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Abstract. One of the fundamental problems is to study the eigenvalue
problem for the differential operator in geometric analysis. In this article,
we introduce the recent developments of the eigenvalue problem for the
Finsler Laplacian.
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1 Introduction

In Riemannian geometry, the study of the eigenvalue problem for the Laplace operator
on Riemannian manifolds has a long history. For an overview, the reader is referred
to the book ( [2] ) and Chapter 3 in book ( [14], [1] and references therein ). As a
generalization of Riemannian geometry, Finsler geometry has been received more and
more attentions recently since it has more and more applications in natural science.
A Finsler manifold (Mn, F ) means an n-dimensional smooth differential manifold
equipped with a Finsler metric F : TM \ {0} → [0;+∞) (see details in Section
2 below). On a Finsler manifold (M,F ), the Laplace operator (often called the
Finsler Laplacian) was introduced by Z. Shen via a variation of the energy functional
( cf. [12],[13] ). If F is Riemannian, then the Finsler Laplacian is exactly the usual
Laplacian. Unlike the usual Laplacian, the Finsler Laplacian is a nonlinear elliptic
operator. The standard linear elliptic theory can not be directly applied to the Finsler
Laplacian. In spite of this, some progress has been made on the global analysis on
Finsler manifolds in recent yeas ( cf. [10], [11], [18], [22] and references therein ). In
this survey article, we focus on the recent developments of the eigenvalue problem for
the Finsler Laplacian.

2 Preliminaries

2.1 Finsler manifold and Finsler Laplacian

Let M be an n-dimensional smooth manifold. A Finsler metric F on M means a
function F : TM → [0,∞) with the following properties: (1) F is C∞ on TM \
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{0}; (2) F (x, λy) = λF (x, y) for any (x, y) ∈ TM and all λ > 0; (3) the matrix

(gij) = (∂
2F (x,y)
∂yi∂yj ) is positive. Such a pair (M,F ) is called a Finsler manifold and

g(x, y) = gijy
iyj is called the Fundamental tensor of F , where y ∈ TxM . Given a

smooth measure m, the triple (M,F,m) is called a Finsler measure space.
A Finsler metric F on M is said to be reversible if F (x,−y) = F (x, y) for all

x ∈ M and y ∈ TxM . Otherwise, F is said to be nonreversible. In this case, we can

define the reverse Finsler metric
←−
F (x, y) by

←−
F (x, y) := F (x,−y). To consider the

global analysis on a Finsler manifold M , we always assume that (M,F ) is orientable
throughout the paper.

For x1, x2 ∈M , the distance function from x1 to x2 is defined by

d(x1, x2) := inf
γ

∫ 1

0

F (γ̇(t))dt,

where the infimum is taken over all C1 curves γ : [0, 1] → M such that γ(0) = x1

and γ(1) = x2. Note that the distance function may not be symmetric unless F is
reversible. The diameter of M is defined by d := supx,y∈M d(x, y).

Given a Finsler metric F on a manifold M , there is a dual Finsler metric F ∗ on
the cotangent bundle T ∗M given by

F ∗(x, ξx) := sup
y∈TxM\{0}

ξ(y)

F (x, y)
, ∀ξ ∈ T ∗

xM.

The Legendre transformation L : TM → T ∗M is defined by

L(y) :=
{

gy(y, ·) y ̸= 0,
0 y = 0.

One can check that it is a diffeomorphism from TM\{0} onto T ∗M\{0}, and norm-
preserving, namely, F (y) = F ∗(L(y)), ∀y ∈ TM . Consequently, gij(y) = g∗ij(L(y))
(see §3.1 in [12]).

For a smooth function u : M → R, we define the gradient vector ∇u(x) of u at x
by ∇u(x) := L−1(du(x)) ∈ TxM . In a local coordinate system, we can reexpress ∇u
as

∇u(x) =
{

gij(x,∇u) ∂u
∂xi

∂
∂xj x ∈Mu,

0 x ∈M \Mu,

where Mu = {x ∈ M |du(x) ̸= 0}. Obviously, ∇u = 0 if du = 0. In general, ∇u is
only continuous on M , but smooth on Mu.

