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Abstract. In this paper, we study the conformal geometry of conformal
isoparametric spacelike hypersurfaces in conformal space QTH. We obtain
the classification of the conformal isoparametric spacelike hypersurfaces
in Q?“ with three distinct conformal principal curvatures, one of which
is simple, and the classification of the conformal isoparametric spacelike
hypersurfaces in Q.
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1 Introduction

Let (,)s be the Lorentzian inner product with s negative index of the (n + s)-
dimensional Euclidean space R"**: we denote

n n+s
(X,Y)s = inyi - Z ziyi, VX = (2:),Y = () € R"**.
=1 i=n+1

Let RP"*2 be the (n + 2)-dimensional real projective space. The quadric surface
QI = {[¢] € RP™2|(€,€)5 = 0} is called conformal space. We denote the Lorentzian
space forms (the Lorentzian space, the de Sitter sphere and the anti-de Sitter sphere),
respectively, as follows:

R?—i_l = (Rn+17 <a >1)7
S = {u € R"*2|(u,u); = 1},
H T = {u € R 2|(u, u)y = —1}.

We denote as well 7 = {[z] € Qa1 = zpy3}, 70 = {[z] € Q¥ 2,43 = 0} and

m_ = {[z] € Q7"!|z; = 0}. We shall further consider the conformal diffecomorphisms
oo : R} — Q?—H\m u [( <u’u2>71 , U, <u’u2>+1 )
o ST = QF N\, ues [(w, 1)];

oy HPE S QETI\T_, wes [(1,u)].
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From [11], we may regard Q""" as the common compactified space of R} ™', S+ and
H T while R?T! S and H? ™ are regarded as the subsets of Q7.

Let £ : M — QP be an n-dimensional immersed conformal regular spacelike
hypersurface in the conformal space Q7. From [9], we know that the conformal
metric of the immersion x can be defined by

n ] thj —nH? | (dz,dz) == e*" (dz, dx),
4,3

g =
n

which is a conformal invariant. Let

o= e"Cii, A=Y A0, ®0;, B= > ¢ By ®0;,D=A+)B,

=1 i,j=1 i,j=1

where A is a constant. We call &, A, B and D the conformal form, the conformal
Blaschke tensor, the conformal second fundamental form and the conformal para-
Blaschke tensor of the immersion x, respectively. It is known that &, A, B and D
are conformal invariants.

The conformal geometry of regular hypersurfaces in the conformal space is deter-
mined by the conformal metric. The negative index of the conformal space (@;’+1 is 1.
If the negative index is degenerate, then we obtain the Mobius geometry in the unit
sphere, which has been studied by many authors (see [1]-[5],[7]-[15]). An eigenvalue of
the conformal second fundamental form B, the conformal Blaschke tensor A and the
conformal para-Blaschke tensor D, are respectively called conformal principal curva-
ture, Blaschke eigenvalue or para-Blaschke eigenvalue of the immersion z. A regular
spacelike hypersurface = : M — Q’f“ is called conformal isoparametric spacelike hy-
persurface, if ® = 0 and the conformal principal curvatures of the immersion x are
constant.

C.X. Nie et al. studied the conformal geometry of conformal isoparametric space-
n+1

like hypersurfaces in the conformal space Q™" and obtained the following (see [11]):
Theorem 1.1. Ifx: M — QTILH is a conformal isoparametric spacelike hypersurface
with two distinct principal curvatures, then x is conformally equivalent to an open
part of the following standard embeddings:

(i) the Riemannian product S™(c) x H*~™(v/c2 —12) in Sy (r), ¢ > r; or

(i3) the Riemannian product R™ x H"~™(r) in RT; or

(i3i) the Riemannian product H™(c) x H*~™(v/r2 = ¢2) in H} T (1), 0 < ¢ < r;

where r? = —n=1_
m(n—m)

Recently, the first author and Su [14] obtained the classification of conformal
isoparametric spacelike hypersurfaces in Q} and Q. In this paper, we continue to
study the topic of conformal isoparametric spacelike hypersurfaces in Q?H. We
obtain the classification of the conformal isoparametric spacelike hypersurfaces in
Q?H with three distinct conformal principal curvatures, one of which is simple, and
the classification of the conformal isoparametric spacelike hypersurfaces in Q.

Theorem 1.2. Let x : M — Q?H (n > 3) be a conformal isoparametric spacelike
hypersurface in Q’f‘H with three distinct conformal principal curvatures, one of which
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is simple. Then x is conformally equivalent to an open part of the spacelike hypersur-
face WP(p,q,c) given by Example 3.1, where p,q,c are some constants, p > 1,q > 1,
p4q<n and gc* + pd* = (qc® + pd?)?, d = \/c2 — 1.

Theorem 1.3. Let x: M — QY be a conformal isoparametric spacelike hypersurface
in QS. Then

a) x is conformally equivalent to an open part of the standard embeddings:

(i) the Riemannian product S™(c)xH?~™(\/c2 —12) in S§(r), ¢ > r, m = 1,2, 3,4,
or

(ii) the Riemannian product R™ x H~™(r) in RS, m = 1,2,3,4, or

(iii) the Riemannian product H™(c) x HP~™(v/r2 —c2) in HS(r), 0 < ¢ < 7,
m =1,2,3,4, where r? = W; or

(iv) the spacelike hypersurface W P(p, q,c) given by Example 3.1, where p,q, c are
some constants, p>1,¢ > 1, p+q <5 and qc* + pd* = (qc® + pd®)?, d = /c2 — 1;

b) x is locally a Riemannian product M{™ X Mz‘r’fm, m = 3,4, where M257m is a
constant curvature Riemannian manifold.

