(a ∧ b)(X1, X2;X,Y ) = a(X1, X)b(X2, Y ) + a(X2, Y )b(X1, X)

−a(X1, Y )b(X2, X)− a(X2, X)b(X1, Y ).

These extensions are natural, since some results in the Riemann flow resemble the
case of Ricci flow. For instance, the Riemann flow satisfies the short time existence
and the uniqueness [16]. Also [25]:

Theorem A. If (M, g0) is a Riemann manifold (n ≥ 2) of constant negative
sectional curvature, then an evolution metric of the Riemann flow is given by gt =
(1 + (n− 1)t) g0. The manifold expands homothetically for all time.

Theorem B. For the round unit sphere (Sn, g0), n ≥ 2, an evolution metric of
the Riemann flow is gt = (1− (n− 1)t) g0 and the sphere collapses to a point in finite
time.

The following natural question arises:
How much of the above can be developed for the complex case?
In particular, if M is a Kähler manifold with an initial metric g0, what sort of

information can we obtain by deforming the metric by certain geometric flow?
The previous approach can be adapted to the complex case. We consider (M,J, g)

a Kähler manifold. The Kähler Ricci flow is:

∂gij̄
∂t

= −2Sij̄ .

These equations become strictly parabolic and it is easy to prove the short time
existence.

We extend the notion of Riemann flow for a Riemann space and the notion of
Kähler-Ricci flow on complex case to the concept of Kähler-Riemann flow on a Kähler
manifold (M,J, g)[15] :

∂Gij̄kl̄

∂t
= −2Rij̄kl̄,

where R is the Riemann curvature tensor field and G = 1
2g ∧ g.

Conjecture (Short time existence and uniqueness)
Let (M,J, g0) be a complex n-dimensional (n ≥ 2) Kähler manifold. Then there

exists ϵ > 0 such that the initial value problem

∂Gij̄kl̄(x, t)

∂t
= −2Rij̄kl̄(x, t), G(x, 0) = G0
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has unique solution G(x, t) on M × [0, ϵ].

We generalize the notion of Ricci soliton, according to the Kähler-Riemann flow,
in the following manner:

A solution of the Kähler-Riemann flow is said to be a Kähler-Riemann soliton if
it moves along under a one parameter family of automorphisms of M generated by
some holomorphic vector field X i.e.

Rij̄kl̄ = gil̄(∇j̄Xk +∇k̄Xj) + gkj̄(∇l̄Xi +∇iXl̄).

In the case that X is gradient of some potential functionf, the metric gij̄ is said
to be a gradient Kähler-Riemann soliton and one has

Rij̄kl̄ + λGij̄kl̄ = gil̄∇j̄∇kf + gkj̄∇l̄∇if ;

∇i∇jf = 0.

A solution is said to be expanding (shrinking, respectively steady) gradient Kähler-
Riemann soliton if there exists a potential function f and a constant λ such that λ < 0
(λ > 0, respectively λ = 0).

Proposition 2.1 Let (R2, gΣ) be a manifold with

gΣ =
dzdz̄

1 + |z|2
.

Letting function f = 1
2 log(1+ |z|2), then the metric is Kähler on C and is a gradient

steady Kähler-Riemann soliton, with potential function f.

Proof. Indeed, R11̄11̄ = 2g11̄f,11̄ = 1
(1+|z|2)3 . �

In complex local coordinates, the Bochner curvature tensor on a complex n-
dimensional Kähler manifold (M,J, g) is given by

Bij̄kl̄ = Rij̄kl̄ −
1

n+ 2
(gij̄Skl̄ + gil̄Skj̄ + gkl̄Sij̄+

+gkj̄Sil̄ +
ρ

2(n+ 1)(n+ 2)
(gkl̄gij̄ − gkj̄gil̄),

where ρ is the scalar curvature. One should mention that this curvature tensor is
invariant under the h-projective transformations on Kähler manifolds.