Given a smooth measure dm = σ(x)dx on (M,F ), for a weakly differentiable
vector field V : M → TM , we define its divergence divmV : M → R through the
identity ∫

M

φdivmV dm = −
∫
M

dφ(V )dm,

where φ ∈ C∞
0 (M) (i.e., the set of smooth functions on M with a compact support).

The Finsler Laplacian ∆m of u is formally defined by ∆mu := divm(∇u), which
is a nonlinear elliptic differential operator of second order. To be more precise, ∆mu
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is defined in a distributional sense through the identity∫
M

φ∆mudm = −
∫
M

dφ(∇u)dm,

for all φ ∈ C∞
0 (M). It is locally expressed by

∆mu(x) = divm(∇u)(x) = 1

σ(x)

∂

∂xi

(
σ(x)gij(x,∇u) ∂u

∂xj

)
,

where x ∈ Mu := {x ∈ M |du(x) ̸= 0} ([12]). For the sake of simplicity, we denote
∆m as ∆ in the following.

Similarly, we can define the reverse gradient
←−
∇ and the reverse Laplacian

←−
∆ for

the reverse Finsler metric
←−
F etc.. In fact, we have←−g (x, y) = g(x,−y),←−∇u = −∇(−u)

and
←−
∆(u) = −∆(−u). Note that ∇(−u) and −∇(u) are different in general.

Assume that (M,F,m) is a Finsler manifold with a nonempty boundary ∂M .
Then ∂M is also a Finsler manifold with a Finsler structure F∂M induced by F . For
any x ∈ ∂M , there exist exactly two unit normal vectors ν such that

Tx(∂M) = {V ∈ TxM |gν(ν, V ) = 0, gν(ν, ν) = 1}.

Note that, if ν is a normal vector, then −ν may be not a normal vector unless F is
reversible. Throughout this paper, we choose the normal vector that points outward
M .

The normal curvature Λν(V ) at x ∈ ∂M in a direction V ∈ Tx(∂M) is defined by

Λν(V ) = gν(ν,D
γ̇
γ̇ γ̇(0)), where γ is the unique geodesic for the Finsler structure F∂M

on ∂M induced by F with the initial data γ(0) = x and γ̇(0) = V . M is said to has
convex boundary if, for any x ∈ ∂M , the normal curvature Λν at x is nonpositive in
any directions V ∈ Tx(∂M). We remark that the convexity of M means that Dγ̇

γ̇ γ̇(0)
lies at the same side of TxM as M . Hence the choice of the normal vector is not
essential for the definition of convexity (see [12]).

2.2 Chern connection and Weighted Ricci Curvature

Let π : TM \ {0} →M be the projective map. The pull-back π∗TM admits a unique
linear connection, which is called the Chern connection. The Chern connection D is
determined by the following equations

DV
XY −DV

Y X = [X,Y ],

ZgV (X,Y ) = gV (D
V
ZX,Y ) + gV (X,DV

Z Y ) + CV (D
V
Z V,X, Y )

for V ∈ TM \ {0} and X,Y, Z ∈ TM , where

CV (X,Y, Z) := Cijk(V )XiY jZk =
1

4

∂3F 2(x, V )

∂V i∂V j∂V K
XiY jZk

is the Cartan tensor of F and DV
XY is the covariant derivative with respect to the

reference vector V . Note that CV (V,X, Y ) = 0 from the homogeneity of F . In terms

of the Chern connection, a geodesic γ = γ(t) satisfies Dγ̇
γ̇ γ̇ = 0.
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Given two linear independent vectors V,W ∈ TxM \ {0}, the flag curvature is
defined by

KV (V,W ) =
gV (R

V (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
,

where RV is the Riemannian curvature defined by

RV (X,Y )Z := DV
XDV

Y Z −DV
Y DV

XZ −DV
[X,Y ]Z.