2 Fundamental formulas on conformal geometry

We firstly review the fundamental formulas on conformal geometry of spacelike hy-
persurfaces in Q’f“, and use the following range of indices throughout this paper:
1<4,5,k,1,m <n (for more details, see [11] or [14]).

Let x: M — Q?H be an n-dimensional conformal regular spacelike hypersurface
with ® =0 in Q*'. From the structure equations on M (see [11]), we have

(21) Wij + Wi = 0, dwi = Zwij A Wi,
J

(22) 62TCI' = HTZ' — H7 — Zhijij BTBij = hij — HIZ‘j,

J

1
(23) 62TAij = TiTj - 7’7;7]‘ - Hhij — 5 (Z Tka - H2 - 6) Iij7
k

1

(2.4) dwij = win Awkj — B > Rijuwr Awi, Riji = —Rjik,
k k,l
9 n—1 1,
(2.5) > Bi=0, Y B} = —, trA = (n’s— 1),
i 1,7

(2.6) Aijr — Airj = BijCr — BiCj, Bijx — Bir,j = 0;Cr — 01 Cj,

(27)  Cij—Cii=Y (BirArj — BrjAn),
e
(2.8) Rijii = —(BikBji — BuBjk) + 0inAji + 01 Aik — 0iAji — 051 Ait,
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where R;j1; denotes the curvature tensor with respect to the conformal metric g on
M. Since the conformal form ® = 0, we have for all indices 1, j, k

(2.9) Aijk = Airj, Bijk = Birj, ZBikAkj = ZBijki«
3 k

The conformal (0, 2) para-Blaschke tensor is denoted by D = . ; Dijwi @ wy,

where A is a constant. From (2.9) and (2.10), we have for all indices ¢, 7,k that
Dijr = Dy ;.

3 Some results and examples

From Nie and Wu [10], Shu and Su [14], Nomizu [13], Li and Xie [6], we have the
following:

Theorem 3.1. (see [10]). Ifx: M — QT is a conformal reqular spacelike hypersur-
face in Q?"'l with parallel conformal second fundamental form, then x is conformally
equivalent to an open part of these standard embeddings:

(i) the Riemannian product S™(a) x H""™(va2 —r2) in P (r), a > r; or

(i1) the Riemannian product R™ x H"™™(r) in RY*!; or

(iii) the Riemannian product H™(a) x H*~™(v/r2 —a2) in H' ™ (r), 0 < a < 7,
where 12 = m(’;;_lm); or

(iv) the spacelike hypersurface x = ogou : SP(c) x RT x R*~P=4~1 x HI(d) — Q7
withd=+v/c2—1,p>1,q>1, p+q < n, where

w:SP(c) x R x RPP L HI(d) — RYT2 Cc RPT w(u/, t,u” u™) = (tu! o tu'™),
for allu' € SP(c), t € RT, v’ e R*P=9=1 o/ € HI(d).

Proposition 3.2. (see [14]) Let x : M — QP be an n-dimensional conformal
isoparametric spacelike hypersurface in Q?'H with constant normalized conformal
scalar curvature Kk and kK # 1. Then z is an n-dimensional Fuclidean isoparamet-
ric spacelike hypersurface.

Proposition 3.3. (see [13], [6]). Let x be a Euclidean isoparametric spacelike hy-
persurface in Lorentzian space form. Then x can have at most two distinct Euclidean
principal curvatures.

Example 3.1. (see [10]). For any natural number p,q, p + ¢ < n and real number
c € (1,400) and d = v/¢2 — 1, consider the immersed hypersurface u : SP(c) x R x
R*P=0-1 x Hi(d) — R}T?  RYM: w(/,t,u”,u™) = (td/,u” tu"), v € SP(c),
t e RY, o € RrP=971 o/ € Hi(d), then 2 = ggou : SP(c) x RT x R*=P=a~1 x
H9(d) — Q' is a conformal regular spacelike hypersurface in Q) ", which is de-
noted by WP(p,q,c) = z(SP(c) x Rt x R"=P=4=1 x H4(d)). From [10], by a direct
calculation, we know that WP(p,q,c) has three distinct constant conformal princi-
pal curvatures and the conformal second fundamental form is parallel. We may also
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calculate that W P(p, g, c) is of parallel conformal Blaschke tensor. Thus, the con-
formal Blaschke eigenvalues are constants, from (2.5), we know that the normalized
conformal scalar curvature x is constant. If k # 1, from Proposition 3.2 and (2.2), we
see that W P(p, q, ¢) is of three distinct constant Euclidean principal curvatures, this
contradicts Proposition 3.3. If k = 1, we know that the normalized FEuclidean scalar
curvature R = k = 1. From Gaussian equation n(n—1)(R—1) =}, ; hi; —n*H?, we
see that Z” hfj =n2H?, this is equivalent to qc* + pd* = (gc? + pd?)? (see Example
2.1 of [10]).