Ultimately, the main goal is to give a classification theorem [15]:

Theorem C. Let (M, g, f) be a complex n-dimensional gradient Kähler-Riemann
soliton with vanishing Bochner curvature tensor. Then the manifold has constant holo-
morphic sectional curvature. Consequently, M is Cn (steady case), CPn (shrinking
case), Bn (expanding case), or their quotients.
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3 Classes of related metrics produced by
certain geometric Kähler-Riemann flows

Conformal and h-projective mappings represent a successful technique used to convert
one mathematical problem and solution into another. In order to obtain families
of equivalent Kähler metrics, verifying geometric properties, we are interested in a
specific method, using some Kähler-Riemann flows.

a) h-projective equivalent metrics

Let M be a m = 2n real dimensional complex manifold.
If Kähler metrics g and ḡ are projective equivalent (i.e. if their unparametrized

geodesic coincide), then the associated Levi-Civita connections coincide i.e. ∇ = ∇
and there are only trivial examples of projective Kähler metrics.

Otsuki and Tashiro introduced another notion in the complex case. Therefore, in
h-projective geometry, the unparametrized geodesics are replaced by the ”generalized
complex geodesics”, known as h-planar curves.

Let (M,J, g) be a Kähler manifold and ∇ the Levi-Civita connection.
A regular curve γ : I 7→ M is called h-planar with respect to g if satisfies ∇γ′γ′ =

αγ′ + βJ(γ′), for some functions α, β : I 7→ R.
Let g and ḡ be two Kähler metrics on the complex manifold M. We call g and ḡ

h-projectively equivalent if each h-planar curve of g is h-planar with respect to ḡ and
viceversa.

∇ and ∇ are h-projectively equivalent iff there exists a (real) 1-form θ such that

∇XY −∇XY = θ(X)Y + θ(Y )X − θ(JX)JY − θ(JY )JX.

A bi-holomorphic mapping f : M 7→ M is called h-projective transformation if
f∗g is h-projectively equivalent to g. Equivalently, we can require that f preserves
the set of h-planar curves.

The h-projective curvature tensor HP, given by:

HP (X,Y )Z = R(X,Y )Z − 1

2n+ 2
[S(Y, Z)X − S(X,Z)Y−

−S(Y, JZ)JX + S(X, JZ)JY + 2S(X,JY )JZ],

is invariant under h-projective transformations.
One can produce a family of h-projectively equivalent metrics on Kähler manifolds

by deforming the initial metric in the following manner:

Theorem 3.1. Let (M,J, g0) be a Kähler manifold. The class
1
gt of h-projectively

equivalent Kähler metrics, given by the h-projective-Kähler-Riemann flow

∂
1

Gij̄kl̄

∂t
= −2HPij̄kl̄,

1

G (x, 0) = G0

verifies
1

G (x, t) = −2 HP (g0(x))t+G0(x)
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on M × [0, ϵ].
Proof. Implicit solution of a Cauchy problem associated to the HP -Kähler-Riemann

flow . �
As a consequence of the previous theorem and using properties of holomorphically

projective mappings obtained by Chuda and Mikes [11] one has:

Proposition 3.1. Let t ∈ (0, ϵ), ϵ > 0, ft : (M,J, g0) 7→ (M,J,
1
gt) be a holomor-

phically projective mapping, x0 ∈ M and x̄0 = f(x0).

If
1
gt (x̄0) = k(t)g0(x0) and

HP0(x0) ̸= 0, then f is a homothety and one has

∂2k(t)

∂t2
+ k(t)(

∂k(t)

∂t
)2 = 0, k(0) = 1.

b) concircular equivalent metrics

Let g 7→ ḡ = e2ug be a conformal transformation of the metric g on the Riemann
space (M, g), where u is a nowhere zero function on M .

The Levi-Civita connections are related by

∇XY = ∇XY +X(u)Y + Y (u)X − g(X,Y )grad (u).