Then the Ricci curvature is given by

Ric(V ) :=

n−1∑
i=1

KV (V, ei),

where {e1, · · · , en−1,
V

F (V )} is the orthonomal basis of TxM with respect to gV .

Motivated by the work of Lott-Villani ([8]) and Sturm ([15], [16]) on metric mea-
sure space, Ohta introduced the weighted Ricci curvature on Finsler manifolds in
[9].

Definition 2.1. ([9]) Given a vector V ∈ TxM , let η : (−ε, ε) −→M be the geodesic
such that η(0) = x and η̇(0) = V . We set dm = e−Ψvolη̇ along η, where volη̇ is
the volume form of gη̇. Define the weighted Ricci curvature involving a parameter
N ∈ [n,∞] by

(1) Ricn(V ) :=

{
Ric(V ) + (Ψ ◦ η)′′(0) if (Ψ ◦ η)′(0) = 0,
−∞ if (Ψ ◦ η)′(0) ̸= 0,

(2) RicN (V ) := Ric(V ) + (Ψ ◦ η)′′(0)− (Ψ◦η)′(0)2
N−n for N ∈ (n,∞),

(3) Ric∞(V ) := Ric(V ) + (Ψ ◦ η)′′(0)
For c ≥ 0 and N ∈ [n,∞],define RicN (cV ) := c2Ric(V ).

We say that RicN ≥ K for some K ∈ R if RicN (V ) ≥ KF (V )2 for all V ∈ TM .
Ohta proved in [9] that the bound RicN (V ) ≥ KF (V )2 is equivalent to Lott-Villani
and Sturm’s weak curvature-dimension condition.

3 Eigenvalue and eigenfunctions

Let (M,F,m) be an n-dimensional Finsler measure space. Recall that the class L2(M)
is defined in terms of the manifold structure of M (i.e. independent of the choice of F )

and the Lebesgue space (L2(M), ∥·∥) is a Banach space, where ∥u∥2 =
(∫

M
|u|2dm

)1/2
is the norm of L2(M). For any open set Ω ⊂M , let

W 1,2(Ω) :=

{
u ∈ L2(Ω) |

∫
Ω

[F ∗(du)]2dm <∞
}

and

∥u∥Ω,1,2 :=

(∫
Ω

|u|2dm
)1/2

+

(∫
Ω

[F ∗(du)]2dm

)1/2

(3.1)
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for u ∈W 1,2(Ω). Then ∥ · ∥Ω,1,2 is a (positively homogeneous) norm by the inequality
F ∗(ξ + η) ≤ F ∗(ξ) + F ∗(η) for any ξ, η ∈ T ∗(M) (Lemma 1.2.3 in [12]). We will
suppress Ω in (3.1) if Ω = M , e.g., ∥u∥1,2 = ∥u∥M,1,2.

In general, (W 1,2(Ω), ∥u∥Ω,1,2) is not a linear space over R. For example, let

Bn(1) := {x ∈ Rn||x| < 1}, u : Bn(1)→ R be defined by u(x) = −
√

1− |x| and

F (x, y) =

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2
+

< x, y >

1− |x|2
, x ∈ Bn(1), y ∈ Rn

be the Funk metric. Then u ∈ W 1,2(Bn(1)), but −u /∈ W 1,2(Bn(1)) with respect to
the Busemann-Hausdorff measure (see details in [6]). However, if M is compact, then
(W 1,2(M), ∥·∥1,2) is a normed linear space with respect to the (positive homogeneous)
norm ∥ · ∥1,2.

In the following, we always assume that (M,F,m) is a compact Finsler manifold
(M,F ) without or with a smooth boundary equipped with a smooth measure m. Let

H1
0 be a space of functions u ∈W 1,2(M) with

∫
udm = 0 if ∂M = f� and u|∂M = 0

if ∂M ̸= f� . For any nonzero function u ∈ H1
0 \ {0}, we define the energy of u by

E(u) :=

∫
M
[F ∗(x, du)]2dm∫

M
|u|2dm

.