Example 3.2. (see [14]). Spacelike hypersurface z : S™(¢) x H* ™ (V2 — r2) —
St (r), r < c. Let @ = (z1,22) € S™(c) x H"™™ (V2 —r2) C RP"M! x RY ™,
(z1,1) = 2, (w2,22) = — (c* —r?). By a direct calculation, we see that z has
two distinct principal curvatures % and % with multiplicities m and n — m and the
conformal second fundamental form of x is parallel, where d = 7%_72

Example 3.3. (sce [14]). Spacelike hypersurface z : R™ x H* ™ (r) — R, Let 2 =
(z1,22), 21 € R™, xp € H* ™ (r) C R}™™F (25, 25) = —r2. By a direct calculation,
we see that = has two distinct principal curvatures 0 and —% with multiplicities m
and n —m and the conformal second fundamental form of = is parallel.

Example 3.4. (see [14]). Spacelike hypersurface = : H"(c) x H" ™ (V12 — ¢2) —
H'(r), 0 < ¢ < 7. Let & = (21, 20) € H™(c) x H* ™ (V2 —c?) c R R

(z1,m1) = =2, (2, m2) = — (r* — ¢?). By a direct calculation, we see that z has two

distinct principal curvatures % and _Tld with multiplicities m and n — m and the

/r2 —c2

conformal second fundamental form of x is parallel, where d = **—

4 Proof of theorem 1.2

Throughout this section, we shall make the following convention on the ranges of
indices: 1 < a,b <mi,mi+1<p,g<mi+mg, mi+me+1<a,B <mi+mot+mz=
n, 1 < 4,5,k < n. Let A, B and D denote the n x n-symmetric matrices (A;;),
(Bij) and (D;;), respectively. From (2.9) and (2.10), we know that BA = AB,
DA = AD and BD = DB. Thus, we may always choose a local orthonormal basis
{El, E27 SN 7En} such that

(4.1) Ay = Aidij, By = Bidij, Dij = D;dyj,

where A;, B; and D; are the conformal Blaschke eigenvalues, the conformal principal
curvatures and the conformal para-Blaschke eigenvalues of the immersion z.

Proof of Theorem 1.2. If the conformal second fundamental form of x is parallel, since
x has three distinct conformal principal curvatures, from Theorem 3.1, Example 3.1—
Example 3.4, we know that x is conformally equivalent to an open part of the spacelike
hypersurface W P(p, q, ¢) for some constants p, ¢, ¢ given by Example 3.1.

If the conformal second fundamental form of x is not parallel, denote by B, Bs and
Bs the three distinct constant conformal principal curvatures of x with multiplicities
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my, ma and mg, from the definition of the covariant derivative of B;; (see (2.7) of
[14]), we have

(4.2) > Bijswr = (Bi — Bj)wij, Bijx =T9.(Bi—By),
k

where TV <. is the Levi-Civita connection for the conformal metric g given by w;; =
EFlkwk, ng Fz . By (4.2), it follows that for any a,b,p, q,, 3,k

(4.3) Bap,k = Bpg .k = Bap,k = 0.

Since the conformal second fundamental form is not parallel, we see that the only
possible non-zero elements in {B;; 1} are of the form {B,, o}. Since n > 3, without
loss of generality, we may assume that m3z =1, m; > 1 and mgo > 1.

From (2.4) and (2.1), the curvature tensor of x may be given by (see [8])

(44)  Riu =E/(T%) Z L+ TRy, — DT ).

Thus, from (4.2) and (4.3), we have

(45) ng = ng = 07 F;q = F = 0 Fa,@ = Fiﬁ = 07

B B B
4. I? — _Cap,x e — _—aa,p re — &'
( 6) aa Bl — B27 ap — 33 — Blv pa 32 — B3

From (4.5) and (4.6), we have
(47)  T%,=T%, =0, T2, =T0, =0,

nn nn

B n Bb Bb Bb n
4.8 TP _——ap,n Fp — p,n I = q,n T — q, .
( ) an B1 B2 nb Bs — BQ’ bq By — 337 qb Bs — B;

Thus, from (4.4), we have

BuapnBogn + Bagn By
4. apbg = 1P —Ie Ty -1 P = ap,nBog,n agq,nDop,n
( 9) R pbgq an qb aqg- nb — (Bl — B3)(B2 — BS)

On the other hand, from (2.8), we have

(4.10) Rappg =(—BoBp + Ay + Ap)daplpg-
It follows from (4.9) and (4.10) that
Bap,anq,n + Baqubp,n

(411) (Bl _ B3)(B2 _ Bg) = (_BaBp + Aa + Ap)(sab(splh
2Bup,nBa .

(412) (Bl — BZ;)(B;L— B3) ( B1B2 +A +A )6pqa lf a = b,
2BupnB .

(4.13) Bo BZ)(BZPL gy = (CBiBat Aut A)da, i p=g
2B1, B

(4.14) lpn—lg,n = (=B1By+ Ay + Ap)bpg, if my = 1.

(B1 — B3)(B2 — Bs)
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Since the conformal second fundamental form is not parallel, we may prove that there
exists exactly one p, such that By, ,, # 0. In fact, if there exist at least two p1, pa,
(p1 # p2) such that Byy,, ,, # 0, Bip, n # 0, from (4.14), we have Bip, nBip,n = 0,
this follows that By, » = 0, or Byp, »n = 0, a contradiction. Thus, we know that there
exists exactly one p, such that By, , # 0.