The tensor field of the conformal change B ∈ T 0,2(M) has the components

Bij = ui,j − uiuj , ui =
∂u

∂xi
, i, j = 1, n.

If B = 1
n Tr(B)g, then the conformal change is called concircular transformation.

A concircular transformation carries all the circles of the manifold into circles (a
curve in a Riemannian manifold is called circle when the first curvature is constant
and all the other curvatures are identically zero).

On a Kähler manifold one consider the h-concircular curvature tensor

HZ(X,Y )W = R(X,Y )W−

− ρ

2n(2n− 1)
[g(X,W )Y − g(Y,W )X + g(JX,W )JY − g(JY,W )JX],

invariant under concircular transformations, where ρ is the scalar curvature.
A new approach of finding families of concircular related Kähler metrics is to use

the h-concircular Kähler-Riemann flow:

Theorem 3.2 Let (M,J, g0) be a Kähler manifold.

The class
2
gt= e2utg0 of concircular related Kähler metrics, with g0 given by the

HZ-Kähler-Riemann type flow,

∂
2

Gij̄kl̄

∂t
= −2 HZij̄kl̄,

2

G (x, 0) = G0

satisfies
2

G (x, t) = −2 HZ(g0(x)) t+G0(x)
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on M × [0, ϵ].
Proof. Implicit solution of a Cauchy problem associated to a HZ-Kähler-Riemann

type flow. �
Properties of concircular geometry proved by Yano lead to the following charac-

terization of Einstein Kähler manifolds:
Proposition 3.2.

Let t ∈ (0, ϵ), ϵ > 0, ft : (M,J, g0) 7→ (M,J,
2
gt) be a concircular mapping.

If (M,J, g0) is an Einstein Kähler manifold, then (M,J,
2
gt) is an Einstein Kähler

manifold.

c) conharmonic equivalent metrics
It is known that a harmonic function is defined as a function whose Laplacian

vanishes. In general, a harmonic function does not transform into a harmonic function,
by a conformal change of metrics.

The condition under which the harmonic functions remain invariant have been
studied by Ishii, who introduced the conharmonic transformation as a subgroup of
the conformal transformations satisfying the condition

uk
k = gijuij = 0, uij = ui,j − uiuj +

1

2
uku

kgij , i, j, k = 1, n.

On a Kähler manifold the h-conharmonic curvature tensor

HC(X,Y )Z = R(X,Y )Z +
1

2n+ 4
[S(X,Y )Z − S(Y,Z)X+

+S(JX,Z)JY − S(JY, Z)JX + 2S(JX, Y )JZ + g(Z,X)s(Y )−
−g(Y, Z)s(X) + g(JX,Z)s(JY )− g(JY, Z)s(JX) + 2g(JX, Y )s(JZ)],

where S(X,Y ) = g(s(X), Y ), is invariant under conharmonic transformations.
Starting with a h-conharmonic Kähler-Riemann flow, we outline the relation to

certain conharmonic related metrics:

Theorem 3.3 Let (M,J, g0) be a Kähler manifold.

The class
3
gt= e2utg0 of conharmonically related Kähler metrics with g0, given by

the HC-Kähler-Riemann type flow,

∂
3

Gij̄kl̄

∂t
= −2 HCij̄kl̄,

3

G (x, 0) = G0

satisfies
3

G (x, t) = −2 HC(g0(x)) t+G0(x)

on M × [0, ϵ].
Proof. Implicit solution of a Cauchy problem associated to a HC-Kähler Riemann

type flow. �
Using certain results concerning conharmonic transformations considered by B.H.

Kim, I.B. Kim, S.M. Lee [18], the previous family of metrics satisfies:

Proposition 3.3. Let t ∈ (0, ϵ), ϵ > 0, ft : (M,J, g0) 7→ (M,J,
3
gt) be a conhar-

monic mapping. If M is compact, then f is a homothety.
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[25] C. Udrişte, Riemann flow and Riemann wave, An. Univ. Vest, Timişoara, Ser.
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