Note that E is C1 on H1
0 \ {0}. We say λ is an eigenvalue of (M,F,m) if there is a

function u ∈ H1
0 \ {0} such that duE = 0 with λ = E(u). In this case, u is called an

eigenfunction corresponding to λ.

Theorem 3.1. ([3]) There is a function u ∈ H1
0 \{0} with ∥u∥2 = 1, which minimizes

the canonical energy functional E. Thus λ1 := inf
u∈H1

0

E(u) is a critical value of E and

u is a critical point of E corresponding to λ1.

By a direct calculation, duE = 0 if and only if

∆u = −λu(3.2)

in a weak sense. Theorem 3.1 implies that there is a weak solution of the equation
(3.2) with λ = inf

u∈H1
0

E(u) in H1
0 . In this case, λ is called the first eigenvalue of

the Finsler Laplacian ∆, denoted by λ1, and u is called the first eigenfunction of ∆
corresponding to λ1. If F is a Riemannian metric, then ∆ is reduced to the usual
Laplace operator and all eigenfunctions of ∆ are smooth on a Riemannian manifold
M . A natural question arises: is every eigenfunction on Finsler manifolds smooth?
The following example shows the answer is negative.

Example 3.1. ([3], [13]) Let u0 = χ(|x|) be the eigenfunction corresponding to the
first eigenvalue λ1(Bn(1)) of the standard ball Bn(1) in the Euclidean space Rn, where
| · | is the standard Euclidean norm in Rn and χ is a smooth function on R satisfying

χ′′(t) +
n− 1

t
χ′(t) + λ1χ(t) = 0, χ(1) = 0.
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Let (Rn, F ) be an arbitrary Minkowski space and Bn(r) := {x ∈ Rn|F (x) < 1}.
Define

u(x) := χ(F (x).

It can be shown that λ1(Bn(r)) = λ1(B
n(1)) and u is an eigenfunction corresponding

to λ1(B
n(1)). Clearly, u is C∞ at x ̸= 0 and only C1,1 at x = 0.

The above example also shows that one can not expect a better regularity of
eigenfunctions than C1,1. In fact, it was proved that the following

Theorem 3.2. ([3]) Let (M,F,m) be a compact Finsler measure space without or
with boundary and u ∈ H1

0 be a weak solution of (3.2). Then u ∈ C1,α(M) for some
0 < α < 1 and u ∈ C∞(Mu), where Mu = {x ∈M |du(x) ̸= 0}.

4 Eigencone corresponding to the first eigenvalue

Let (M,F,m) be a compact Finsler measure space without boundary or with a smooth

boundary. If ∂M = f� , then (3.2) is called the closed eigenvalue problem. Theorem
3.1 implies that the smallest eigenvalue of the closed eigenvalue problem is given by

λC
1 = inf

{
E(u)|0 ̸= u ∈W 1,2(M) and

∫
M

udm = 0

}
,

which is called the first closed eigenvalue. If ∂M ̸= f� , then (3.2) with the Dirichlet
boundary condition u|∂M = 0 ( resp. with the Neumann boundary condition ∇u ∈
T (∂M) ) is called the Dirichlet (resp. Neumann) eigenvalue problem. By Theorem
3.1, the smallest eigenvalues of the Dirichlet and Neumann eigenvalue problem are
given by

λD
1 = inf

{
E(u)|0 ̸= u ∈W 1,2(M) and u|∂M = 0

}
,

λN
1 = inf

{
E(u)|0 ̸= u ∈W 1,2(M) and

∫
M

udm = 0

}
,

which are called the first Dirichlet and Neumann eigenvalue respectively. The weak
solution u of the closed ( resp. Dirichlet or Neumann ) eigenvalue problem with
λ = λC

1 (resp. λD
1 or λN

1 ) is called the first closed (resp. Dirichlet or Neumann)
eigenfunction.