If mo = 1, it follows that 21(3);’1"”313)”(?:1531)" = (—=B1Bs + Ag + Amy+1)0ap. The
same reason implies that there exists exactly one a, such that Bgpm, 1.0 7 0.

If m; > 2 and mo > 2, we may prove that there exists exactly one a and exactly
one p such that B, , # 0. In fact, if there exist at least two a1, a2, (a1 # az2) such
that Ba,pn # 0, Baypn # 0, from (4.13), we see that By, p nBaspn = 0, this follows
that By, pn = 0, or By,pn = 0, a contradiction. Thus, we know that there exists
exactly one a, such that By, # 0. By the same reason, we may prove that there
exists exactly one p, such that By 7# 0.

Combining the above three cases, we see that if m; > 1 and mg > 1, there exists
exactly one a and exactly one p, say a; and pp, such that

(4.15) Bapin 0, Bepn =0, for a#a1,Vp, or for Va,p # p;.
By (4.10), (4.12) and (4.15), we get

2

(4.16) Ropraipy = —B1Ba + A, + Ap, = 5 _233151(%72 5

(4.17) Ropap = —B1Bo+ A, +A, =0, a# a1, p#p1,

(4.18) Roprapr = —B1Ba + A+ Ay, =0, a #ay,

(4.19) Raypayp = —B1Ba + Ao, + 4, =0, p# pr1.

From (4.2), (4.3), (4.4), (2.8), (4.10) and for the reason above, we get

(4.20) Rainain = —B1Ba + Aq, + Ay = 2Bispyin ,
o ' (B1 — B2)(Bs — Ba)

(4.21) Rynan = —B1Bo+ Ay + A, =0, a# ay,

(4.22) Ryinpin = —B1Ba+ A, + A, = 2Bispi.n )

' (Bs — B1)(Bs — B1)
(4.23) Rpppn = —B1Ba + A, + A, =0, p# pr1.

Thus, from (4.16)—(4.23), we see that the normalized conformal scalar curvature
K= ity iz Rijis = 0 # 1. Since (2.2) implies that the matrix (By;) and (hy)
are commutative, we can choose a local orthonormal basis such that B;; = B;d;; and
hij = Ai0i;, where \; are the Euclidean principal curvatures of z. From (2.2) and
Proposition 3.2, we know that = is an n-dimensional Euclidean isoparametric space-
like hypersurface with three distinct Euclidean principal curvatures, this contradicts
Proposition 3.3. Thus, the case that the conformal second fundamental form of z is
not parallel does not occur. This completes the proof of Theorem 1.2. O

5 Proof of theorem 1.3

Proposition 5.1. (see [12]). Two regular spacelike hypersurface © : M — Q”H
and & : M — Q”+1 mn Q”+1(n > 3) are conformally equivalent if and only if there
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exists a diffeomorphism f: M — M which preserves the conformal metric g and the
conformal second fundamental form B.

From [12], we also know the definition that a spacelike hypersurface with vanishing
conformal form is called a conformal para-isotropic spacelike hypersurface if there is
a function p such that A + AB + pg = 0. We have the following:

Proposition 5.2. (see [12]). A conformal para-isotropic spacelike hypersurface in
Qrf“ is conformally equivalent to one of the spacelike hypersurfaces with constant
mean curvature and constant scalar curvature in Lorentzian space form.

Proof of Theorem 1.3. From (2.5), we see that the number ~ of distinct conformal
principal curvatures can only take the values v = 2, 3,4, 5.

(1) If v = 2, from Theorem 1.1, we know that Theorem 1.3 is true.

(2) If v = 3, we see that at least one of the conformal principal curvatures is
simple. From Theorem 1.2, we know that Theorem 1.3 is true.

(3) If v = 4, from Theorem 3.1, Example 3.1-Example 3.4, we know that the
conformal second fundamental form of x is not parallel. Let By, By, B3, By Bs be
the constant conformal principal curvatures of . Without loss of generality, we may
assume that By # By # B3 # By = Bs. From (4.2), we have

Bijk

51) Buyp=0, Busp—=0, forall ik, wy=3 ——dk_
( ) k 45,k or all 7 Wij - BlfB]

Wk, for Bz 75 Bj.

By the similar method in [4], we have the following Lemmas (see Lemma 3.1 and
Lemma 3.2 in [4]):

Lemma 5.3. Under the assumptions above, we have

(5.2) Bi24B125 _ Bi34Bi3s
' (B1 — B2)(Bs— Bz)  (B1— B3)(Bs — By)’
(5.3) Bi2,4B125 _ B33 4 B3 5

(B — B1)(Bs — B1) (B2 — Bs)(Bs — Ba)’

Lemma 5.4. Let i, j, k be the three distinct elements of {1,2,3} with arbitrarily given
order. Then

(5.4) Riiii — 2B 5 N 2(B} 4+ B} 5)
ijij (Br — B;)(Br — Bj) (B4—Bz')(B4—Bj)’
(5.5) Riss = 284 . 282, |
(B = B)(B; = Bs) * (Br — Bi)(Br — Ba)
2B 282, .
(56) Risi5 = ), ik,5

(B, — B)(B, — B5) | (Br—B:)(Br—B3)’

Lemma 5.5. Under the assumptions above, we have

(t) for any distinct i, j € {1,2,3} and any distinct o, 5 € {4,5}, if Bi23Bija # 0,
then Bis g = Bia g = Baz g = 0;

(#9) Bi12,4B12,5 = B134B13,5 = Ba3 4Bas s = 0.
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Proof. (i) Without loss of generality, we may only prove that for any distinct 4,5 €
{1, 2,3}7 if Blg7gBij)4 7& 07 then 31275 = 313)5 = 32375 =0. In fact, if 31275 75 07 from
the definition of the covariant derivative of L;; and B;; (see (2.6) and (2.7) of [14]),
we have

(5.7) Aijre = Ex(A)dij + T2, (Ai — Aj), Bijr = Ex(Bi)dij + T7.(B; — Bj).

Thus, from (5.7), we see that for any distinct 4,5 € {1,2,3}, A2z _ Ai-dy

Bi23 B1—DB>
A1 —Asg _ As—As  Aija — Ai—Aj _ A;—Ay _ Aj—Ay Az _ A1 —A> — A1 —As _
B1—Bs3 B2—B3’ Bija B;—B; B;—By B;—B4’ Bias B1—B3 B1—Bs
%. If ¢ = 2,5 = 3, we see that there is a function A such that
A1 — Ay A1 —As Ay — Ay Al — Aj
(5.8) - - - Y

Bi—By, B —-B3 By—-By B —DBs
Thus, from (5.8), we also see that there is another function p such that
(59) A1 + ABl = Ag + )\Bg = A3 + )\B3 = A4 + )\B4 = A5 + )\B5 = —U.

Thus, we see that x is a conformal para-isotropic spacelike hypersurface, and from
[12], we know that A and p are constant. From Proposition 5.2, we know that x
is conformally equivalent to one of the spacelike hypersurfaces with constant mean
curvature and constant scalar curvature in Lorentzian space form, which, from [12],
is also a conformal para-isotropic spacelike hypersurface denoted by z. From Propo-
sition 5.1, we know that z also has four distinct constant conformal principal cur-
vatures B; (i =1,2,3,4). Since & has constant mean curvature and constant scalar
curvature, from Gaussian equation and e’Bi=\—H , we see that Z is a Euclidean
isoparametric spacelike hypersurface with four distinct Euclidean principal curvatures
Ai(i =1,2,3,4) in Lorentzian space form, this contradicts Proposition 3.3. Thus, we
must have Bias = 0. By the similar reason, we may prove that Bizs = 0 and
Bz 5 = 0.

(#9) Suppose that Bis 4Bi25 # 0, by Lemma 5.3, we have Biz4Bi35 # 0 and
Bys 4Bas s # 0. By the similar method in the proof of (i), we shall conclude. O

Now, we return to consider the case v = 4, since the conformal second fundamental
form is not parallel, from (5.1), we should notice that the possible nonzero elements
of Bijr,1<4,j,k <5 maybe {Bi23, Biza, Bi2s, Bisa, Biss, Basa, Bass}

We may consider two cases: Biz3 =0 and Bia 3 # 0.

Case (i). If Bya g =0, since B is not parallel, we know that there is at least one
nonzero element in {312)4, 312757 B13)4, 313757 B23)47 32375}, without loss of generality,
we may assume that B2 4 # 0. By Lemma 5.5, we have By 5 = 0 and there are at
most two nonzero elements in {B134, B13 5, B23 4, Bas s}

Subcase (’L) If 313’4 = 313’5 = 32374 = B23’5 = 0, since 31274 7é 07 312’3 =0 and
Bz =0, from (5.4), (5.6) and (2.8), we have

(510) Ay + As — BoBs =0, A3+ As — B3Bs; =0,
2By,

5.11 Ay + Ay — BoBy = ,
( ) 2 4 204 (BlfBQ)(Blfle)

Az + Ay — BsBy = 0.




66 Shichang Shu and Junfeng Chen

2B?
From (510) and (511), we have A2 —A3 - (BQ —Bg)Bg = M%, AQ —A3 —
(B2 — Bs)Bs = 0. Since By = Bs, we sce that z—pt2—p— = 0, that is Biz.4 =0,

a contradiction. Thus, subcase (i) does not occur.

Subcase (i1). If exactly one of {Bi3 4, Bis,5, B23 4, B23 5} is nonzero, the symmetry
of indices 1 and 2 implies that we need only to consider two cases: Bag 4 # 0 with
B34 = Bi3s = Bazs = 0, or Byg 5 # 0 with By3 4 = Bi35 = Baz 4 = 0.

If Bog 4 # 0 with Big 4 = B35 = Bass = 0, since Biay # 0, Biaz = Bias =0,
from Lemma 5.4, we have

-1 " 2B% 4 R 2By 4
( . ) 1212 = (B47B1)(B4*B2)7 1414 = (BQ,Bl)(BQfBAI)v
2B3; 4
1 = = - 7
(5.13) Riziz =0, Risis =0, Razos (Bs — B3)(By — B3)’
2B2, , 2B3; 4
5.14 Rosoq = ’ : flasas =0
G R = By = By T (B Ba)(Bs — By =
: 8430 = (B B (By— By o =V

From (5.1), we have wis = wos = wss = 0. From (2.8), we know that if three of
{4, 74, k, 1} are either the same or distinct, then

(5.16) Rijn = 0.