Denote by Vλ1 the union of the zero function and the set of all eigenfunctions
corresponding to the first eigenvalue λ1. If F is Riemannian, it is well known that
each eigenspace Vλ is a linear subspace of H1

0 . However, for a Finsler metric F , Vλ1

is only a cone, not a subspace in H1
0 , which is called the eigencone corresponding to

λ1. In fact, if u is a weak solution of ∆u = −λ1u, then −u is a weak solution of←−
∆u = −λ1u.

We say two functions f(x) and h(x) on M are linearly dependent if there is a
nonzero constant c such that f = ch or h = cf . Otherwise, we say f(x) and h(x) are
linearly independent. A nonzero function is always linearly independent.
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Example 4.1. Let F (y) = |y|+ < c, y > be a Minkowski norm on Rn, where c is
a constant vector, <,> is a usual Euclidean inner product and | · | is an Euclidean
norm. With respect to the Busemann Hausdorff measure, the volume form of F is
given by

dV = (1− |c|2)(n+1)/2dx.

Let u(y) = f(F (y)) for some nondecreasing C2 function on R+. Then

∆u =
(n− 1)f ′(F (y))

F (y)
+ f ′′(F (y)).(4.1)

If f is nonincreasing, then an analogous expression holds for v(x) = f(F (−y)), i.e.,

∆u =
(n− 1)f ′(F (−y))

F (y)
+ f ′′(F (−y)).(4.2)

For nonincreasing f , the right hand of (4.1) coincides with
←−
∆u. Similarly, the right

hand of (4.2) coincides with
←−
∆ for nondecreasing f .

Assume that λ1 is the first Dirichlet eigenvalue of ∆ and f is a strictly increasing
function satisfying the following ODE on the ball Bn(1) := {y ∈ Rn|F (y) < 1}:

f ′′(t) +
n− 1

t
f ′(t) + λ1f(t) = 0, f(1) = 0.

Then u(y) = f(F (y)) and v(y) = −f(F (−y)) are the first Dirichlet eigenfunctions of
∆ corresponding to λ1. In fact, λ1(B

n(1)) = λ1(Bn(1)), where λ1(Bn(1)) is the first
eigenvalue of the Euclidean Laplacian ∆0 with the first eigenfunction u(y) = f(|y|)
defined on an Euclidean ball Bn(1) in Rn ( see Example 3.1 ). A direct calculation
shows that u(y) and v(y) are linearly independent unless F is reversible.

The above example shows that the first Dirichlet eigencone for the Finsler Lapla-
cian may not one-dimensional space. Denote V D

λ1
as an eigencone consisting of the

first Dirichlet eigenfunctions corresponding to λD
1 and

Mu
≥ := {x ∈M |u(x) ≥ 0}, Mu

≤ := {x ∈M |u(x) ≤ 0}.

In fact, we can prove the following

Theorem 4.1. Let (M,F,m) be an n-dimensional compact Finsler measure space
with a smooth boundary. Assume λD

1 is the first Dirichlet eigenvalue for the Finsler
Laplacian and u ∈ V D

λ1
is an eigenfunction corresponding to λD

1 . Then one of the
followings holds.

(1) All the first Dirichlet eigenfunctions in V D
λ1

are positive or negative on Mu
≥\∂M

and on Mu
≤ \ ∂M respectively. Further, λ1 is simple, i.e., for any 0 ̸= v ∈ V D

λ1
, v and

u are linearly dependent on Mu
≥ and Mu

≤ respectively.

(2) There exists a function v ∈ V D
λ1

such that u and v are linearly independent.
Moreover, all the other first Dirichlet eigenfunctions are positive on either Mu

≥ \ ∂M
or Mv

≥ \ ∂M and negative on either Mu
≤ \ ∂M or Mv

≤ \ ∂M respectively. Further, all
the other first Dirichlet eigenfunctions are merely positive constant multiples of each
other on either Mu

≥ or Mv
≥ and on either Mu

≤ or Mv
≤ respectively.
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Theorem 4.1 implies that the first Dirichlet eigencone is at most two-dimensional
space. In particular, if F is a reversible Finsler metric and u is the first Dirichlet
eigenfunction on (M,F ), then |u| is also a nonnegative first Dirichlet eigenfunction.
In this case, only the case (1) of Theorem 4.1 occurs. Thus we have

Corollary 4.2. ([3]) Let (M,F,m) be a compact reversible Finsler measure space with
a smooth boundary. Suppose that u ∈ H1

0 is a Dirichlet eigenfunction corresponding
to λD

1 . Then either u > 0 or u < 0 in M \ ∂M . Furthermore, the eigencone V D
λ1

corresponding to λD
1 is a one-dimensional space.

In particular, if F is a Riemannian metric, then Corollary 4.2 is reduced to the
classical result (cf. Theorem 8.38 in [4] or Theorem 1.3 in [7]).

5 Lower bound estimates of the first eigenvalue

In this section, we introduce some recent developments on lower bound estimates
for the first eigenvalue of the Finsler Laplacian. The first result is due to Y.Ge and
Z.Shen, who gave the Faber-Krahn type and Cheng type lower bound estimates for
the first eigenvalue respectively ([3], [13]). Recently, B. Wu and Y. Xin gave some
Mckean type lower bound estimates for the first eigenvalue in [19] under different
assumptions. In the following, we only concentrate on the lower bound estimates of
the first eigenvalue on a Finsler manifold whose weighted Ricci curvature is bounded
from below. On this, an important progress was made by G.Wang and C.Xia, inspired
by Bakry-Qian’s work (cf.[1]).

Theorem 5.1. ([18]) Let (Mn, F,m) be an n-dimensional compact Finsler manifold
without boundary or with a convex boundary. Assume that RicN ≥ K for some real
numbers N ∈ [n,∞] and K ∈ R. Let λ1 be the first (nonzero) closed or Neumann
eigenvalue for the Finsler Laplacian, i.e.,

∆mu = −λ1u, in M

with the Neumann boundary condition

∇u ∈ Tx(∂M),

if ∂M is not empty. Then
λ1 ≥ λ1(K,N, d),

where d is the diameter of M and λ1(K,N, d) is the first (nonzero) eigenvalue of the
1-dimensional problem

v′′ − T (t)v′ = −λ1(K,N, d)v, in (−d

2
,
d

2
), v′(−d

2
) = v′(

d

2
) = 0,(5.1)

with T (t) defined by

T (t) =



√
(N − 1)K tan

(√
K

N−1

)
t, for K > 0, 1 < N <∞,

−
√
−(N − 1)K tanh

(√
− K

N−1

)
t, for K < 0, 1 < N <∞,

−N−1
t , for K = 0, 1 < N <∞,

Kt, for N =∞.

(5.2)
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In particular, if F is Riemannian, Theorem 5.1 is reduced to Theorem 3 in [1],
which improved all known lower bound estimates for the first eigenvalue of the Lapla-

cian (see the introduction in [1]). Note that T (t) in (5.2) satisfies T ′ = K + T 2

N−1 .
From this and (5.1), one obtains a unified lower bound for the first eigenvalue of the
Finsler Laplacian via integrating by parts.

Theorem 5.2. Let (Mn, F,m) be an n-dimensional compact Finsler manifold without
boundary or with a convex boundary. Assume that RicN ≥ K for some real numbers
N ∈ [n,∞] and K ∈ R. Let λ1 be the first (nonzero) closed or Neumann eigenvalue
for the Finsler Laplacian, i.e.,

∆mu = −λ1u, in M

with the Neumann boundary condition

∇u ∈ Tx(∂M),

if ∂M is not empty. Then

λ1 ≥ sup
s∈(0,1)

{
4s(1− s)

π2

d2
+ sK

}
,(5.3)

where d is the diameter of M .