By (2.4), (5.16), wij = YT wk, wis = was = wss = 0 and Rys15 = Rasas = Rasas = 0,
%

we obtain 0 = dws — Zk Wik N Wgs = —W1g4 N\ Wyes = —F§4w2 Awys, 0 = —wag Awys =
—(T2,w1 + T3,w3) Awys, 0 = —ws3g Awgs = —I'3,w2 A wys, this follows that wys = 0.
Combining wys = wes = wzs = 0, we obtain Ry545 = 0. From (5.12)—(5.15) and
Rys545 = 0, we have k = 71() Zi# Rijij = ;*O{Rum + Ri313 + Ri414 + Ris15 + Razos +
Rogo4 + Rosos + Rasza + Rasss + R4545} =0 # 1. From (2.2) and Proposition 3.2,
we know that z is a Euclidean isoparametric spacelike hypersurface with four distinct
FEuclidean principal curvatures, this contradicts Proposition 3.3.

If Boss # 0 with By 4 = Bigs = B2z 4 = 0, since Bia4 # 0, Bia3 = Bias =0,
from Lemma 5.4, we have Rgy34 = 0. By (5.1), we have w3 = wis = wsgg = 0. Thus,
from (2.4), Wiy = Zngwk, (516) and R3434 = 0, we obtain 0 = —ws32 N\ Woy — W3s N

k

o Baz.sB
wsg = —I3; T3 ws Awr — Piyws Awsa, this implies that T5;13) = =555 5,y = 0,

a contradiction. Thus, subcase (ii) does not occur.

Subcase (iii). If exactly two of {Bis 4, Bi3,5, Basa, Boss} are nonzero, the sym-
metry of indices 1 and 2 and (ii) of Lemma 5.5 imply that we need only to consider
three cases: 32374 # 0, 313’4 # 0 with B13’5 = 323?5 = 0, or 32374 # 0, 313,5 7& 0
with 313’4 = 32375 = 0, or 323,5 75 0, 31375 7’5 0 with 313,4 = 32374 =0.

If Bag 4 # 0, Bi3.4 # 0 with B35 = Bag 5 = 0, since B1a 4 # 0, Big3 = Bia5 = 0,

Bi2,4 _ Biza _ Bi2a Bi3,4
from (5.1), we see that wia = B, W WIS = B om W Wid = B om W2 T B oW

Ba3 4 _ Biag Ba3 4 _ _ Biza
wis = 0, weg = F g W, W = B opW1 T popWawes = 0, way = poprwn +
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szf’§4 wa, wss = 0. From (2.4) and (2.1), we have

(5.17) —Ro33w2 A wg = —% %l: Raspiwr A wp = dwaz — zk:wmc A w3
__Baza diog + dBa3 4
By — B3 Bs — Bs
_ B33 4 Wi A ( Bia g e Biza w3>
By — B3 B1 — By B1 — By
Bz Biay w1+ B34 w3)
By — B3 By — By By — By
B34 Wi+ Ba3 4 w2>
Bs — By Bs — By

Nwyg — wa1 Awiz — wag A wys

+

w2/\<

+ ’ w?,/\(

Ba3 4 dB23 4
== 5 /\ Pt M
T B\t B h;

Bioy Bas 4 } { B34 B3 4 }
: : N : ’ .
+{BQ—B4“1+BQ—B4“’3 Bs— Bt T By B2

N Wy

Comparing the coefficients of wy Aws and w; Aws on both sides of the above equation,

: 1 1 1 _ 1
we obtain (32*33)(31*34)1_ (B2—B3)(B2—Ba) + (32*34)(33*124) =0, (B2—B3)(Bi—Ba)

i _ s . _ .
t(.Bz—B3)(Bg—B4) ~ (B2—Ba1)(Bs—Ba) 0, this implies Bo-B)(Bs—Ba) 0, a contradic-
ion.

If Boz g # 0, Bi3s # 0 with By3 4 = Ba3 5 = 0, since Biay # 0, Bia3 = Bia5 = 0,
from (5.7) and for the reason in the proof of Lemma 5.5, we see that (5.9) holds for
A and p, that is,  is a conformal para-isotropic spacelike hypersurface. By reasoning
as in the proof of Lemma 5.5 again, we have a contradiction.

If Bazs # 0, Bi3s # 0 with By3z 4 = Ba3 4 = 0, since Bia gy # 0, Bia3 = Bias =0,
by reasoning as in the proof of Lemma 5.5, we see that x is a conformal para-isotropic
spacelike hypersurface and we also have a contradiction. Thus, subcase (iii) does not
occur.

To sum up, we know that case (i) does not occur.

Case (ii). If Biag # 0, by Lemma 5.3 and Lemma 5.5, we see that there are at
most three nonzero elements in {Bi2.4, B125, B134, B13,5, B23.4, B23 5}

Subcase (Z) If 31274 = 312,5 = 313)4 = 31375 = 323’4 = 323,5 = O7 since
Bia,3 # 0, from Lemma 5.4 and (2.8), we have

(518) A, + Ay — BBy = 2Bl ,
(B3 — B1)(Bs — By)
(5.19) Ay + A3 — B1Bs = 2B1a3 ,
(B2 — B1)(B2 — Bs)
2B 5

5.20 Ag+ A3 — BoBs = ,
(5.20) 2 3 2B = 5 BB — By)

(5.21) Ay +Ay— BBy, =0, Ay + Ay —BsBy =0, A3+ Ay — B3B,; =0,
(522) Al + A5 — BlB5 = 0, A2 + A5 — BQB5 = O7 A3 + A5 — B?,Bg, =0.
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Since By = Bs, from (5.21) and (5.22), we get A4 = As. From (5.18)—(5.21) we obtain

2(B1 + By — 233)3%273
(B2 — B1)(B2 — B3)(B1 — Bs)’
4B7, 5
(Bs — B1)(B1 — Bs)’

(5.23) (B1 — B2)(Bs — B4) =

(5.24) 94, — B1By — By B3 + ByB3 =

From (5.23), we see that Bjg3 is constant. Thus, from (5.24), (5.18)—(5.22), we
know that Aj, As, A3, Ay, As are constants. By (5.21), we see that Ay — ByB; =
A2 — B4BQ = A3 — B4B3 = —A4. On the other hand, we have A4 - B4B4 =
As — B4Bs = constant =: v. We may prove that v # —A,. In fact, if v = —Ay,
denote by D = A + (—B4)B the conformal para-Blaschke tensor of the immersion
x, we see that x is a conformal para-isotropic spacelike hypersurface. By reasoning
as in the proof of Lemma 5.5, we have a contradiction. Thus, we know that z must
be a conformal spacelike hypersurface with two distinct constant conformal para-
Blaschke eigenvalues. Let ¢ and 1 be the two distinct constant conformal para-
Blaschke eigenvalues of x with multiplicities m and 5 — m respectively. From the
definition of the covariant derivative of D;j, we have Y, D;; rwi = (D; — Dj)w;j.
Thus D;jr =0 for 1 <4,5 <m,or m+1<14,7 <5. From the symmetry of D;; x,
we see that D;; = 0 for all 4, j,k, that is, the conformal para-Blaschke tensor of
x is parallel. Thus, we have w;; = 0, for 1 < ¢ <m, m+1 < j < 5. Hence, we
know that the distributions of the eigenspaces with respect to ¢ and 7 are integrable.
Since the number of distinct conformal para-Blaschke eigenvalues of z is two, we see
that z is locally a Riemannian product M{™ x Mg’*m, where M{" and M257m are the
Riemannian integrable manifold corresponding to ¢ and 7 respectively. Since w;; = 0,
for1<i<m,m+1<j <5, wehave Rij;; =0for1 <i<m,m+1<j<5. Thus,
from (2.8) and D = A + (—By)B, we have (B; — By)(B; — By) — ((+1) — B} =0 for
1<i<m,m+1<j5<5.

If m =1, we have (By — By)(Bj, — Bj,) = 0 for 2 < j1, jo < 5, j1 # ja. Since
By # B4, we obtain that B = B3 = By = B, a contradiction.

Ifm= 27 we have (B“ — Bl‘z)(Bj — B4) =0for1l S il,ig S 2, il 75 ig, 3 S ] S 5.
Since By # Bs, we obtain that B3 = B4y = Bs, a contradiction. Thus, we must have
m > 3. From (2.8), we may easily obtain that R;jx = (2n + B%)(0ixdj1 — 6:10;1) for
m+1<1,5,k, 1 <5, that is, M25_m is a constant curvature Riemannian manifold.

Subcase (ii). If exactly one of {B124, Bi2,5, B13.4, B13,5, B234, Bos 5} is nonzero,
without loss of generality, we may assume that Bjs4 # 0. Since Bia3 # 0, Bias =
31374 = 31375 = 32374 = 32375 = 07 from (55), (56) and (28), we have A2 + A4 —

2B?
ByBs = gr=pyy =y A2t As—B2Bs = 0, As+A4—B3By = 0, A3+A;—B3Bs = 0,
2
this implies that m = 0 and Bj24 = 0, a contradiction. Thus, subcase

(ii) does not occur.

Subcase (’LZZ) If exactly two of {31274, 312,5, 31374, B1375, 32374, 32315} are
nonzero, without loss of generality, we may assume that Bjs4 # 0. By Lemma 5.5,
we have Bia5 = Bi3s = Bass = 0. Thus exactly one of {Bi3 4, Ba3 4} is nonzero,
without loss of generality, we may assume that Byz4 # 0, Bgga = 0. From (5.1),
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(2.4), (2.1) and for the reason above, we see that

(5.25) —Ro3p3w2 Awsz = —% ; Rozpiwi A wy = dwaz — Xk:wzk A W3
dBi2,3 Bia3 Bi23 Bi24
B, -8, " T B, — B, (31 BT B - ng4> Az
Bia3 ( Bia3 e Bi34 w4) Aws
By — B3\ B; — Bs By — Bs
Biag3 ( B2 s B34 ws) A wy
Bs — B3\ By — By By — By

Bia3 Biaa ) ( Bias B34 )
, ‘ , A , , .
+(B17B2LU3+817B2(U4 Bl*BE}Wz—’—BlfBiiw4

Comparing the coefficients of ws Awy and w3 Aw, on both sides of the above equation,

: 1 1 1 _ 1
we obtain (32_33)(31_32)1— (B—Bs)(Bi=By) T (=B (Bi=Bs) — O (Ba=Ba)(BiBa) —

Ba=By) (BB~ (Bi=B)(Bi=B3) — 0, this implies BB (Bi=Bs) — 0, a contradic-
tion. Thus, subcase (iii) does not occur.