Note that the diameter d < π
√

(N − 1)/K if K > 0 (see Theorem 7.3 in [9]). By
a direct calculation, it is easy to see that

sup
s∈(0,1)

{
4s(1− s)

π2

d2
+ sK

}
=


0, if Kd2 < −4π2,

(πd + Kd
4π )2, if Kd2 ∈ [−4π2, 4π2],

K, if Kd2 ∈ (4π2, N−1
K π2].

In particular, if K = 0, then the right side in (5.3) arrives the maximum π2

d2 . In

this case, λ1 ≥ π2

d2 , which is optimal in the sense of Theorem 5.3 below.

Theorem 5.3. Let (Mn, F,m), λ1 and d be as in Theorem 5.2. Assume the weighted

Ricci curvature RicN of M is nonnegative for N ∈ [n,∞]. Then λ1 ≥ π2

d2 and the
equality holds if and only if M is a 1-dimensional segment or 1-dimensional circle.

Proof. We only give the sketch of the proof here. See [21] for more details. The proof
is divided into four steps as follows.

Step I. Prove that a necessary (but not necessarily sufficient) condition for λ1 = π2

d2

is that maxu = −min(u) for any eigenfunction u(x).

Step II. We always may assume min(u) = −1. From Step I, we can prove if

λ1 = π2

d2 , then
(1) the function P (x) := F 2(x,∇u) + λu(x)2 = λ1 on M . Moreover, Mu = {x ∈

M | u(x) ̸= ±1}.
(2) the vector field X := ∇u

F (∇u) is a geodesic field of F on Mu.
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Let M0 := u−1(0), which is a hypersurface of M . Define a map

φ : I ×M0 →Mu, φ(s, x) = φs(x),

where φs(x) = expx(sX) be the one-parameter transformation group generated by X
on Mu.

Step III. Based on Step II, we prove I = (−d/2, d/2) and φ is a diffeomorphism.
Furthermore, we prove the weighted Riemannian manifold (Mu, gX ,m) admitting an
isometric splitting ((−d/2, d/2) ×M0, dt

2 ⊗ hX ,m) with M0 = u−1(0), where hX is
the induced Riemannian metric on M0 from gX defined by gX(x) = g(x,X).

Step IV. Prove dimM = 1. This will be completed by the arguments of the
following two cases.

Case I. If M0 has more than one connected component, then the connected com-
ponents of M0 are discrete, which implies that dimM = 1.

Case II. If M0 has only one connected component, then we define a map Φ :
[−d

2 ,
d
2 ]×M0 →M by

Φ(s, x) = expx(sX), for x ∈M0, X ∈ TxM0.

Claim: Φ is a unique differential extension of φ and Φ is a diffeomorphism. Finally, we
prove the maximum and minimum point are unique respectively. Hence dimM = 1.
�

In particular, if (Mn, F ) is a Riemannian manifold without boundary or with
a convex boundary, then Theorem 5.3 is reduced to Zhong-Yang and Hang-Wang’s

results, which asserted that λ1(M
n) ≥ π2

d2 if M has nonnegative Ricci curvature and
the equality holds if and only if M is a 1-dimensional circle or 1-dimensional segment
([23], [5]). In Finslerian case, the authors considered the optimal lower bound for
the first eigenvalue on compact Finsler manifolds with nonnegative∞-weighted Ricci
curvature Ricci∞ under some extra assumptions in [21],. Thus, Theorem 5.3 extends
Zhong-Yang’s well known sharp estimate in Riemannian case and Yin-He-Shen’s result
in Finslerian case. It is worth mentioning that the proof of Theorem 5.3 is not based
on the gradient estimate of the eigenfunctions, which was used in [21] and [23], but
on a comparison theorem on the gradient of the first eigenfunction with that of a one
dimensional model function, which was given in [18].
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