Subcase (iv). If exactly three of {Bi24, Bi2s, Bis4, Biss, B2sa, Bass} are
nonzero, we may consider the following cases:

If all of 312,57313757323,5 are zero, then it must have 31274 75 0, Bl374 75 O7
B3 s # 0. From (5.1) , Lemma 5.4 and (2.8), we have wis = was = w3z = 0
and Ris15 = 0, Roso5 = 0, Rasss = 0. Therefore, from (2.4) and (4.3), we obtain
0=dwis — >, wik Awks = —wia Awgs = —(Thwo + Thws) Awas, 0= —wag Awys =
—(T2,w1 +T2,w3) Awas, 0 = —w3g Awas = —(T3,w1 + T'3,wa) A wys, this follows that
wygs = 0. Combining wis = wes = wzs = 0, we obtain Rys45 = 0. From (5.4), (5.5)
and Risis = 0,0 = 1,2,3,4, we get & = 555, Rijij = 0 # 1. From (2.2) and
Proposition 3.2, we know that z is a Euclidean isoparametric spacelike hypersurface
with four distinct Euclidean principal curvatures, this contradicts Proposition 3.3.

If two of {Bi2,5, B135, Bes5} are zero, without loss of generality, we may assume
that Bias = Biss = 0 and Baszs # 0. From (ii) of Lemma 5.5, we must have
B2374 = 0. Thus, it must follow that B1274 75 O7 B13,4 75 0. From (57) and for the
reason in the proof of Lemma 5.5, we see that z is a conformal para-isotropic spacelike
hypersurface and we have a contradiction.

If one of {Bi2,5, Bi3,5, B35} is zero, without loss of generality, we may assume
that Bias = 0, Biss # 0 and Basgs # 0. From (ii) of Lemma 5.5, we must have
Bi34 = Ba3 4 = 0. Thus, it must follow that Bz 4 # 0. By reasoning as in the proof
of Lemma 5.5, we see that z is a conformal para-isotropic spacelike hypersurface and
we have a contradiction.

To sum up, we know that case (ii) does not occur.

(4) If v+ = 5, from Theorem 3.1, Example 3.1-Example 3.4, we know that B
is not parallel. Without loss of generality, we may assume that Bis3 # 0. Since
B1 75 BQ # B3 7é B4 7& B5, from (42)7 we have Bii,k = 0 for all i, k.

By a similar method as in the proof of [4], we have the following (see Lemma 4.1
in [4]):

Lemma 5.6. Let By, By, B3, By, By be the constant conformal principal curvatures
of v : M — QY with By # By # B3 # By # By and i,3j,k,l,s be the five distinct
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elements of {1,2,3,4,5} with arbitrarily given order. Then

2B, 287

Bi—B)(Bi—B;) ' (B.—Bi)(Bs—By)

2B,

(Br. — Bi)(Br — Bj)

Now, we return to consider the case v = 5, since B is not parallel, we may consider
the following two cases:

Case (Z) If 312,3 7é 0 and all of {312’4, B12’5, 313’4, 313’57 323’4, 323,5} are
zero, in this case, we may prove that at most one of {Bi4 5, B245, Bsas} is zero.
In fact, without loss of generality, if Biy5 = Bass = 0, by Lemma 5.6, we obtain
K= 5 >izj Rijij = 0 # 1. From (2.2) and Proposition 3.2, we know that z is a
Euclidean isoparametric spacelike hypersurface with five distinct Euclidean principal
curvatures, this contradicts Proposition 3.3.

We now assume that Bays # 0,Bss5 # 0. Since Bias # 0, by the similar
method as in the proof of Lemma 5.5, we see that there exist A and v such that
A2+)\B2 :A3+>\Bg :A4+)\B4 :A5+)\B5, A1+VBl :A2+I/BQ :A3+Z/B3,
this implies that A = v and

(527) A +ABy = Ay + ABy = A3 + ABs = Ay + \By = A5 + \B:s.

From (5.27), we see that x is a conformal para-isotropic spacelike hypersurface. By
reasoning as in the proof of Lemma 5.5, we have a contradiction.

Case (’L’L) If 31273 # 0 and at least one of {B1274, 31275, B1374, 31375, B2374, 32375}
is nonzero, without loss of generality, we may assume that Bis4 # 0. We consider
the following two subcases:

Subcase (i). If all of { B1a5, B13,5, Bos.5, B14,5, Boa 5, B3a 5} are zero, since Bia 3 #
0 and Bya4 # 0, by Lemma 5.6, we obtain x = % Z#j R;ji; = 0% 1. From (2.2) and
Proposition 3.2, we know that z is a Euclidean isoparametric spacelike hypersurface
with five distinct Euclidean principal curvatures, this contradicts Proposition 3.3.

Subcase (’LZ) If at least one of {B12,5, B1375, B2375, B1475, B24757 B3475} is nonzero,
without loss of generality, we may assume that Bias # 0. Since Bija3z # 0 and
Bi2.4 # 0, by the similar method as in the proof of Lemma 5.5, we see that x is a
conformal para-isotropic spacelike hypersurface and we have a contradiction. This
completes the proof of Theorem 1.3. O
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